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Brief history of infarct size limitation

During the 1970s and 1980s it was a major goal of

academic cardiologists to discover a pharmacological

method to protect the infarcting myocardium [1]. A

considerable volume of work was published on this subject

and a plethora of agents from calcium antagonists to cobra

venom and b-adrenoceptor blockers to ibuprofen were

repeatedly tried and tested [2±4]. A variety of animal

models was employed and drugs were infused pre, peri and

post ischaemia. Some studies showed dramatically positive

results, whereas others showed no bene®t [5, 6]. Results

were often con¯icting, confusing and inconsistent. Even

the traditional `anti-infarct drugs', such as b-adrenoceptor

blockers, which at ®rst gave hopeful results [7], in later,

more robust, models, were unable to show a signi®cant

reduction in infarct size [6, 8]. Several reasons were

mooted for the con¯icting data [1]. Firstly, there was a

failure of investigators to distinguish between the ability of

a drug to delay the onset of cell death and the ability of a

drug to bring about an absolute reduction in the extent of

cell death. Secondly, in some studies the crucial role of

coronary collateral ¯ow was not taken into account when

calculating infarct size. Thirdly, surrogate end points of

infarction such as enzyme derived infarct size or ST

changes on the ECG, were imprecise. Even tetrazolium

staining, that remains the `gold standard' as a measure of

infarct size, is prone to serious error and all results have

to be interpreted with caution [5]. Consistency and

reproducibility are vital when interpreting the signi®cance

of an unexpected isolated ®nding. Studies have to be

examined collectively and only if results are repeatedly

positive can they be interpreted with con®dence. By 1986,

despite a wealth of research data, it seemed that no

pharmacological agent could claim to consistently limit

infarction. The question being asked, was `whether infarct

size reduction was really possible'?

History of preconditioning

It was in this climate that Murry et al. published a paper

stating that antecedent short ischaemia could protect

against the deleterious consequences of subsequent more

prolonged ischaemia, and could dramatically reduce infarct

size [9]. These investigators had been attempting to

understand the metabolic consequences of brief episodes

of ischaemia [10]. They knew that prolonged (40 min)

cardiac ischaemia led to depletion of ATP and myocyte

necrosis; what they did not know however, was whether it

was the run down of ATP stores, or the build up of toxic

catabolites that was deleterious to the heart. Hence, they

devised an experiment whereby the heart was subjected to

four repeated relatively short periods of 10 min ischaemia

(but equal in total time to a single sustained period of

ischaemia) interspersed with short periods of reperfusion

to wash out, and prevent accumulation of toxic catabolites.

An open chest canine model was employed and

myocardial perfusion was controlled with a circum¯ex

artery ligature. They showed that ATP levels fell during

the ®rst ischaemic episode, but they were surprised to ®nd

that during subsequent ischaemic episodes ATP levels

were preserved. It was as though the ®rst ischaemic insult

had instructed the myocardium to conserve energy and

become tolerant to subsequent ischaemia. Crucially, they

next showed that ischaemic preconditioning protected

myocytes against ischaemic cell death [9]. In this

experiment the ligature was tied for 5 min and then

released for 5 min to allow reperfusion. This was repeated

4 times prior to an ischaemic insult lasting 40 min. As a

result the preconditioned group had infarct sizes, as a

percentage of anatomic area at risk, four times smaller than

controls (7% vs 29%). Different models were employed in

different species in different laboratories and all con®rmed

similar levels of protection. For the ®rst time a convincing

method of reducing myocardial cell death had been

discovered.

The protective effects of preconditioning have been

repeated in all species thus far tested including rabbit [11],

pig [12], and rat [13] with a typical fourfold reduction in

infarct volume. In most circumstances preconditioning

exhibits an all or none effect, a short single ischaemic

episode being just as effective as repeated episodes and a

trigger of at least 3 min is required to induce protection

[14]. The protective effects last for about an hour [15] but

protection disappears altogether 2 h [16] after the

preconditioning ischaemia. In addition, although initiallyReceived 11 January 2000, accepted 26 April 2000.
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ischaemic preconditioning can be renewed by further

ischaemic stimuli, eventually tolerance occurs [17].

Since these early ®ndings the pace of preconditioning

research has increased dramatically and over a thousand

papers have been published on the subject since 1986.

Some believe it may be the panacea of infarct size

limitation. However, others think that, despite its

academic interest, preconditioning will never have a

clinical role. This review, discusses the mechanisms,

weighs up its clinical role and examines the therapeutic

potential of ischaemic preconditioning.

Preconditioning is receptor mediated

Downey et al. [18], were the ®rst to demonstrate that

protection was receptor mediated. Adenosine is a break-

down product of ATP and occurs in high concentrations

in ischaemic tissue [19]. They have shown that in the

rabbit isolated heart the protective effects of precondition-

ing are inhibited if adenosine receptor antagonists are

infused before the preconditioning stimulus is given [17].

Also, a 5 min infusion of adenosine or the A1 receptor

agonist N6±1-(phenyl-2R-isopropyl) adenosine is as

effective as 5 min of ischaemia in protecting against

infarct size [17].

Results from experiments which use a variety of

receptor agonists and antagonists suggest several other

substances are also involved including: bradykinin [20],

catecholamines [21], free radicals [22], angiotensin II [23],

nitric oxide [24], and opiates [25]. All these agonists are

products of ischaemia in animals and are therefore well

placed to play a role in initiating the protective effects. It

seems likely that they are released from ischaemic

myocardium and act in a paracrine fashion to activate

the protective mechanism.

In the rat, adrenergic and opioid signalling seem

dominant, whilst adenosine and bradykinin signalling are

more important in rabbit myocardium. Notably, if the

action of one agonist is blocked protection can still be

induced by boosting the preconditioning stimulus or

infusing a different agonist [26].

As well as being an important trigger of precondition-

ing, adenosine is also required to mediate the protective

effects during the prolonged ischaemia. Thornton et al.

[27] showed that blocking adenosine during this stage also

inhibits protection.

Intracellular signalling and protein kinase C

Most of the agonists, which generate the signal of

preconditioning, bind to heptahelical transmembrane

receptors [28]. The intracellular second messenger systems

linked to these receptors are relatively well characterized

and have now been investigated with regard to myocardial

preconditioning [29].

When agonist binds, a receptor-coupled G protein is

activated [28]. This dissociates and in turn activates a

membrane bound phospholipase, which cleaves phospho-

tidylinositol bisphosphate into inositol trisphosphate and

diacylglycerol (DAG). DAG then activates protein kinase

C that is believed to have a central role in ischaemic

preconditioning [28].

Protein kinase C (PKC) is well placed to have a key role

in cellular protection. It is known to regulate numerous

biological processes such as metabolism, myocyte con-

traction, ion transport, gene expression [28] and is coupled

to the receptors of many reported agonists of precondi-

tioning [29]. PKC is a complex protein both structurally

and pharmacologically. Typically it contains four constant

regions responsible for activation and enzymatic action as

well as ®ve variable regions responsible for translocation,

substrate binding and perhaps speci®city [30]. There are at

least 11 isomers in existence, each having several different

functions [30]. It is this complexity which makes its role in

preconditioning dif®cult to assess experimentally and its

involvement controversial [31].

Some groups are able to show that activation of PKC

induces protection [32, 33] and inhibition blocks it [34].

However, others report that PKC inhibitors do not block

preconditioning [35±37]. Problems interpreting these data

stem from the nonspeci®city to individual PKC isotypes of

pharmacological agents which may also activate or inhibit

other protein kinases [31]. Indeed, activation may have a

bimodal effect ®rst stimulating then down regulating PKC

activity. Also PKC activity and preconditioning induction

are seldom assessed in the same experiment, so that PKC's

involvement can only be inferred.

Its role can be further interrogated using gene transfer

techniques. Recently PKC isotypes, which have their

catalytic site rendered constitutively active either by small

deletions or point mutations in the pseudosubstrate

domain have become available [38]. Their effect can be

assessed by using in vitro models of preconditioning [39].

Work in this laboratory by Zhao et al. [40] has shown

that transfection with the active isotype of PKC d in rat-

isolated neonatal cells consistently increases resistance to

simulated ischaemia. Transfection is apparent in only

5±10% of cells and yet the remaining cells are also

protected against ischaemia. This suggests cellular cross

talk as a novel mechanism of preconditioning.

Experiments suggest that PKC activity, per se, may not

be increased by preconditioning but translocation of the

relevant isomers from cytosol to membranes is important.

The protection conferred be preconditioning can be

inhibited by colchicine [41] supporting the involvement of

microtubule mediated translocation. Western blotting [42]

and immuno¯uoresence [43] studies suggest that PKC-d,
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PKC-a and PKC-e are translocated to the sarcolemma for

approximately 60 min after the initial preconditioning

stimulus, providing evidence of these isomers' involve-

ment and explaining the memory of the second reperfu-

sion phase of preconditioning.

Downstream signalling and mitogen-activated protein
kinases

The neonatal rat cardiac myocyte model, where cardiac

myocyte protection is mediated through overexpression of

PKC-d, has provided insights into distal signalling path-

ways. By examining cross talk between protein kinase C

and limbs of the mitogen-activated protein kinase

(MAPK) cascade, we have shown that p38-MAPK is

activated during ischaemia and that this activation is

reduced in cells that have been preconditioned with

ischaemia or express active PKC-d [44]. These data are in

broad agreement with those of other groups using similar

techniques. For example, Mochley-Rosen's group also

suggest that p38-MAPK increases cell death during

ischaemia [45] although the relationship to precondition-

ing was not examined.

The tachyphylaxis that occurs with repeated episodes of

preconditioning [46] does not appear to relate to loss of

PKC responsiveness. In hearts made tolerant to an

adenosine analogue, treatment with phenylepinephrine

in lieu of global ischaemia, restores protection [47],

implying that PKC activation is intact and tolerance occurs

at the receptor level.

End effectors

Protein kinases exert control on cellular function by

phosphorylation of relevant proteins [30]. Proteins that

slow cellular metabolism during ischaemia would conserve

energy and protect against further ischaemic stress. ATP-

sensitive K+ channels are found in high concentrations in

the myocyte membrane and are a favoured end effector

[48]. Opening of these channels causes ef¯ux of K+ ions

which leads to a reduced inward calcium current, which

may conserve energy by decreasing the force of contrac-

tion [49]. The K+
ATP channel is blocked by glibenclamide

and this drug is able to block the protective effects of

preconditioning in guinea pig [50], dog [51] and rabbit

[52]. However, K+
ATP blockers do not prevent pre-

conditioning in all species, in particular the rat [53]. Also,

the cardioprotective effects of the K+
ATP channel openers

cromakalin and aprikalim occur at doses lower than those

required to elicit other effects consistent with sarcolemmal

K+
ATP channel activation, such as vasodilatation and

action potential duration shortening [54]. In the rabbit,

PKC activation increases the likelihood of the channel

opening which signi®cantly shortens the action potential

duration. Light et al. [52] were able to show, using excised

membrane patches, that PKC activity mediates a change in

the stoichiometry of ATP binding to this channel causing

it to open. Other groups have also demonstrated a link

between these two components in the signalling pathway

of preconditioning [55]. Of course, the ATP sensitive

K+
ATP channel may not be the only target of the PKC

isomers. It has also been suggested that strengthening the

cellular cytoskeleton may make cells more resistant to

ischaemic damage [15].

This initial work has placed the emphasis on the

sarcolemmal K+
ATP channel; however, Garlid & Marban

have demonstrated that the mitochondrial K+
ATP channel

may be the more important player. Diazoxide is 1000

times more potent at opening mitochondrial than

sarcolemmal channels and is cardioprotective in isolated

cell models [56, 57]. It has also been shown that

5-hydroxydecanoate, a speci®c mitochondrial K+
ATP

channel blocker, inhibits preconditioning [58] and that

this protection is enhanced by PMA, implicating PKC in

the pathway [59]. A popularly hypothesized mechanism of

protection is that, by partially depolarizing the mitochon-

dria, calcium entry is diminished at reperfusion allowing

more rapid re-energization in favour of mitochondrial and

myocyte survival.

Second window of protection

After 2 h the protective effects of ischaemic precondition-

ing wears off. However, there is a biphasic response and

protection re-emerges 24 h later [60, 61] and lasts for a

further 3 days [62±64]. This subsequent delayed phase of

protection has been termed the `second window'. The

protection it affords against infarct size is not as robust as

that seen during classical preconditioning. Nevertheless,

some groups are able to demonstrate a 50% reduction in

infarct size compared with controls [62, 65]. Although

others have been unable to repeat these ®ndings [66±68];

there does appear to be consistent protection against

dysrhythmia [69] and stunning [67].

The same second messenger cascade that is involved in

classical preconditioning may also mediate the second

window of protection. It, too, can be abolished if

adenosine antagonists [70], free radical scavengers [71]

or nitric oxide synthase inhibitors [72] are applied during

the initiating ischaemia. Baxter et al. have also shown that

PKC inhibition blocks the second window of protection

[73]. PKC-e is known to migrate to the nucleus after

preconditioning and remain there for 24 h [42, 74].

Transfection of PKC plasmids leads to expression of

reporter genes, which suggest all subgroups of PKC have

the propensity to contribute to protection by inducing

protein transcription [38]. Notably, the second window of

protection can be blocked by cyclohexamide [75] and, as

Ischaemic preconditioning
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such, protein transcription appears to be a requirement.

Heat shock proteins (HSP) and antioxidant proteins

increase in concentration 12±24 h after heat stress or

ischaemia [60, 76]. The roles of such proteins as

intracellular protein chaperones and free radical scavengers

belie their potential role as mediators of the mechanism.

Notably, the loss in protection at 72 h corresponds with

decay in their concentration [77], and transgenic mice can

be protected against myocardial infarction when inducible

HSP70 is over expressed [78]. Inducible nitric oxide

synthase also increases in concentration during the second

window and increased nitric oxide production during the

subsequent ischaemia may also contribute to the cardio-

protection [79].

Theoretically, manipulation of delayed preconditioning

offers a wider therapeutic window, unlike classical

preconditioning, however, its existence in humans

awaits thorough investigation.

Evidence of preconditioning in humans

Due to ethical considerations, demonstrating precondi-

tioning in humans can pose problems; nevertheless six

models have been described in the literature. The

discomfort of angina pectoris is mediated by cardiac

sympathetic afferent neurones [80]. The component or

consequence of ischaemia that stimulates these neurones is

not known. However, interstitial adenosine and bradyki-

nin accumulation during myocardial ischaemia are

thought to be important mediators. Thus, in patients

with ischaemic heart disease, the discomfort of angina can

be precisely mimicked by infusion of adenosine into the

diseased coronary artery [81] and attenuated by the use

of relatively speci®c adenosine type 1 (A1) receptor

antagonists [82]. The sensation of angina might be a

surrogate indicator of the accumulation within the

myocardium of the agonists that trigger preconditioning.

There are a number of circumstances in which angina

precedes further ischaemia. These circumstances could

provide an opportunity to investigate the mediators of

preconditioning in patients.

Preinfarction angina

Retrospective and prospective data suggest that angina

prior to myocardial infarction is bene®cial [83±89]. There

is evidence of reduced enzyme-derived infarct size [83, 86,

89] with improved short-term and long-term prognosis

[90]. Two studies suggest this might be due to a greater

chance of patency being achieved in the infarct-related

artery if there is antecedent angina [89, 90]. The

mechanism therefore may be due to thrombosed athero-

sclerotic plaques of patients with unstable angina being

more amenable to thrombolysis, rather than due to

preconditioning of distal myocardium. Hata et al. using a

canine model of spontaneous, platelet-mediated coronary

thrombosis, have shown that ischaemic preconditioning

improves vessel patency and is inhibited by administration

of an adenosine antagonist [91]. However, multivariate

analysis of human studies suggest that, despite the

improved vessel patency, angina, itself, is independently

associated with improved survival at 5 years [90].

In an ancillary study to TIMI-9B, in a prospective

analysis, 3002 patients were asked to report symptoms of

angina before their infarct. This study showed that patients

with symptoms within 24 h of infarction had a lower

30-day event rate than those with angina greater than 24 h

before the event. These ®ndings could support a role for

classical preconditioning or the second window [92].

However, it is dif®cult to conclude that the bene®t of

preinfarction angina is entirely related to preconditioning

as patients with more frequent angina may differ

substantially from patients without angina prior to

infarction. In particular, differences in concomitant

medications, collateral circulation and time to presentation

after the onset of chest pain all confound data interpreta-

tion.

Percutaneous transluminal coronary angioplasty

Since 1990 there have been several studies using PTCA as

a model of preconditioning [93±97]. During this

procedure the ®rst balloon in¯ation mimics the pre-

conditioning stimulus and ischaemic parameters such as

chest pain, ST segment deviation and lactate production

are lessened during subsequent in¯ations. However, not all

groups have shown a bene®t after ®rst in¯ation [97, 98].

There are two problems with this model; ®rstly, the

preconditioning stimulus only lasts around 2 min whereas

in animal models a preconditioning stimulus of at least

3 min is required to achieve protection [14]. Secondly, it is

not clear whether recruitment of collaterals following

the ®rst in¯ation is the main factor responsible for

the improved ischaemic parameters. Cribier et al. [93]

showed that collateral score as measured by an increase in

occlusion pressure and radiographic visualization correlates

well with those patients who adapt favourably to myocardial

ischaemia. In contrast, Sakata [99] using myocardial contrast

echo, showed that ischaemic preconditioning occurs in the

absence of visible collaterals. By positioning a pressure

sensor distal to the lesion (RADI Medical Systems) to allow

accurate measurement of balloon occlusion pressure, we

have demonstrated that myocardial protection during

PTCA can occur in the absence of any signi®cant collateral

recruitment [100], thus providing strong evidence of

ischaemic preconditioning in man.

Further evidence in favour of classical preconditioning,

rather than opening of collaterals, comes from pharma-
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cological manipulation of the preconditioning pathway.

Infusion of an adenosine antagonist [95] or pretreatment

with the K+
ATP channel blocker, glibenclamide [94], are

able to prevent the conditioning effect of the ®rst balloon

in¯ation. Moreover, Lesser et al. [49] have shown that a

5-minute intracoronary infusion of adenosine precondi-

tions human myocardium even more effectively than

ischaemia. There may also be a clinical bene®t, as it seems

that following a strict preconditioning protocol during

PTCA results in reduced CK release [101].

Warm-up in angina

First effort, warm-up or ®rst hole angina describes the

ability of some patients to exercise to angina, rest and then

continue exertion with few or no symptoms. The

relationship between warm-up angina and ischaemic

preconditioning has been a subject of interest [102].

Traditionally, warm-up angina was ascribed to coronary

vasodilatation [103], with perhaps the concomitant open-

ing of collateral vessels to support the ischaemic

myocardium [103]. This explanation was accepted despite

the observations that arterial vasodilators such as amino-

phylline had little effect on exercise tolerance [104], and

that the presence of collaterals on angiography were not a

predictor of walk through or warm-up in angina [105]. In

addition, there were other features to warm-up that were

dif®cult to explain, such as the ®nding that second effort

would reproducibly exceed ®rst effort providing the two

were separated by a rest period of at least 2±5 min but not

more than 30±60 min [104]. These time constraints are

consistent with warm-up being a form of ischaemic

preconditioning [14, 41]. However, exercise-induced

ischaemia does not appear to trigger the second window

of protection 24 h later [105, 106].

The suggestion that warm-up, like ischaemic precondi-

tioning, represents an adaptive phenomenon is further

supported by invasive investigations which indicate that the

®rst episode of angina conditions the myocardium so that it

becomes resistant to further ischaemia. This enhanced

resistance is re¯ected by reduced symptoms, ST segment

change, myocardial lactate production and oxygen con-

sumption at corresponding rate pressure products on

second compared with ®rst effort [105, 107]. We have also

found (unpublished data) that the incidence of ectopic beats

is signi®cantly reduced during the second exertion

implying an antiarrhythmic effect of warm-up angina. In

addition, the measurements of regional oxygen consump-

tion and ¯ow made it unlikely that collateral myocardial

blood ¯ow increased on second effort. Thus warm-up is

likely to be a form of metabolic myocardial adaptation akin

to classic ischaemic preconditioning [102].

We have used a pressure wire to measure balloon

occlusion pressure during PTCA, which has previously

been shown to provide a sensitive measure of coronary

collateral perfusion [108]. Using this method we have

identi®ed patients with coronary artery disease whom,

despite a total of 6 min balloon occlusion, have no

demonstrable collateral circulation. These patients were

able to warm up just as effectively as those with collaterals

(unpublished data) implicating preconditioning as the

dominant mechanism in the phenomenon.

A previous pharmacological study of warm up in angina

that has attempted to address the underlying mechanism

suggests that adenosine receptor blockade interferes with

the bene®t of ®rst effort [109]. However, the interpreta-

tion of this study is complicated by the direct antianginal/

analgesic action of the antagonist used (bamiphylline) [81].

Cardiac surgery

Cross clamping of the aorta during coronary artery bypass

isolates the coronary circulation to allow fashioning of the

grafts. This model has been exploited by Yellon et al. [110]

who were able to show that two 3 min cross clamping

periods slows the rate of ATP depletion compared with

controls, resembling the pattern of change originally

described by Murry et al. in the dog [9]. However, Yellon

et al. were unable to show a difference in CKMB release

between the two groups but it has since been found that

preconditioned hearts release less troponin T [6, 111], a

more sensitive marker of myocardial damage. The

difference in enzyme derived myocardial damage between

groups is not large, which might indicate that the

prolonged ischaemic stimulus is only 10 min, not long

enough to cause signi®cant necrosis. It is known that use of

cold cardioplegic solutions during surgery conserves ATP

by reducing cellular metabolic demand. As ischaemic

preconditioning is acting in the same way it is not

surprising that some groups do not ®nd an additive

protective effect of preconditioning in this model [112].

Lee et al. [113] did successfully precondition using a

presurgical infusion of adenosine, which improved post

operative haemodynamic function and reduced ischaemic

cell damage.

Isolated muscle and cultured myocyte experiments

Small atrial trabeculae harvested during cardiac surgery

exhibit ischaemic preconditioning in vitro [114] as

measured by improved contractile function. This protec-

tive effect was also induced by PKC activation and K+
ATP

openers and inhibited by their closure [114]. Also

angiotensin converting enzyme inhibitors, which are

known to inhibit bradykinin breakdown, enhance the

preconditioning effect in human atrial trabeculae [115].

Human adult cardiac myocytes have been successfully

cultured from patients with congenital heart disease and
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successfully preconditioned [116]. Isolated human ven-

tricular fetal myocytes also appear to be protected against

ischaemic cell death during the second window of

protection [117].

Remote preconditioning

In animal models when organs remote from the heart such

as kidney [118], intestine [119] and skeletal muscle [120]

are rendered ischaemic through arterial ligation, the

myocardium, itself, becomes preconditioned. The heart

subsequently preserves high-energy phosphates [118] and

is protected against infarction [119, 120]. These experi-

ments con®rm that preconditioning is probably mediated

through substances released into the blood such as

adenosine [118] and or catecholamines [119]. This cross

talk between organs may be of clinical relevance in patients

who have an episode of remote organ ischaemia, such as

claudication, prior to acute myocardial infarction.

Therapeutic potential of preconditioning

Surgically induced ischaemia

The global ischaemia deliberately induced during cardiac

surgery offers the ideal opportunity to precondition the

myocardium. The heart is readily accessible, the ischaemia

is anticipated, of relatively short duration and always

associated with reperfusion. However, the very successful

use of buffered hypothermic solutions whilst keeping the

heart in diastolic arrest means that irreversible myocardial

injury fortunately rarely occurs [1]. During prolonged

complex procedures troponin-t is released from the

myocardium, indicating discrete necrosis and in this

instance preconditioning may have an additional role to

play, delaying cell death.

A recent advance in cardiothoracic surgery is the use of

minimally invasive techniques for coronary bypass graft-

ing. During this procedure a much smaller operating

window is used and a single internal mammary artery is

rapidly sewn directly on to the coronary artery. The heart

is not put on bypass and there is no cardioplegia so surgical

speed is of the essence to prevent myocardial necrosis.

Preconditioning could have a simple prophylactic role by

preinfusing with adenosine prior to the procedure to

reduce the risk of irreversible injury.

Transplant surgery could be another therapeutic target

of preconditioning. For a heart to remain in top condition

for successful transplantation it should be cold stored for a

maximum of 4±6 h; longer than this and irreversible

damage occurs. Animal studies suggest that precondition-

ing may increase the therapeutic window which, may

provide a therapeutic target as yet untested in man [138,

139].

Acute myocardial infarction

This poses a dif®cult therapeutic challenge. For pre-

conditioning to be successful, the duration of the index

ischaemia must be less than 90 min and have a predictable

onset. However, acute myocardial infarction can not be

predicted, ischaemic duration is at best variable and often

permanent. Due to its unpredictable nature, some groups

have tested, in animal models, whether an infusion of

adenosine given at the time of acute myocardial infarction

or early reperfusion can be protective [121, 122]. There

are two problems with this; ®rstly, unless there is suf®cient

collateral ¯ow the drug cannot get to the site of intended

action and secondly, in most studies [123], a short period

of reperfusion is required for the protective mechanisms to

be generated. Todd et al. [124] showed in a rabbit model of

myocardial infarction that an adenosine receptor agonist

given during the index ischaemia exerted a cardioprotective

effect and reduced infarct size. Other groups have also

shown a protective bene®t [121, 122], but in similar

experimental models other groups [125, 126] could show

no bene®t of adenosine infusion. Nevertheless, the

technique has been tested in man [127]. The AMISTAD

trial was a prospective, open label trial of thrombolysis

with randomization to adenosine or placebo in 236

patients within 6 h of infarction onset. Infarct size was

determined by Tc-99 m sestamibi single-photon emission

computed tomography (SPECT) imaging 6 days after

enrolment. In this study adenosine resulted in a 33%

relative reduction in infarct size and supports the need for a

large clinical outcome trial.

Prophylactic myocardial protection

If the heart were in a permanently protected state the

problems of pre-emting myocardial infarction would be

avoided. A preconditioning drug could be given to an at

risk population, so their hearts were continuously in a

protected state. Unfortunately adenosine, which is the

obvious candidate, has to be given as an infusion and if

given repeatedly down regulates its receptor [128]. One

way around this problem is to include an adenosine free

period into the regime and maintain the heart in a

permanently protected state [129].

One option is to bolster endogenous adenosine during

ischaemia and reperfusion. Dralfalazine inhibits nucleoside

transport, bolstering adenosine concentration during low

¯ow ischaemia and in isolated porcine hearts elicits

cardioprotection during ischaemia [121]. This has the

advantage of providing a time and site speci®c therapy

which avoids tolerance and systemic side-effects.

ACE inhibitors may exert some of their bene®cial

actions in a similar way. The main side-effect of ACE

inhibitors experienced by patients is a dry cough, which is
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mediated through the inhibition of bradykinin break-

down. However, accumulation of this important agonist

of preconditioning may also mediate important anti-

ischaemic effects. Large clinical trials such as SOLVD

[130], SAVE [131], GISSI-3 [132] and ISIS-4 [133] which

were designed to assess the ability of these agents as

effective heart failure drugs revealed unexpected ®ndings.

Patients postmyocardial infarct who had received these

drugs had a decreased incidence of myocardial ischaemic

events and a signi®cant reduction in early mortality, at a

time when the remodelling effects had probably not yet

become effective.

Animal hearts exposed to ACE inhibitors prior to an

ischaemic episode have a reduced infarct size, decreased

reperfusion dysrhythmias and improved function com-

pared withtrols [20, 23, 134, 135]. Matoba et al. [136] have

shown in a rat cultured cardiac myocyte model the

protective effect of ACE inhibitors is indeed mediated

through bradykinin accumulation and the attendant

production of nitric oxide. These bene®cial effects have

also been demonstrated in human isolated atrial trabeculae

[115]. The time may be approaching when all patients

with coronary artery disease will be prescribed ACE

inhibitors and not just those post myocardial infarction

[137].

Further excitement in clinical cardiology is provided by

nicorandil. This drug which is licensed for the treatment of

angina has two moieties, a nitrate group and a K+
ATP

opener. It is the latter effect that has generated most

interested. A nicorandil infusion prior to an ischaemic

episode successfully protects against infarction and stun-

ning in a variety of animal models [138, 139]. These

bene®cial effects do not appear to be shared by pure nitrate

donors and it is thought they are mediated through the

K+
ATP opening [140]. Notably K+

ATP channel antago-

nists entirely block the protective effects of nicorandil

[138, 141, 142]. Several papers have documented its

ef®cacy as an antianginal [143] and in a recent placebo

controlled study was administered to patients admitted

with unstable angina [144]. It was found that when

nicorandil was added to the treatment regime of unstable

angina there was a reduction in myocardial ischaemia and

dysrhythmias, compared with placebo. The authors

suggested that pharmacological preconditioning was

responsible for these cardioprotective effects.

Since its discovery in 1986 we have come a long way in

understanding the mechanisms involved in precondition-

ing as well as its existence in man. Several potential

agonists have been characterized but we still await full

delineation of intracellular mechanisms and end effectors.

The phenomenon of ischaemic preconditioning is begin-

ning to make inroads in various clinical settings and its

eventual clinical impact will become clearer when the

results of further clinical trials are published.
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