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In vivo evidence that 5-HT2C receptors inhibit 5-HT
neuronal activity via a GABAergic mechanism
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Background and purpose: Recent evidence suggests that 5-HT2C receptor activation may inhibit midbrain 5-HT neurones
by activating neighbouring GABA neurones. This hypothesis was tested using the putative selective 5-HT2C receptor agonist,
WAY 161503.
Experimental approach: The effect of WAY 161503 on 5-HT cell firing in the dorsal raphe nucleus (DRN) was investigated
in anaesthetised rats using single unit extracellular recordings. The effect of WAY 161503 on DRN GABA neurones was
investigated using double label immunohistochemical measurements of Fos, glutamate decarboxylase (GAD) and 5-HT2C

receptors. Finally, drug occupancy at 5-HT2A receptors was investigated using rat positron emission tomography and ex vivo
binding studies with the 5-HT2A receptor radioligand [11C]MDL 100907.
Key results: WAY 161503 caused a dose-related inhibition of 5-HT cell firing which was reversed by the 5-HT2 receptor
antagonist ritanserin and the 5-HT2C receptor antagonist SB 242084 but not by the 5-HT1A receptor antagonist WAY 100635.
SB 242084 pretreatment also prevented the response to WAY 161503. The blocking effects of SB 242084 likely involved
5-HT2C receptors because the drug did not demonstrate 5-HT2A receptor occupancy in vivo or ex vivo. The inhibition of 5-HT
cell firing induced by WAY 161503 was partially reversed by the GABAA receptor antagonist picrotoxin. Also, WAY 161503
increased Fos expression in GAD positive DRN neurones and DRN GAD positive neurones expressed 5-HT2C receptor
immunoreactivity.
Conclusions and implications: These findings indicate that WAY 161503 inhibits 5-HT cell firing in the DRN in vivo, and
support a mechanism involving 5-HT2C receptor-mediated activation of DRN GABA neurones.
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Introduction

Feedback regulation is an essential aspect of the physiology

of central 5-hydroxytryptamine (5-HT, serotonin) neurones

(Aghajanian, 1978), and the roles of presynaptic 5-HT

autoreceptors are well established. Thus, somatodendritic

5-HT1A autoreceptors inhibit the firing of 5-HT neurones in

the dorsal raphe nucleus (DRN), while terminal 5-HT1B

autoreceptors inhibit 5-HT release (Barnes and Sharp, 1999).

In addition to 5-HT autoreceptors, recent evidence suggests

that postsynaptic 5-HT receptors located on afferent inputs

to 5-HT neurones are also involved in 5-HT feedback control.

For example, in rats cortical lesions attenuate the inhibi-

tory effect of 5-HT1A receptor agonists on the firing of DRN

5-HT neurones, suggesting the involvement of post-synaptic

5-HT1A receptors (Ceci et al., 1994; Hajós et al., 1999). Also,

the inhibition of 5-HT cell firing by 5-HT1A receptor agonists

persists following the local inactivation of somatodendritic

5-HT1A autoreceptors (Martin-Ruiz and Ugedo, 2001b).

A role for postsynaptic 5-HT2 receptors in 5-HT feedback

control is evident in in vivo electrophysiological findings that

5-HT2 receptor agonists, including (7)-2,5 dimethoxy-4-

iodoamphetamine (DOI), inhibit the firing of DRN 5-HT

neurones (Aghajanian et al., 1970; Garratt et al., 1991). A

recent pharmacological analysis of this effect of DOI

suggested a prominent role for the 5-HT2A receptor subtype,

but an involvement of 5-HT2B/C receptors was also indicated

(Boothman et al., 2003). Accordingly, in vitro electrophysio-

logical findings also emphasize the importance of the 5-HT2A

over the 5-HT2C receptor subtype in the induction of

inhibitory post-synaptic potentials (IPSPs) in DRN 5-HT

neurones by 5-HT and DOI (Liu et al., 2000). However, these
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studies may under-estimate the importance of the 5-HT2C

receptor subtype due to the limited selectivity of the drugs

used, and in particular the lack of a selective 5-HT2C receptor

agonist.

The neuroanatomical substrates which mediate 5-HT2

receptor agonist-induced inhibition of 5-HT cell firing are

unknown but 5-HT neuronal afferents are implicated

because 5-HT2 receptors are not expressed by 5-HT neurones

(Clemett et al., 2000; Cornea-Hebert et al., 1999). One

candidate neuronal substrate is DRN gamma amino-butyric

acid (GABA) neurones which synapse onto 5-HT neurones

and exert a powerful inhibitory effect (Wang et al., 1992;

Varga et al., 2001). Moreover, DRN GABA neurones are the

target of several important DRN afferents from the forebrain

(Varga et al., 2001; Jankowski and Sesack, 2004). Interest-

ingly, recent immunohistochemical data indicate that DOI

administration increases expression of the immediate early

gene c-fos in DRN GABA neurones (Boothman and Sharp,

2005a), and the presence of 5-HT2C receptor mRNA in DRN

GABA neurones was recently reported (Serrats et al., 2005).

This study investigated the role of 5-HT2C receptors in the

regulation of 5-HT cell firing, using the putative selective

5-HT2C receptor agonist, WAY 161503 (Cryan and Lucki,

2000; Rosenzweig-Lipson et al., 2006) and the 5-HT2C

receptor antagonist SB 242084 (Kennett et al., 1997). The

possible confounding factor of SB 242084 occupancy at

5-HT2A receptors in vivo was studied using positron emission

tomography (PET) scanning and ex vivo binding (Hirani et al.,

2003). Drug effects on DRN GABA neurones were examined

using a combined electrophysiological and Fos immuno-

histochemical approach. Results indicate that WAY 161503

inhibits 5-HT cell firing in the DRN in vivo, and support a

mechanism involving 5-HT2C receptor-mediated activation

of DRN GABA neurones. A preliminary account of these

experiments was presented to the British Pharmacological

Society (Boothman et al., 2005b; Raley et al., 2005).

Methods

Animals

Experiments were carried out in accordance with the

Animals (Scientific Procedures) Act (1986) and a local ethical

review process. Male Sprague–Dawley rats (220–320 g; Harlan

Olac, Bicester, UK) were group housed (5–6) under condi-

tions of constant temperature (21711C) and humidity under

a 24 h light–dark cycle (lights on 0800–2000) with food and

water freely available. Before immunocytochemical experi-

ments, rats were handled daily for 3–5 days and familiarized

with the testing room to minimize stress.

Electrophysiological recording of 5-HT neuronal activity

Rats were anaesthetized with chloral hydrate

(460 mg kg�1 i.p. with additional doses as required), supple-

mented during surgery with saffan (1.2 mg kg�1 i.v.), and

maintained at 361C using a thermoregulated blanket.

Extracellular single-unit recordings were made as described

previously (Boothman et al., 2003). Single barrel glass

electrodes (2 M NaCl, 2% pontamine sky blue; 6–20 MO)

were stereotactically implanted into the DRN (coordinates

relative to Bregma and the dural surface of A/P �7.5 mm,

L/M 0.0 mm D/V �4.5 to �5.5 mm, Paxinos and Watson,

1986). Single-unit potentials were amplified and filtered

(Gain 1 k; 500 Hz–1.5 kHz band pass; Neurolog system,

Digitimer Ltd), captured using a 1401plus interface, and

analysed offline using Spike2 software.

The firing properties of DRN neurones fulfilled three or

more of the following criteria which are characteristic of

5-HT neurones (Hajós et al., 1995; Allers and Sharp, 2003):

slow firing rate (0.2–2 Hz), regular firing pattern (typical

coefficient of variation o0.5), triphasic extracellular wave-

form with a wide spike width (41.5 ms) and an inhibitory

response to the 5-HT1A receptor agonist 8-OH-DPAT (10 mg

kg�1 i.v.). Most 5-HT neurones discharged single spikes, but a

small number that discharged both single spikes and spikes

in short bursts (Hajós et al., 1995) were included.

After 5 min baseline recording, drugs were injected via a

lateral tail vein. Rats (n¼6–8/group) received WAY 161503

(0.125, 0.25, 0.5 and 1.0 mg kg�1 at 2 min intervals) either

alone, or following pre-treatment with SB 242084

(1 mg kg�1). In separate experiments, the following antago-

nists were administered after WAY 161503: SB 242084

(5-HT2C; 0.5 mg kg�1), ritanserin (5-HT2; 1 mg kg�1), WAY

100635 (5-HT1A; 0.1 mg kg�1) or picrotoxin (GABAA; 0.5–

2.0 mg kg�1). At the end of some experiments, 8-OH-DPAT

(10 mg kg�1 i.v.) was administered followed by the 5-HT1A

receptor antagonist WAY 100635 (0.1 mg kg�1). Finally, dye

was expelled by iontophoresis (�3.6 mA pulses, 200 ms

duration, 21 ms interpulse interval, 30 min) to allow histo-

logical identification of the recording site.

Firing rates were quantified in the final min of each

baseline and post-drug period. Regularity of firing was

measured by coefficient of variation analysis (COV) of the

inter-spike interval (s.d. inter-spike interval/inter-spike inter-

val mean). Neurones discharging spikes in short bursts were

analysed using the first spike of each burst.

In vivo and ex vivo binding of [11C]MDL 100907

Rat PET scanning. Rat PET scanning was carried using the

high-resolution quad-HIDAC (high-density avalanche cham-

ber) system (Jeavons et al., 1999) as described previously

(Hume et al., 2001; Hirani et al., 2003). In brief, rats were

maintained under isoflurane anaesthesia with N2O/O2 and

positioned in the centre of the field of view of the scanner

using a perspex stereotaxic frame. The 5-HT2A receptor

radioligand [11C]MDL 100907 (B10 MBq) was then injected

via a tail vein catheter in either drug naı̈ve rats (n¼5) or rats

pre-treated with SB 242084 (1 mg kg�1 i.v., n¼4), or MDL

100907 (0.2 or 0.4 mg kg�1 i.v., n¼4) 5 min before radio-

ligand injection. Each rat was scanned for 60 min with data

acquired in list-mode.

For data acquisition, quad-HIDAC sinograms were recon-

structed into 0.5 mm cubic voxels with the Hamming filter

at a cut-off of 0.6. As the current quad-HIDAC scanner

technology does not enable quantitative determination of

the full dynamics of delivery and development of specific

signal, data acquired during a 40 min time frame (20–60 min

after radioligand injection) were chosen to represent a
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compromise between time to reach secular equilibrium

and increasing noise in data. Data were transferred into

ANALYZE-AVW imaging software and a standard volume

of interest (VOI) template was projected onto each volume.

Eight VOIs were sampled, including frontal with cingulate

cortex (452 voxels), striatum (404 voxels), hippocampus (264

voxels) and cerebellum (576 voxels). As the number of

5-HT2A receptors in the cerebellum are negligible (Lopez-

Gimenez et al., 1997), data were expressed relative to

cerebellar VOI counts, to give a measure of total:non-specific

binding.

Ex vivo measurement of tissue [11C]radioactivity. After PET

scanning, rats were administered Euthatal and post-mortem

brains were rapidly dissected into regions corresponding to

those sampled by the quad-HIDAC (frontal cortex, striatum,

hippocampus, cerebellum, olfactory bulbs, hypothalamus/

thalamus, superior colliculi and medulla). Extracerebral

tissues surrounding the head and within the scanner field

of view were also sampled (muscle, skin, submaxillary and

lachrymal glands). Carbon-11 radioactivity was measured in

whole tissue samples as described previously, using a Wallac

gamma-counter, with automatic correction for radioactive

decay. Results were normalized to account for radioactivity

injected and body weight (‘uptake units’¼ (c.p.m./g tissue)/

(injected c.p.m./g body weight)). For brain regions, tissue:

cerebellum ratios were calculated to give a measure of

specific binding (total:non-specific).

Immunohistochemistry

Pilot experiments (n¼3 rats/group) tested the effect of 1, 3

and 10 mg kg�1 WAY 161503 compared to saline vehicle. In

the main experiments (n¼6 rats/group), rats received two

i.p. injections 30 min apart as follows: (i) vehicle–vehicle,

(ii) vehicle–WAY 161503 (3 mg kg�1), (iii) SB 242084

(1 mg kg�1)–vehicle or (iv) SB 242084 (1 mg kg�1)–WAY

161503 (3 mg kg�1). At 2 h after the last injection rats were

anaesthetized with pentobarbital (300 mg kg�1 i.p.), perfused

with 200 ml 0.9 % saline followed by 200 ml fixative (4%

paraformaldehyde in 0.1 M sodium phosphate buffer with

0.4% picric acid), and brains were post-fixed overnight (41C).

Free-floating sections (40 mm) were cut on a vibratome and

stored at 41C before further use.

Fos/GAD double labelling

Sections were incubated in hydrogen peroxide (0.3%,

10 min), washed in phosphate-buffered saline (PBS: 140 mM

NaCl, 30 mM KCl, 80 mM Na2HPO4, 15 mM KH2PO4, in

distilled water), and then treated (30 min) with standard

blocking serum (10% normal goat serum, in PBS with 0.3%

Triton), prior to overnight incubation (41C) in rabbit anti-

glutamate decarboxylase (GAD)65/67 antibody (Chemicon,

Hampshire, UK, AB 5992, 1:2000 dilution). Sections were

then washed (PBS) and incubated in biotinylated secondary

antibody (1:500 dilution, 2 h). GAD65/67 immunoreactivity

was visualized using a chromagen reaction to give a brown

product (Vectastain ABC elite and DAB kit, Vector, Burlin-

ghame, CA, USA). Sections were again washed (PBS), before

incubation (72 h at 41C) with rabbit anti-Fos antibody (Santa

Cruz Biotechnology Inc., Santa Cruz, CA, USA, sc-253,

1:2000 dilution) followed by biotinylated secondary anti-

body (goat anti-rabbit, Vector BA-1000 1:500 dilution, 2 h).

Fos immunoreactivity was visualized using a chromagen

reaction giving a dark-blue product (Vectastain ABC elite and

SG kit, Vector).

5-HT2C receptor and GAD65/67 or Fos double labelling

Sections were treated with blocking serum before incubation

at 41C in mouse anti-5-HT2C receptor antibody (Pharmigen

556335, 1:200 dilution, overnight, see Bubar et al., 2005)

together with rabbit anti-GAD65/67 antibody (1:2000 dilu-

tion, overnight), or in rabbit anti-Fos antibody (1:2000

dilution, 60 h) with the subsequent addition of mouse anti-

5-HT2C receptor antibody (1:200 dilution, overnight). Sec-

tions were washed (PBS) and then incubated with a green

fluorescent goat anti-rabbit antibody (Alexa Fluor-488,

InVitrogen, Carlsbad, CA, USA, A-11034, 1:500 dilution,

1 h) before further incubation in a red fluorescent goat anti-

mouse antibody (Alexa Fluo–568, InVitrogen A-11004, 1:250

dilution, 2 h).

Cell counting and image collection

Counts of GAD65/67/Fos double-labelled cells were made in

a defined area of the DRN (250�170 mm grid in eyepiece of

�40 objective: Lietz Diaplan light microscope) by an

operator blind to treatment. Counts were made bilaterally

on six sections per animal. Bright-field images were captured

using a colour video camera (Sony) and image software

(Scion Image Software, version 1.62c).

5-HT2C/Fos and 5-HT2C/GAD65/67 double-labelled cells

were visualized using fluorescence microscopy. Fluorescent

images captured using a digital camera (Xillix microimager,

Richmond BC, Canada) with the application of false colour

(Openlab software, version 3.0.2).

Drugs and materials

The drugs used (with supplier) were as follows: WAY 161503

(8,9-dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinox-

alin-5(6 H)-one; Tocris, UK), SB 242084 (6-chloro-5-methyl-

1-[6-(2-methylpyridin-3-yloxy) pyridin-3-yl carbamoyl]

indoline; Eli Lilly & Co, UK), ritanserin (Janssen Phamaceu-

ticals, Belgium), MDL 100907 (R-(þ )-(2,3-dimethoxyphenil)-

1-[2-(4-flurophenylethyl)]-4-piperidone – methanol; ABX

advanced biochemical compounds, Germany), WAY

100635 (n-[2-[4-(2-methoxyphenyl)-1-piperazinylethyl]-n-

(2-pyridinyl) cyclohexane carboxamide trihydrochloride;

Wyeth Pharmaceuticals, UK), 8-OH-DPAT (8-hydroxy-2-(di-

n-propylamino)-tetralin; Sigma-Aldrich, UK), picrotoxin

(Sigma-Aldrich, UK). Drugs were dissolved in deionized

water except SB 242084 (10% cyclodextrin in 25 mM citric

acid) and ritanserin and MDL 100907 (few drops of glacial

acetic acid and 5% glucose).

[11C]MDL 100907 was prepared by Hammersmith Imanet

radiochemistry according to published methods (Lundkvist

et al., 1996). The radioligand had a purity of B99%, specific

5-HT2C receptors and 5-HT feedback
L Boothman et al 863

British Journal of Pharmacology (2006) 149 861–869



activity (at time of injection) of B45 GBq mmol�1 and the

dose of MDL 100907 associated with B10 MBq injection was

estimated to be 1.3 nmol kg�1.

Statistical analysis

Electrophysiological data were analysed using one-way

ANOVA with Dunnett’s post hoc tests (for the effect of

agonists alone), two-way ANOVA with Bonferroni post hoc

tests (for the effect of antagonist pretreatment) and Student’s

two-tailed paired t-test (effect of antagonists alone).

[11C]MDL 100907 binding data were analysed on a region-

by-region basis using Student’s unpaired t-test (two-tailed).

Cell count data were analysed using one-way ANOVA

followed post hoc with either Dunnett’s t-test (multiple

group comparison) or Bonferroni’s test (between group

comparison). P-values of p0.05 were considered statistically

significant.

Results

Electrophysiological characteristics of DRN neurones

Presumed 5-HT neurones in the DRN (n¼27) fired broad

triphasic spikes (waveform length 2.0170.06 ms, range

1.5–2.7 ms), in a slow and regular firing pattern (baseline

firing rate 0.9170.07 Hz, range 0.32–1.74 Hz; baseline COV

0.2670.03, range 0.18–0.4). There was no significant

difference in baseline firing rate or COV between treatment

groups. The baseline firing rate of these neurones is constant

over 20–30 min following an initial 2–3 min stabilization

period, and administration of the vehicles used in the

current study (deionized water, 10% cyclodextrin in 25 mM

citric acid, dilute glacial acetic acid in 5% glucose) have no

significant effect firing rate or regularity.

Effect of WAY 161503 on 5-HT cell firing

Systemic administration of the putative 5-HT2C receptor

agonist WAY 161503 (0.125–0.5 mg kg�1 i.v.) caused a dose-

related inhibition of 5-HT cell firing compared to pre-drug

values. This effect was apparent at 0.125 mg kg�1, and the

highest dose tested reduced firing to 21% of pre-drug values

(Figures 1a and 2). WAY 161503 (0.125–0.5 mg kg�1 i.v.) had

no significant effect on the regularity of 5-HT cell firing (data

not shown).

Effect of WAY 161503 on 5-HT cell firing in the presence of 5-HT

receptor antagonists

As illustrated in Figure 1, the inhibitory effect of WAY

161503 (0.125–0.5 mg kg�1 i.v.) was reversed by administra-

tion of the 5-HT2A/C receptor antagonist ritanserin

(1.0 mg kg�1 i.v.; 15/18 neurones). The effect of WAY

161503 was also reversed by the 5-HT2C receptor antagonist

SB 242084 (1.0 mg kg�1 i.v.; 3/4 neurones), but not the

5-HT1A receptor antagonist WAY 100635 (0.1 mg kg�1 i.v.;

2/2 neurones) (Figure 1). The reversal of the effects of WAY

161503 is not due to rapid clearance of the drug because the

reversal was always coincident with administration of the

5-HT2C receptor antagonist and under the same time-frame

(2 min post-agonist), there was no reversal of the effect of

WAY 161503 by a 5-HT1A receptor antagonist (Figure 1c).

Also recent experiments (Queree et al., unpublished observa-

tion) demonstrate that the inhibition of 5-HT cell firing by

WAY 161503 has a duration of at least 5–10 min.

Pre-treatment with SB 242084 (1.0 mg kg�1 i.v.) caused a

rightward shift in the dose response to WAY 161503 (Figures

1 and 2). When administered alone, SB 242084 (0.5 mg kg�1

i.v.) had no significant effect on the rate or regularity of 5-HT

cell firing (Figures 1b and c).

In some animals, the 5-HT1A agonist 8-OH-DPAT

(10 mg kg�1 i.v.) was administered following the reversal of

the effect of WAY 161503 by a 5-HT2 receptor antagonist. In

all cases (15/15 neurones) 8-OH-DPAT inhibited cell firing
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Figure 1 Spike train (upper trace) and rate-meter recordings
showing the inhibitory effect of the putative 5-HT2C receptor agonist
WAY 161503 on the firing rate of individual DRN 5-HT neurones
in the anaesthetized rat. WAY 161503 produced a dose-related
inhibition of 5-HT cell firing (a), which was attenuated by
pretreatment with the 5-HT2C receptor antagonist SB 242084 (b,
c). The effect of WAY 161503 was reversed by both SB 242084 (a)
and the 5-HT2 receptor antagonist ritanserin (a, b), but not by the
5-HT1A receptor antagonist WAY 100635 (c). Note also the
characteristic inhibitory response of 5-HT neurones to the 5-HT1A

receptor agonist 8-OH-DPAT, which was reversed by the 5-HT1A

receptor antagonist WAY 100635 (a, b). Drug administration
(mg kg�1 i.v.) as indicated by arrows. Abbreviations: 8-OH-DPAT
(DPAT), SB 242084 (SB), ritanserin (Rit).
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and this effect was typically reversed by subsequent admin-

istration of WAY 100635 (11/15 neurones) (Figure 1).

Occupancy of SB 242084 at 5-HT2A receptors

As 5-HT2A receptors modulate 5-HT cell firing, the occupancy

of SB 242084 at these receptors was investigated. In rat PET

studies, [11C]MDL 100907 demonstrated high levels of

binding (VOI:cerebellum ratios) in the frontal cortex and

striatum with lower levels in the olfactory bulbs, hypotha-

lamus, hippocampus, superior colliculi and medulla

(Figure 3a). Pre-treatment with SB 242084 (1 mg kg�1 i.v.)

had no statistically significant on [11C]MDL 100907 binding

in any region tested. In comparison, pre-treatment with

unlabelled MDL 100907 (0.2 or 0.4 mg/kg i.v.) reduced

[11C]MDL 100907 specific binding to unity in all regions

sampled.

Ex vivo binding of [11C]MDL 100907 (tissue:cerebellum

[11C]radioactivity ratios) confirmed the PET data (Figure 3b).

As with the PET data, pre-treatment with SB 242084

(1 mg kg�1 i.v.) had no statistically significant effect on

[11C]MDL 100907 binding whereas unlabelled MDL 100907

reduced specific binding to unity.

Effect of WAY 161503 in presence of GABAA receptor antagonist

Additional experiments tested whether the inhibitory effect

of WAY 161503 on 5-HT cell firing involved GABA. WAY

161503 (0.125–1.0 mg kg�1 i.v.) inhibited 5-HT cell firing,

and this effect was partially restored (4/7 neurones) by

administration of the GABAA receptor antagonist picrotoxin

(p2 mg kg�1) (Figure 4). Picrotoxin (0.5–1.0 mg kg�1) alone

caused a slight (þ25%) increase in the firing rate of 5-HT

cells (3/3 neurones).
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showed a dose-related inhibition of cell firing. Note that pre-
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tively: control n¼8,8,7; SB 242084 n¼6,6,5. Effect of WAY 161503
alone, Po0.0001, one-way ANOVA; Po0.01 at 0.25 and
0.5 mg kg�1, Dunnett’s post hoc test. Effect of SB 242084 pre-
treatment, Po0.01, two-way ANOVA; Po0.05 at 0.25 mg kg�1 WAY
161503, Bonferroni post hoc test.
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d, frontal with cingulate cortex; e, hippocampus, f, superior colliculi;
g, medulla. Data are mean7s.d. values. Note that SB 242084 did
not affect [11C]MDL 100907 binding in any region whereas
unlabelled MDL 100907 reduced [11C]MDL 100907 binding to
unity (Po0.05: Student’s t-test).
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Figure 4 Spike train (upper trace) and rate-meter recording
illustrating a partial reversal of the inhibitory effect of WAY 161503
on 5-HT cell firing by administration of the GABAA receptor
antagonist picrotoxin. Drug administration (mg kg�1 i.v.) as indi-
cated by arrows.
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Effect of WAY 161503 on Fos expression in GAD positive DRN

neurones

In sections from vehicle-treated animals, GAD immuno-

reactivity was abundant in the lateral wings of the DRN with

few GAD positive cells present in the midline. Moreover, in

vehicle-treated animals the number of Fos positive cells was

low, and there were few cells in which Fos and GAD

immunoreactivity was colocalized (Figure 5).

Pilot experiments established that WAY 161503 (1, 3 and

10 mg kg�1 i.p.) caused a dose-related increase in Fos positive

cells in the rat DRN (data not shown). A subsequent more

detailed analysis confirmed this effect and revealed that, in

comparison to vehicle controls, WAY 161503 (3 mg kg�1 i.p.)

increased the number of Fos/GAD double-labelled cells in

the lateral wings around three-fold and this effect was

significantly reduced by pre-treatment with SB 242084

(1 mg kg�1 i.p.) (Figure 5). SB 242084 alone did not alter

the number of Fos/GAD double-labelled cells (Figure 5).

In sections from drug-naive rats, cells with 5-HT2C receptor

immunoreactivity were sparsely distributed in the ventro-

lateral DRN with low levels in other DRN regions. In the

ventrolateral DRN many GAD positive cells were double-

labelled with 5-HT2C receptor immunoreactivity (Figure 6).

In DRN sections from rats treated with WAY 161503

(3 mg kg�1 i.p.), numerous Fos positive cells were double-

labelled with 5-HT2C receptor immunoreactivity (Figure 6).

Discussion and conclusions

Recent evidence suggests that postsynaptic 5-HT2 receptors

are involved in the feedback control of 5-HT neurones in the
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Figure 5 Effect of WAY 161503 on the expression of Fos in GAD-
positive DRN neurones. (a) Drug treatments were vehicle-vehicle,
vehicle-WAY 161503 (3 mg kg�1), SB 242084 (1.0 mg kg�1)-vehicle
and SB 242084 (1.0 mg kg�1)-WAY 161503 (3 mg kg�1). Data
(n¼6) are mean7s.e.m. Note that WAY 161503 increased the
number of Fos/GAD double-labelled cells and that this effect was
reduced by pre-treatment with SB 242084. **Po0.001 versus
vehicle–vehicle (one way ANOVA with Dunnett’s post hoc test).
#Po0.05 versus vehicle–WAY 161503 (one-way ANOVA with
Bonferroni’s post hoc test). (b) Photomicrographs showing cells
double labelled (arrows) with Fos and GAD immunoreactivity in the
DRN of rats administered one the following drug treatments:
vehicle–vehicle, SB 242084 (1.0 mg kg�1)–vehicle, SB 242084
(1.0 mg kg�1)–WAY 161503 (3 mg kg�1), vehicle–WAY 161503
(3 mg kg�1). Images at �40 magnification.

Figure 6 Photomicrographs of the rat DRN showing fluorescent
images of 5-HT2C receptor immunoreactivity with either GAD65/67

immunoreactivity (left) or Fos immunoreactivity induced by WAY
161503 (3 mg kg�1 i.p.) (right). Arrows indicate co-localized
neurones as seen in the merged images. Note the presence of
GAD positive cells double-labelled with 5-HT2C receptor immuno-
reactivity. Also Fos positive cells were double-labelled with 5-HT2C

receptor immunoreactivity after WAY 161503 administration.
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midbrain raphe nuclei, and that neighbouring GABA

neurones play a role (see Introduction). In particular, a

combination of electrophysiological and Fos immunohisto-

chemical studies show that 5-HT2 receptor agonists both

inhibit 5-HT neurones and activate GABA neurones in the

DRN (Liu et al., 2000; Boothman et al., 2003). While these

studies emphasize the contribution of the 5-HT2A receptor

subtype, the importance of the 5-HT2C receptor subtype may

be underestimated due to a lack of sufficiently selective

drugs. The present study addressed this issue using the

putative selective 5-HT2C receptor agonist WAY 161503. In

addition, the possible involvement of DRN GABA neurones

in 5-HT2C receptor-mediated feedback was investigated.

An important finding was that WAY 161503 caused a dose-

dependent inhibition of the firing of DRN 5-HT neurones

in anaesthetized rats. WAY 161503 is a recently developed

5-HT2C receptor agonist, with reported B6-fold selectivity

over 5-HT2A receptors and 20-fold selectivity over 5-HT2B

receptors in radioligand binding studies, and weak

or negligible affinity for other sites reported to date

(5-HT1A,1B,1D,1F receptors, 5-HT transporter) (Rosenzweig-

Lipson et al., 2000, 2006). These data are supported by

findings in functional in vitro assays that indicate WAY

161503 has 9- and 12-fold higher potency at 5-HT2C than

5-HT2A receptors (calcium mobilization) and 5-HT2B recep-

tors ([3H]-inositol phosphate formation), respectively

(Rosenzweig-Lipson et al., 2006). Moreover, at doses compar-

able to those used in the present study (0.1–3.0 mg kg�1)

WAY 161503 is active in behavioural models of 5-HT2C

receptor function in rats, and sensitive to 5-HT2C receptor

antagonist blockade (Cryan and Lucki, 2000; Rosenzweig-

Lipson et al., 2006).

The present data show that the inhibitory effect of WAY

161503 on 5-HT cell firing was reversed by both the 5-HT2

receptor antagonist ritanserin (Leysen et al., 1985) and the

5-HT2C receptor antagonist, SB 242084 but not the 5-HT1A

antagonist WAY 100635. In addition, pretreatment with SB

242084 shifted the WAY 161503 dose response curve to the

right. The blocking effects of SB 242084 in particular, suggest

a role for 5-HT2C receptors in the inhibition of 5-HT cell

firing by WAY 161503. However, since activation of 5-HT2A

receptors causes inhibition of 5-HT cell firing (Boothman

et al., 2003) experiments were carried out to exclude the

possible in vivo occupancy of SB 242084 at 5-HT2A receptors.

SB 242084, at a dose (1 mg kg�1 i.v.) that blocked the effect

of WAY 161503 on 5-HT cell firing, showed no displacement

of the 5-HT2A receptor radioligand [11C]MDL 100907 in

either rat PET or ex vivo binding studies. In comparison

unlabelled MDL 100907 (0.2 or 0.4 mg kg�1 i.v.) fully

displaced the [11C]MDL 100907 signal in both models.

Radioactivity levels in extracerebral tissues were unaffected

by SB 242084 pre-treatment, indicating that the antagonist

did not affect [11C]MDL 100907 delivery. Thus, these data

indicate that SB 242084 (1 mg kg�1 i.v.) has no significant

occupancy of rat brain 5-HT2A receptors in vivo. These results

are consistent with radioligand binding studies showing that

SB 242084 has over 100-fold selectivity for 5-HT2C versus

5-HT2A and 5-HT2B receptors (Kennett et al., 1997) and exerts

a 5-HT2C receptor antagonist action in vivo (Kennett et al.,

1997).

Taken together, the above data indicate that 5-HT2C

receptor activation contributes to the inhibition of 5-HT cell

firing by WAY 161503. This evidence of a role for 5-HT2C

receptors in 5-HT neurone control accords with observations

that the inhibition of 5-HT cell firing by the 5-HT2 receptor

agonist DOI was attenuated by pre-treatment with the

5-HT2B/C receptor antagonist SB 206553 in vivo (Boothman

et al., 2003). Also, in a raphe slice preparation the increase

of IPSPs in 5-HT neurones induced by 5-HT and DOI was

attenuated by SB 242084 (Liu et al., 2000).

It is noteworthy that the inhibition of 5-HT cell firing by

WAY 161503 was not completely reversed by SB 242084, and

that full reversal was only achieved by subsequent adminis-

tration of ritanserin. As activation of 5-HT2A receptors

inhibits 5-HT cell firing (Boothman et al., 2003), these results

suggest that the inhibitory effect of WAY 161503 may be

partially 5-HT2A receptor-mediated. This would be consistent

with radioligand and functional assay data showing that

even though WAY 161503 demonstrates preference for

5-HT2C versus 5-HT2A receptors, the selectivity is only of

the order of 10-fold (see above).

In the present study, administration of the GABAA receptor

antagonist picrotoxin restored the inhibition of 5-HT cell

firing induced by WAY 161503. In agreement with previous

studies (Gallager and Aghajanian, 1976), picrotoxin by itself

had little effect on the firing of 5-HT neurones (þ25%

increase). These data are consistent with an earlier report in

that the inhibition of 5-HT cell firing induced by DOI was

restored by picrotoxin (Martin-Ruiz et al., 2001a). Moreover,

the data suggest that an activation of GABA neurones may be

involved in the inhibitory action of WAY 161503.

A possible action of WAY 161503 on GABA neurones

within the DRN was investigated using Fos immunohisto-

chemistry. It was found that WAY 161503 caused a marked

increase in Fos expression in DRN cells that were immuno-

reactive for the GABA neurone marker, GAD. As this effect

of WAY 161503 was attenuated by pre-treatment with SB

242084 the involvement of 5-HT2C receptors is implicated.

Recently, we reported that DOI administration increased the

number of Fos/GAD double-labelled cells in the DRN and it is

possible that 5-HT2C (as well as 5-HT2A) receptors contribute

to this effect (Raley et al., 2004).

The 5-HT2C receptor-mediated action of WAY161503 on

DRN GABA cells may be a direct effect as these cells were

found to express 5-HT2C immunoreactivity, a finding which

agrees with a recent report describing the presence of 5-HT2C

receptor mRNA in DRN GABA neurones (Serrats et al., 2005).

Also, WAY161503 increased Fos expression in DRN cells

immunoreactive for 5-HT2C receptors.

Taking together the above findings, it is plausible that

WAY 161503 inhibits 5-HT cell-firing in the DRN by

activating local GABA neurons. This idea is consistent with

earlier data demonstrating extensive synaptic interactions

between GABA and 5-HT neurons in the DRN (Wang et al.,

1992), and that local application of GABA agonists into this

nucleus inhibits 5-HT cell firing (Gallager and Aghajanian,

1976). Thus, current data support a model of 5-HT feedback

control in which 5-HT2C receptors activate DRN GABA

neurones to inhibit 5-HT neuronal activity. However,

5-HT2C receptors are abundant in other brain regions and
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the present data do not exclude the additional possibility

that 5-HT2C receptors also play a role in the modulation of

DRN afferents from more distant regions such as the lateral

habenula or prefrontal cortex.

Interestingly, we observed many instances of DRN 5-HT

neurones that were inhibited by both WAY 161503 as well as

8-OH-DPAT. This finding is evidence of 5-HT neurones that

are sensitive to feedback control by both 5-HT2C and 5-HT1A

receptors, the latter probably involving both pre- and post-

synaptic mechanisms (Hajós et al., 1999). Our observations

suggest that individual 5-HT neurones are subject to 5-HT

feedback control at several levels.

In summary, this study demonstrates that WAY 161503

inhibits 5-HT cell firing in the DRN in vivo, and support a

mechanism involving 5-HT2C receptor-mediated activation

of DRN GABA neurones. This mechanism may be one means

by which postsynaptic 5-HT receptors located on afferent

inputs to 5-HT neurones contribute to 5-HT feedback

control. In this context, evidence that 5-HT2C receptor

antagonists augment the neurochemical effects of some

antidepressants is of particular interest (Cremers et al., 2004;

Boothman et al., 2006). Thus, by analogy to 5-HT auto-

receptor-mediated feedback mechanisms, it is possible that

5-HT2C feedback may provide a source of targets for drug

therapies addressing neuropsychiatric disorders.
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