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The identification of T cell epitopes and their HLA (human leukocyte antigen) restrictions is important for applications
such as the design of cellular vaccines for HIV. Traditional methods for such identification are costly and time-
consuming. Recently, a more expeditious laboratory technique using ELISpot assays has been developed that allows
for rapid screening of specific responses. However, this assay does not directly provide information concerning the HLA
restriction of a response, a critical piece of information for vaccine design. Thus, we introduce, apply, and validate a
statistical model for identifying HLA-restricted epitopes from ELISpot data. By looking at patterns across a broad range
of donors, in conjunction with our statistical model, we can determine (probabilistically) which of the HLA alleles are
likely to be responsible for the observed reactivities. Additionally, we can provide a good estimate of the number of
false positives generated by our analysis (i.e., the false discovery rate). This model allows us to learn about new HLA-
restricted epitopes from ELISpot data in an efficient, cost-effective, and high-throughput manner. We applied our
approach to data from donors infected with HIV and identified many potential new HLA restrictions. Among 134 such
predictions, six were confirmed in the lab and the remainder could not be ruled as invalid. These results shed light on
the extent of HLA class I promiscuity, which has significant implications for the understanding of HLA class I antigen
presentation and vaccine development.
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Introduction

The human adaptive immune response is composed of two
core elements: antibody-mediated response (sometimes called
humoral response), and T cell–mediated response (sometimes
called cellular response). Research on HIV vaccines initially
focused on the antibody-mediated response but more
recently has included the cellular response [1,2], which is
the focus of our application.

At the core of the cellular response is the ability of certain
antigen-presenting cells to digest viral proteins into smaller
peptides, and then to present these peptides at the surface of
the cell. Presentation of a peptide depends on the peptide
first forming a complex with an HLA (human leukocyte
antigen) molecule. If a peptide is presented, it can then be
recognized by (naive) T cells, allowing activation of these T
cells so that they may subsequently recognize and attack
virally infected cells displaying the same complex. Any
peptide that is able to generate such an immune response
in the context of a given HLA allele is called an epitope, and, in
particular, an epitope restricted by that allele. Only certain HLA
alleles can form a complex with any given peptide, and hence
the compatibility of these two elements is essential for the
adaptive immune response just described.

Several types of T cells exist, each playing its own, though
interdependent, role. In ongoing HIV vaccine research, the
elicitation of a CD8þ T cell response has shown promise.
Since CD8þ T cells recognize only HLA class I bound
epitopes, our data, and hence our paper, focus on epitopes
recognized in the context of these particular molecules,
although the statistical framework is not tailored or limited to
this domain and could be immediately applied to HLA class II
epitopes, for example. Humans have up to six HLA class I

alleles arising from the A, B, and C loci. Currently, there are
hundreds of possible alleles at each of these loci, with more
being discovered every year [3].
A crucial task in HIV vaccine development is the

identification of epitopes and the alleles that restrict them,
since it is thought that a good vaccine will comprise a robust
set of epitopes [4–6]. By robust, we mean a set which broadly
covers regions that are essential for viral fitness in a given
human population characterized by a particular distribution
of HLA alleles. Also, note that beyond vaccine design, epitope
identification may have important applications such as
predicting infectious disease susceptibility and transplanta-
tion success.
Traditional methods for identifying epitopes involve time-

consuming, technically demanding, and expensive culturing
of T cells. Recently, a more expeditious laboratory technique
using ELISpot assays has been developed [7]. Unfortunately,
the ELISpot assay gives only information about which
individual donors generated an immune response to a
particular peptide, but does not provide any information
about which of a donor’s HLA alleles are restricting this
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reaction; it is this HLA specificity that is crucial and in which
we are most interested. However, by leveraging information
contained in ELISpot reactivity across a large set of donors
with known HLA types, in conjunction with the statistical
model presented in this paper, we can determine (probabil-
istically) which HLA alleles are likely to be responsible for the
observed reactivities. Thus we are able to learn about new
HLA-restricted epitopes in an efficient, cost-effective, and
high-throughput manner.

A related, though distinct problem from our problem of
epitope identification is that of epitope prediction (e.g., [8–11]),
in which new epitopes are predicted in silico, on the basis of
amino acid sequence and other information, but not on the
basis of assays that directly measure binding energies or other
measures such as the ELISpot assay. The work presented here
focuses strictly on the identification of restricting (i.e.,
epitope presenting) HLA class I alleles from ELISpot data,
although newly identified epitopes can aid the task of epitope
prediction by providing more known examples to learn from.

Methods

Our statistical model takes as input, measured CD8þT cell
ELISpot reactivities from a set of donors with known HLA
class I alleles, for a number of epitopes, and deduces which of
the donor’s individual HLA alleles are likely to be responsible
for the observed reactivities. That is, our model deduces
which epitopes are restricted by which HLA alleles. Addi-
tionally, we can provide a good estimate of the number of
false positive epitope hypotheses returned by our analysis
(i.e., the false discovery rate (FDR) [12,13]) so that we have a
sense of how many new epitope hypotheses to pursue (if any).

We assume that a given epitope is or is not restricted by a
given HLA allele. If an epitope is restricted by a particular
HLA allele, it is still likely that a donor with the restricting
HLA allele will not react to the epitope. Such false negatives
arise from factors including immunodominance, (immuno-
dominance can be thought of as biology’s ‘‘waste not want
not’’—that is, the immune system focuses its efforts in a few

areas that work well, to the exclusion of others), T cell
repertoire, lack of previous peptide exposure (e.g., exposure
arising from infection or vaccination), suboptimality of the
epitopes (i.e., if a peptide that optimally binds a particular
HLA is of length nine amino acids, a peptide of length ten
which contains the nine-mer may sometimes bind, but not as
efficiently), and experimental noise. Furthermore, an epitope
reaction may be falsely associated with some HLA alleles in
ELIspot data due to linkage disequilibrium of a nonrestrict-
ing and a restricting HLA allele. (For example, if a restricting
HLA allele is in linkage disequilibrium with a nonrestricting
HLA allele, then the nonrestricting allele will very often be
present in a donor with the restricting allele, and so the
ELISpot data for this allele will also correlate with positive
reactivities—though only as a result of the linkage.) Thus, the
task of recovering HLA-restricted epitopes from ELISpot
data is not straightforward. As a brief example, if one
examines the HIV ELISpot dataset used in this paper and
considers any HLA-epitope pair that has any observed
reactivity to consist of an HLA-restricted epitope, then one
incurs a false positive reactivity rate of roughly 70%. One
could then imagine a next logical step of setting a threshold
for what minimum fraction of donors must react and so on,
soon finding oneself with a rather ad hoc model for which
there would be no principled way to set the parameters nor to
determine statistical significance. The task of identifying
restricting HLA alleles from ELISpot data is in fact nontrivial
and well-suited to statistical modeling. Next, we formally
outline our statistical model.

A Statistical Model for HLA-Dependent T cell Response
Data
For a set of J epitopes (more precisely, each peptide under

examination may contain one, or several, epitope(s), but for
simplicity of presentation, we refer to the peptides as
epitopes) and K donors, we have a set of measured binary
ELISpot reactivities (actual laboratory assays provide real
values which are thought by the laboratory scientists to
convey mostly binary information [14]), which are used as
input to our model. We are also given the six HLA class I
alleles for each donor.
Let hi ¼ 1 denote that a donor has HLA allele i, and hi ¼ 0

denote that the donor does not have that allele. Let yj be the
observed, binary reactivity for epitope j in a donor (as
measured by the ELISpot assay). An important assumption in
our model is the following: whether an epitope is restricted
by a particular HLA allele is independent of whether that
epitope is also restricted by any other HLA allele. This
assumption is commonly referred to as an assumption of
causal independence [15]. From this assumption, it follows that
the probability of not observing a reaction to a particular
epitope, in a given donor, is the probability that none of that
donor’s HLA alleles cause a reaction. Because of the
independence assumption, this is simply the product over
the probability of each HLA (that the donor has) not causing
a reaction. Formally, if epitope j is restricted by HLA i, then
we let qij be the probability that we observe a reaction in a
donor with HLA i and no other HLAs restricted by epitope j.
Also, let lj be the probability that a reaction is observed to
epitope j when a donor has none of the restricting HLAs for
epitope j—a so-called leak term (corresponding to unrepre-
sented causes such as reactivity due to HLA E molecules).
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Author Summary

At the core of the human adaptive immune response is the train-to-
kill mechanism in which specialized immune cells are sensitized to
recognize small peptides from foreign pathogens (e.g., HIV virus).
Following this sensitization, these cells are then activated to kill
other cells that display this same peptide (and that are infected by
this same pathogen). However, for sensitization and killing to occur,
the pathogen peptide must be ‘‘paired up’’ with one of the infected
person’s other specialized immune molecules—an HLA (human
leukocyte antigen) molecule. The way in which pathogen peptides
interact with these HLA molecules defines if and how an immune
response will be generated, which has implications for vaccine
design where one may artificially introduce select peptides to pre-
train the immune system. Furthermore, there is a huge repertoire of
such HLA molecules, with almost no two people having the same
set. We introduce a statistical approach for identifying which HLA
molecules interact with which pathogen peptides, given a particular
kind of laboratory data. Our approach takes as input, data that tells
us only which pathogen peptides generate a response, but not
which HLA molecules support the response. Our statistical approach
fills in this missing information.
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Given settings for these parameters, qij and lj, our model
stipulates that the probability that a donor does not react to
epitope j, p(yj ¼ 0 j fqijg,lj), or does react, p(yj ¼ 1 j fqijg,lj), is
given by

pðyj ¼ 0jfqijg; ljÞ ¼ ð1� ljÞ
Y
fijhi¼1g

ð1� qijÞ ð1Þ

pðyj ¼ 1jfqijg; ljÞ ¼ 1� pðyj ¼ 0jfqijg; ljÞ: ð2Þ

Such a model is sometimes referred to as a noisy-OR model. It
can be viewed as a probabilistic version of the common
(deterministic) logical OR, and has been shown to be useful in a
number of settings [16]. The model can be represented in
graphical form as shown in Figure 1. Here, nodes represent the
variables fhig and fyjg and an arc is drawn from hi to yj if
epitope j is restricted by HLA i (i.e., if qij . 0). The character-
istics of how the probability of an observed reaction changes
with an increasing number of restricting alleles depends on the
values of fqijg. For example, if qij [ qj ’ 1, then for a given donor
with M restricting alleles, each additional restricting allele
beyond one allele would do little to increase the probability
of a reaction to epitope j (as with a deterministic logical OR).
Alternatively, if qij [ qj ’ 0, then according to the Taylor series

expansion ð1� qjÞM ’ 1þMqj þ
ðM�1ÞMq2j

2! , the probability of
reactivity to epitope j would increase roughly linearly with M.
The likelihood of the ELISpot data under this model is simply
the product of likelihood terms for the reaction in each patient
k, to each peptide (given the HLA types for each patient) :

L ¼
Y
k

Y
j

pðykj jfqijg; ljÞ: ð3Þ

Finding HLA-Restricted Epitopes
Given the model just described, and experimental ELISpot

and donor HLA data, we wish to infer which epitopes are
restricted by which HLA alleles. That is, we wish to know
which qij should be included in the model (which arcs should

appear in the graphical model). This is a problem of model
selection. Note that this problem breaks down into J separate
problems, one for each epitope under consideration, since
under our model, qij and qi9j9 are independent from one
another when j 6¼ j9.
To tackle this problem of inferring HLA-restricted

epitopes from our data and model, one might consider
simply learning a maximum likelihood value for all possible
qij simultaneously, and concluding that those for which qij . 0
are those which support the hypothesis of an HLA-restricted
epitope. However, in practice, with finite and noisy-data,
almost all qij . 0, and this approach would lead to a huge
number of false epitope hypotheses. Instead, we need a more
robust way of deciding which qij to include in the model.
There are a variety of standard approaches to this problem,
most centered on some form of model selection score, such as
the Akaike Information Criterion (AIC) [17], the BIC
(Bayesian Information Criterion) [18], or the MDL (Minimum
Description Length) [19]—all of which are forms of penalized
likelihood scores. These scores are but three commonly used
model selection scores, and many variations of these exist as
well. However, all of these scores have an intuitive inter-
pretation of balancing the fit of the data to the model, with
model complexity (controlling the model complexity so that
overfitting does not occur). The fit of the data to the model is
usually assessed by the maximum likelihood of the data
under the model in question, while the model complexity is
usually controlled by penalizing for the number of free
parameters in the model—hence the term penalized like-
lihood. For example, the AIC of a model, M, is given by
AICðMÞ ¼ �2logL̂þ 2Q, where L̂ is the maximum likelihood,
and Q is the number of independently adjusted parameters in
the model.
Given a model selection score, one then chooses a search

procedure to select qij (arcs) for inclusion in the model. The
ideal way to do so is to try every subset of arcs and choose the

Figure 1. Graphical Depiction of HLA Restriction Model

Graphical depiction of the model used to infer HLA-restricted epitopes from ELISpot data. The probability of each peptide having a reaction is
parameterized by a noisy-OR distribution over all of the HLA alleles it is connected to (Equations 1 and 2). The values of the HLA and peptide nodes are
observed for each donor, and we are interested in finding which qij . 0—that is, which arcs are present in the graphical model. Each person has
between three and six distinct HLA class 1alleles. Thus, for a given donor, between three and six HLA nodes will be ‘‘on’’ (hi ¼ 1).
doi:10.1371/journal.pcbi.0030188.g001

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1881881

Statistical Modeling of T Cell Responses



subset which gives the highest model score (for example).
However, with n possible arcs per epitope there are 2n

subsets, and this approach is not feasible for most problems.
Thus, in practice, it is common for some form of greedy,
stepwise procedure to be used, such as greedily adding arcs to
the model, or greedily adding/deleting arcs, terminating when
the model score can no longer be increased. Then the final
model built in the greedy sequence of models is taken as the
model to be used and/or interpreted. Commonly, the search is
started with the empty model (no arcs). In synthetic experi-
ments with our model, we found that a greedy add/delete
procedure, starting from the empty set, worked well (see
Results for details), and thus we use such a procedure to
identify specific HLA alleles restricting given epitopes.

It may at first seem counterintuitive that deleting an arc
could increase the score when in a previous step adding that
same arc had increased the score. However, when one
considers that different variables can explain the same data
to differing degrees, then it becomes clear how this can arise.
Suppose one arc most explains some part of the data,
followed next by, say, two other arcs, each of which explains
that part of the data less well than the first arc, but which
together explain the data better than the first arc by itself. In
this case, after addition of the first arc, followed by addition
of the next two arcs, the first arc would become redundant in
light of the other arcs, and so removing it can increase the
model selection score (it will not improve the likelihood, but
will incur a parameter penalty). In practice, for our problem
and data, the delete operator was used only occasionally.

Different model selection scores used in a given search
procedure lead to different recovered models. In particular,
AIC is known to be generally less conservative (allowing more
arcs) as compared with, say, BIC and MDL. Note that if one
were to use an add-only procedure (where deletion of an arc
is not allowed) for noisy-OR based models, then the AIC, BIC,
MDL, and the Likelihood Ratio Test (LRT) [20] would each
add arcs in the same greedy order, though with each score
stopping at a different point in the search (except for BIC
and MDL which are equivalent). So the fundamental differ-
ence between these scores is not so much which arc to add
next, but when to stop adding arcs.

Rather than dogmatically choosing one score with which to
find restricting HLA alleles, we develop a novel approach in
which we use a parameterized family of model scores. Then, for
any chosen model score parameter setting, we are able to
estimate the FDR of the resulting model (that is, we are able
to estimate the proportion of recovered qij which are not
truly HLA-restricted epitopes). Then we choose a model score
parameter setting which produces an FDR that we find
reasonable for our purposes (i.e., one producing an FDR that
gives us enough epitope hypotheses to pursue, but not too
many false leads). This approach to model selection confers
two advantages over the more traditional approach de-
scribed: (1) we do not depend in a fundamental way on the
choice of a single model selection score, and (2) regardless of
which model selection score we use (within the parameterized
family), we are able to estimate the FDR of our selected arcs,
providing us with a good sense of what (interpretable)
features the model has actually recovered, rather than, say,
far less interpretable measures of quality such as the
maximum likelihood of the data under the recovered model
compared with that under some baseline model.

A Parameterized Family of Model Selection Scores
We call the parameterized family of model scores XIC, (to

denote that it encompasses various Information Criterion
such as AIC and BIC). The XIC for model M is parameterized
by f and is given by

XICðM; f Þ[ logL̂� f Q; ð4Þ

where L̂ is the maximum likelihood of model M (M
represents, for example, a model consisting of a particular
subset of fqijg), Q is the number of independently adjusted
parameters in the model, and f parameterizes the family of
scores represented by XIC. When f ¼ 1, the XIC behaves
identically to the (negative) AIC during search, because it is
directly proportional to it. When f¼½ log N, where N is the
sample size of the data, then the XIC is identical to the BIC.
When f ¼ 0, the XIC is the maximum likelihood. Thus by
varying f, the XIC spans a range of model selection scores,
from very liberal ones for low values of f, to increasingly
conservative ones for higher values of f.

Model Selection Procedure
Leaving aside the issue of estimating the FDR for the

moment, our model selection procedure is the following:
1. Select a value for the XIC parameter, f ¼ f*.
2. Start with the empty set of arcs under consideration (that

is, no qij are in the initial model), but include all of the leak
terms, lj. Compute the XIC of this ‘‘leak-only’’ base model, M0.
3. For every qij under consideration, compute the XIC of

the model which is the same asM0 but also includes qij. If none
of these models has a higher XIC than M0, stop the search.
Otherwise, add the qij whose corresponding XIC was largest,
and call the resulting model, M1.
4. Repeat the previous step, except using M1 in place of M0,

and also allowing arc deletions: for all qij in M1, compute the
XIC of the model which is the same as M1, except that it does
not contain qij. Among all the possible arc additions and
deletions, choose the operation which most increases the XIC,
and call the resulting model M2.
5. If possible, continue greedily adding/deleting arcs,

stopping when the XIC can no longer be increased.
Then we use the last model in the sequence as our final

model from which to infer HLA-restricted epitopes. That is,
for all qij included in the final model, we will call the
hypothesis that epitope j is restricted by HLA i, true. The
smaller f* is, the more qij will be included in the final model.
Next we show how to estimate the number of qij recovered
using this procedure that we expect to be spurious (i.e.,
arising from chance alone, rather than from true HLA
restrictions).

Estimating the False Discovery Rate
For any specified value of the model selection parameter, f,

we want to know how many qij in the recovered model are
likely to be true (rather than spuriously generated). That is,
we want some sort of statistical significance measure for the
epitope hypotheses we have generated. We compute such a
measure using a method that we have recently developed [21].
Next we provide some background to this area of research,
followed by presentation of our approach.
When inferring whether a single hypothesis is true or not,

statisticians have traditionally relied on the p-value, which
controls the number of false positives (type I errors).
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However, when testing hundreds or thousands of hypotheses
simultaneously, the p-value needs to be corrected to help
avoid making conclusions based on chance alone (known as
the problem of multiple hypothesis testing). A widely used,
though conservative correction, is the Bonferroni correction,
which controls the Family Wise Error Rate (FWER). The
FWER is a compound measure of error, defined as the
probability of seeing at least one false positive among all
hypotheses tested. In light of the conservative nature of
methods which control the FWER, the statistics community
now places great emphasis on estimating and controlling a
different compound measure of error, the false discovery rate
(FDR) [12,13].

In a typical computation of FDR, we are given a set of
hypotheses where each hypothesis, i, is assigned a score, si
(traditionally, a test statistic, or the p-value resulting from
such a test statistic). The FDR is computed as a function of a
threshold, t, on these scores, FDR¼FDR(t). For threshold t, all
hypotheses with si � t are said to be significant (assuming,
without loss of generality, that the higher a score, the more we
believe a hypothesis). The FDR at threshold t is then given by

FDRðtÞ ¼ E
FðtÞ
SðtÞ

� �
;

where S(t) is the number of hypotheses deemed significant at
threshold t and F(t) is the number of those hypotheses which
are false, and where expectation is taken with respect to
datasets of the same sample size as the observed data drawn
from the true joint distribution of the variables. When the
number of hypotheses is large, as is usually the case, one can
take the expectation of the numerator and denominator
separately:

FDRðtÞ ¼ E
FðtÞ
SðtÞ

� �
ffi E FðtÞ½ �

E SðtÞ½ � :

Furthermore, it is often sufficient to use the observed S(t) as
an approximation for E[S(t)]. Thus, the computation of FDR(t)
boils down to the computation of E[F(t)]. One approximation
for this quantity which can be reasonable is E[F(t)] ffi E0[F(t)],
where E0 denotes expectation with respect to the null
distribution (the distribution of scores obtained when no
hypotheses are truly significant), and it is this approach that
we take. (For traditional applications of FDR, Storey and
Tibshirani offer a clever method to compute E[F(t)] which is
less conservative than using E[F(t)] ffi E0[F(t)] [13]. However,
this approach is not appropriate in the present context.)

Applying this approach to estimating the number of true qij
recovered by our model selection procedure (i.e., the number
of true HLA-restricted epitopes found by our model), we
generalize S(�) and F(�) to be functions of f, the XIC parameter
in Equation 4. In particular, S(f) is the number of qij found by
our model selection procedure when the XIC is used with
parameter setting f and F(f) is the number of those qij which
do not truly correspond to HLA-restricted epitopes (i.e., false
positives). As in the standard FDR approach, we use the
approximation E(S(f)) ffi Q(D,f), where Q(D,f) is the number of
qij found by applying our model selection procedure with XIC
parameter f to the observed data D (in our application, D [

fyjg). In addition, we estimate E0(F(f)) to be N(Dr,f) averaged
over multiple datasets Dr, r ¼ 1,. . .,R, drawn from a null
distribution. That is, we estimate the FDR of our HLA-
restricted epitopes using the following:

FDRðf Þ ¼ E
Fðf Þ
Sðf Þ

� �
ffi E½Fðf Þ�

E½Sðf Þ�

ffi
ð1þ

XR
r¼1

QðDr; f ÞÞ=R

QðD; f Þ :

The addition of 1 to the numerator smoothes the estimate
of E0[F(f)] so as to take into account the number of random
permutations performed. Without this smoothing, if one
performed too few random permutations such that

P
fQ(D

r,f)
¼ 0 due to sampling error, then the estimate of E0[F(f)] and
hence FDR (f) would also be 0. We prefer our more
conservative estimate, especially as the bias it induces
diminishes as the number of permutations increases.
We sample Dr from a null distribution for each epitope by

permuting the ELISpot data for that epitope, but leaving the
HLA types of the donors intact. This permutation guarantees
that any qij recovered from the model selection procedure on
this data are only spuriously recovered. Also note that
although the parameters qij are independent for different
epitopes, j, and thus the model selection procedure, can
operate independently on each epitope, for the purposes of
estimating the FDR, we pool all of the epitopes together, so
that the approximations we make in computing the FDR are
more reasonable.
As shown in the Results section, by way of synthetic

experiments, we find that these approximations for estimat-
ing the FDR work quite well in practice. There is, however,
one concern about the use of the null distribution described,
for which we refer the reader to [21], but which, to our
knowledge, does not affect our use of this methodology in this
paper.
By construction, the emphasis of our FDR approach is on

the accuracy of the estimate of the number of false positives,
and does not examine the number of false negatives. Whereas
this emphasis may seem undesirable, it is common for
experimenters to be more interested in how many hypothe-
sized interactions are real, rather than how many were
missed, because experimenters will in most cases be using
resources to pursue the positive hypotheses, not the negative
ones. A similar line of reasoning is mentioned in [13,22].

Ranking of Hypotheses
The problem of finding a meaningful ranking of the

individual HLA-restricted epitope hypotheses does not
immediately fall out of the FDR framework. However, we
can naturally construct a ranking algorithm for the epitope
hypotheses by using a Likelihood Ratio statistic. LetM denote
the model that we learn with our model selection procedure
(regardless of the value of f used). Then we rank our
hypotheses using a likelihood ratio statistic, vij, which is the
log of the ratio of the likelihood of the final model, to that of
the final model without the qij we are evaluating. Specifically,
our ranking algorithm is:
For each qij included in M, do the following: construct a

model, M9ij defined to be model M, but without qij, and then
compute the likelihood ratio:

vij [ log L̂ðMÞ � log L̂ðM 9ijÞ ð5Þ

Assign a rank to each qij equal to the rank of vij in the set
fvijg.
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This ranking assesses each qij based on how much it
contributes to the likelihood of the data in the model, M, in
the context of all qij recovered from the model selection
procedure. (The likelihood ratio, vij, viewed from a Bayesian
perspective, is a quantity proportional to a BIC approxima-
tion to the Bayes factor [18], which, under the assumption of a
uniform prior over arc sets, amounts to the posterior
probability of qij being included in the model, given the
remaining arcs in the model.)

Results

For our experiments, we used two types of datasets:
laboratory-generated HIV ELISpot data, as well as synthetic
data based on our model and this real data. The HIV ELISpot
data is from a set of previously optimally defined CTL
epitopes derived from HIV [14], which were generally
optimized for length so as to be recognized at the lowest
antigen concentration in the context of a specific restricting
HLA class I allele. Note that these ‘‘optimal’’ peptides may not
be optimal for other HLA class I alleles which could also
restrict them—for example, other alleles could restrict
epitopes that are embedded within the longer peptide
sequence tested. There were 140 epitopes and 102 donors
with a total of 70 unique HLA-I alleles (although HLA alleles
are ideally described by a four-digit number; in many cases,
this was not available, and as such, we truncated all HLA-I
alleles to two digits, with the exception of the HLA-B15
family alleles, which always had the full four digits available
since these ‘‘subtypes’’ may present vastly different sets of
epitopes [23,24]. The number of unique HLA alleles reported
is the number obtained after this compression.). First we use
synthetic experiments to show that (1) the FDR estimate we
have described is reasonably accurate, and (2) the model
selection procedure can recover a good proportion of
ground-truth HLA-restricted epitopes from data. Finally, we
apply our algorithm to the real data.

Note that to compute the XIC score for our models, we
need to find the maximum likelihood solution for noisy-OR

nodes. Fortunately, this is a convex optimization problem [25]
and therefore local minima are not a problem.

Synthetic Experiments
The synthetic model used to generate data was our epitope

model, as described earlier, fitted to the real HIV ELISpot
data by using our model selection procedure. We used an XIC
setting for f that resulted in an estimated FDR ffi 0.3 (f¼ 2.9).
This produced 165 qij in our synthetic model. Additionally, we
retained the learned maximum likelihood values for these qij
(and the leaks, lj), so as to be able to generate data from the
model. To generate synthetic data from this fitted model,
donor HLA data was left as it appeared in the real data, and
then Equations 1 and 2 were used to compute the probability
that a particular donor would react to a particular epitope, pj,
conditioned on the learned values of fqijg and fljg. Then
samples for each donor, sj, were drawn from a uniform
distribution on (0,1] and the reactivities, yj, were set to yj¼ ( sj
� pj). Three synthetic datasets (each consisting of 102 donors
and 140 epitopes) were generated in this manner, all from the
same synthetic, generative model.
Plots of actual versus expected FDR for the three datasets

are shown in Figure 2A. Estimates of FDR are quite accurate
at the lower end, which is the region of interest for our
problem and also most other problems of interest (where not
too many spurious hypotheses are included). That the FDR
becomes increasingly conservative (i.e., it peels away from the
idealized line) can likely be explained by the approximation
we make in generating a null distribution. Further discussion
of this issue, and a suggested resolution, can be found in [21].
For the XIC parameter, f, we used the range [1.97,3.46], with f
¼3.46 producing actual and estimated FDRs around 0.02, and
f ¼ 1.97 producing actual FDRs around 0.67 and estimated
FDRs around 0.95. Note that BIC corresponds to the cluster
of points that have estimated FDRs around 0.7 (f¼ 2.3). AIC (f
¼ 1) corresponds to something even less conservative than
anything shown (even higher FDRs).
Not only do we want to know that our FDR estimate is

accurate, but we also want to know that our model selection
procedure is a reasonable one. We therefore examine how

Figure 2. Actual versus Estimated FDR (A) and False Negatives versus False Positives (B)

Results from using our model selection procedure and FDR estimation procedure on three datasets generated from a synthetic model learned on the
real HIV data. There is a one-to-one correspondence between the points plotted in each figure.
(A) Estimated and actual FDR. The dashed line denotes the idealized curve.
(B) The number of false negatives (qij not recovered in these experiments, but appearing in the synthetic model), compared with the number of false
positives (qij recovered in these experiments, but not in the synthetic model).
doi:10.1371/journal.pcbi.0030188.g002
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many ground truth qij were recovered, and at what cost in
false negatives. This information is displayed in Figure 2B.
Note that because we created a synthetic model with what
were presumed to be 30% spurious qij, many of these qij are
likely quite small (signifying weak associations), and therefore
would be more difficult to recover in synthetic experiments
using data generated from this model. Such difficulties are
also likely to arise with real data in real applications. The
points in Figure 2B that have about 50 false positives
correspond to an estimated/actual FDR of around 0.3. The
points which have about 150 false positives are those
corresponding to XIC ¼ BIC (for which FDR ffi 0.7). Overall,
the tradeoff between the number of false positives and false
negatives is very reasonable.

Application to Real Data
Using the real HIV data, we found 134 HLA-restrictions at

FDR ffi 0.2 among the possible 140 3 70 possible HLA
restrictions. To validate our predictions on the real HIV
dataset, we performed in vitro assays that specifically
measured particular HLA restrictions [26]. Ideally, all 134
pairs should have been evaluated, but this was too expensive
and work-intensive. Consequently, six pairs for which the
HLA-peptide association is biologically interesting (i.e.,
unlikely based on current understanding of peptide–HLA
binding) were evaluated. All six relationships were confirmed
[26]. Prior to this study (partially reported in [26]), it was
thought that HLA class I epitopes were restricted mainly by a
single HLA allele, or if by more than one allele, then only a
few that were structurally highly related and commonly fell
into the same HLA supertype [27] (supertypes group together
HLA alleles with similar amino acid binding motifs). How-
ever, our analysis suggests that a single epitope is frequently
restricted by numerous HLA alleles. Additionally, when
viewed through the traditional lens of supertypes, we found
restrictions across supertypes. For example, IYQEPFKNLK
was previously known to be restricted by A11, and we found
that it is also restricted by A24 (confirmed experimentally),
where A11 and A24 belong to two different supertypes. Table
1 shows a summary of the number of previously known HIV
epitopes restricted by one HLA allele, and up to four HLA
alleles (none were known to be restricted by more than four
alleles) [14]. After adding our newly statistically identified
HLA-restricted epitopes, these numbers change dramatically,
as shown in Table 2. These tables suggest that HLA class I
epitopes are far more ‘‘promiscuous’’ than originally thought,
a notion that has significant implications for the under-
standing of HLA class I antigen presentation and vaccine
development. We refer the reader to [26] for a more detailed

account of the biological findings. (Note that there are a few
differences between the results reported in [26] and the
current presentation of results. In [26], the previously known
HLA-restrictions were ‘‘fixed’’ to be present in the model
before model selection was used to search for new HLA
restrictions. We thought it would be of interest to see the
results when this a priori information was not used. Addi-
tionally, the number of HIV ‘‘optimal’’ epitopes tested was
reported as 162 in [26], whereas we report 140—this is due to
the fact that epitope–HLA pairs were counted in the former,
while here we count only unique epitopes—of which some
were repeated across HLA restrictions. The raw data are,
however, identical.)
Table S1A lists all epitopes identified by our statistical

analysis, sorted by rank from most to least important, along
with their learned qij values, and noting which epitopes were
previously known, which were confirmed, and what other
HLA alleles were previously known to restrict each epitope.
Of the 134 identified epitopes we identified, 46 were
previously known (eight of our top ten ranked epitopes were
known).

Discussion

We have introduced, implemented, and examined use of a
statistical approach for identifying epitope-restricting HLA
alleles from ELISpot data. This approach provides a high-
throughput, efficient, and cost-effective method for the
screening of novel HLA-restricted epitopes. Additionally,
our methodology introduces a new approach to the model
selection problem, wherein a parameterized family of model
selection scores can be explored, by estimating the FDR
resulting from the use of each score, and choosing one which
suits the needs of the user. In other words, we are able to
customize the tradeoff between high discovery rates, and false
leads, rather than relying on a single model selection criterion.
Several improvements to the model are possible. (1) Some

donors tend to have a higher overall reaction level, thus it
may be fruitful to include a latent variable which models this
donor-specific bias. (2) A confounding factor in our analysis is
the existence of false negatives due to a failed chemical
reaction in the ELISpot assay. One could add an observation
component to model this type of experimental noise. (3) We
stated that the ELISpot data are real-valued, but thought to
be informative at a mostly binary level. However, it might be
possible to extract more information by using the actual real-
valued measurements.

Table 1. Previously Known Promiscuity

Number of Restricting HLAs Number of Peptides

1 126

2 16

3 1

4 2

doi:10.1371/journal.pcbi.0030188.t001

Table 2. Promiscuity Updated with Present Analysis

Number of Restricting HLAs Number of Peptides

1 47

2 58

3 26

4 10

5 3

6 0

7 1

doi:10.1371/journal.pcbi.0030188.t002
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Lastly, by applying our methodology to real HIV data, we
have helped to shed light on the extent to which HLA class I
epitopes are promiscuous. This has significant implications
for the understanding of HLA class I antigen presentation
and vaccine development.

Supporting Information

Table S1. Comprehensive List of All HLA-Restricted Epitopes Found
on HIV Data

Known HLA refers to HLA restrictions previously known.
Recovered HLA refers to restrictions recovered from our statistical
analysis.
vij is the likelihood ration score used to rank the hypotheses (they are
shown ranked from strongest to weakest).
qij is the learned value of the noisy-OR parameter for HLA restriction.
Known is equal to one if this HLA restriction was already known.

Tested refers to those peptides which we confirmed experimentally.

Found at doi:10.1371/journal.pcbi.0030188.st001 (37 KB XLS).
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