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Aims To determine the human cytochromes mediating biotransformation of the
imidazopyridine hypnotic, zolpidem, and the clinical correlates of the findings.
Methods Kinetic properties of zolpidem biotransformation to its three hydroxylated
metabolites were studied in vitro using human liver microsomes and heterologously
expressed individual human cytochromes.
Results The metabolic product termed M-3 accounted for more than 80% of net
intrinsic clearance by liver microsomes in vitro. Microsomes containing human
cytochromes CYP1A2, 2C9, 2C19, 2D6, and 3 A4 expressed by cDNA-transfected
human lymphoblastoid cells mediated zolpidem metabolism in vitro. The kinetic
profile for zolpidem metabolite formation by each individual cytochrome was
combined with estimated relative abundances based on immunological quantification,
yielding projected contributions to net intrinsic clearance of: 61% for 3 A4, 22% for
2C9, 14% for 1A2, and less than 3% for 2D6 and 2C19. These values were consistent
with inhibitory effects of ketoconazole and sulfaphenazole on zolpidem biotransform-
ation by liver microsomes. Ketoconazole had a 50% inhibitory concentration (IC50)
of 0.61 mm vs formation of the M-3 metabolite of zolpidem in vitro; in a clinical
study, ketoconazole coadministration reduced zolpidem oral clearance by #40%,
somewhat less than anticipated based on the IC50 value and total plasma ketoconazole
levels, but much more than predicted based on unbound plasma ketoconazole levels.
Conclusions The incomplete dependence of zolpidem clearance on CYP3A activity
has clinical implications for susceptibility to metabolic inhibition.
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olism is mediated by human cytochromes P450 (CYP),
Introduction

with CYP3A reported as having a dominant role based
on in vitro studies of cDNA expressed humanThe imidazopyridine derivative zolpidem (Figure 1) is

widely prescribed in clinical practice for the treatment of cytochromes, as well as susceptibility to inhibition by
ketoconazole and anti-3A antibodies in liver microsomessleep disorders [1–4]. Zolpidem produces sedative and

hypnotic effects via interaction with the GABA-benzo- [11]. Expressed cytochrome studies also indicated a
contributory role of CYP1A2 and 2D6, but not of 2A6,diazepine receptor complex, with relative selectivity for

the Type 1 (omega-1) benzodiazepine receptor subtype 2E1, and 2C8. However, the possible participation of
2C9 or 2C19 has not been assessed.[5, 6].

Zolpidem is extensively metabolized in humans, with The present study evaluated the kinetic profile of
zolpidem biotransformation to its three principal meta-parallel hydroxylation reactions at three distinct sites on

the molecule (Figure 1) [7, 8]. Further oxidation of the bolites in vitro by human liver microsomes and
by cytochromes contained in microsomes expressedM-3 metabolite yields an acid derivative which is of

major quantitative importance [9, 10]. Zolpidem metab- by cDNA-transfected human lymphoblastoid cells.
Susceptibility to inhibition by a number of chemical
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under conditions of mild vacuum. Reactions were
initiated by addition of microsomal protein (up to
0.5 mg ml−1). After 20 min at 37° C, reactions were
stopped by cooling on ice and addition of 100 ml of
acetonitrile. Either buspirone or desipramine served as
suitable internal standards; one of these two compounds
was added to the incubate. The mixture was centrifuged,
and the supernatant transferred to an autosampling vial
for h.p.l.c. analysis. The mobile phase consisted of 30%
acetonitrile, 10% methanol, and 60% 50 mm phosphate
buffer ( pH 6.5); the flow rate was 1.1 ml min−1. The
analytical column was stainless steel, 30 cm×3.9 mm,
containing reverse-phase C-18 microBondapak (Waters
Associates, Milford, MA). Column effluent was moni-
tored by ultraviolet absorbance at 242 nm (Figure 2).
Concentrations of each of the metabolic products in
reaction mixtures were determined based on calibration
curves constructed from a series of standards containing
varying known amounts of each compound together with
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internal standard. The lower limit of sensitivity for eachFigure 1 Structure of zolpidem and its principal metabolites.
metabolite was 0.02 nmol per sample, and the coefficient
of variance for replicate samples did not exceed 9%. The

Methods range of linearity exceeded the highest concentration
encountered in actual experimental samples. The incu-

Incubation procedures
bation duration and microsomal protein concentrations
were within their linear ranges (30 min and 2 mg ml−1,Liver samples from human donors with no known liver

disease were provided by the International Institute for respectively). Reaction velocities were calculated in units
of nmol of product formed min−1 mg−1 of microsomalthe Advancement of Medicine, Exton, PA, or the Liver

Tissue Procurement and Distribution System, University protein.
Further studies were performed using fixed concen-of Minnesota, Minneapolis, MN. One of these samples

was found to have very low S-mephenytoin hydroxylase trations of zolpidem (10 mm or 100 mm). Varying concen-
trations of ketoconazole (0.1–5.0 mm), itraconazoleactivity, consistent with the CYP2C19 poor metabolizer

phenotype [12, 13]; another sample had negligible (1–25 mm), fluconazole (1–25 mm), a-naphthoflavone
(0.1–2.5 mm), sulfaphenazole (0.5–10 mm), or quinidinedextromethorphan O-demethylation activity, consistent

with the CYP2D6 poor metabolizer phenotype. (0.1–50 mm) were coadded. Reactions were initiated by
addition of human microsomal protein, and mixturesMicrosomes were prepared by ultracentrifugation;

microsomal pellets were suspended in 0.1 m potassium were processed as described above. The mechanism-based
inhibitors, troleandomycin (TAO) (1–25 mm) and furafyl-phosphate buffer containing 20% glycerol and stored at

−80° C until use. Microsomes containing individual line (5–50 mm), were also studied at the higher concen-
tration of zolpidem (100 mm). For these studies, inhibitorshuman cytochromes expressed by cDNA-transfected

human lymphoblastoid cells (Gentest, Woburn MA) [14, were preincubated with microsomes for 20 min, and
reactions were initiated by contact with substrate.15] were similarly stored at −80° C until use. Pure

samples of zolpidem and its metabolic products were To evaluate formation of zolpidem metabolites by
specific cytochromes, zolpidem (250 mm) was incubatedprovided by Synthélabo Recherche, Bagneux, France.

Other chemical reagents and drug entities were purchased with microsomes containing individual human CYP1A2,
2B6, 2C9, 2C19, 2D6, 2E1, and 3A4 at a concentrationfrom commercial sources or kindly provided by their

pharmaceutical manufacturers. of 1 mg microsomal protein ml−1 of incubation mixture.
After 20 min reaction mixtures were processed asIncubation mixtures contained 50 mm phosphate

buffer, 5 mm Mg++, 0.5 mm NADP+, and an isocitrate/ described above. These studies demonstrated metabolic
activity by all cytochromes except 2E1 and 2B6.isocitric dehydrogenase regenerating system [12, 13,

16–20]. Varying quantities of zolpidem in methanol Accordingly varying concentrations of zolpidem (0 mm

and 10–1000 mm) were separately incubated with micro-solution, to yield final incubate concentrations of 0 mm

and 2–2000 mm, were added to a series of incubation somes containing CYP1A2, 2C9, 2C19, 2D6, and 3A4.
Reaction mixtures were processed as described.tubes. The solvent was evaporated to dryness at 40° C
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Figure 2 H.p.l.c analysis of human liver microsomal incubate showing peaks corresponding to the substrate (zolpidem), the internal
standard (buspirone), and the three principal metabolites of zolpidem.

Relative contribution of cytochromes to net reaction velocityAnalysis of data

For studies of zolpidem biotransformation by human liver The estimated relative contributions of specific human
cytochromes to overall velocity of biotransformation ofmicrosomes, rates of formation (V) of individual metab-

olites in relation to concentration of substrate were zolpidem were calculated using kinetic data from the
individual human cytochromes. The net rate of zolpidemanalysed by nonlinear regression based either on a

Michaelis-Menten model, or a modification of this model metabolism attributable to a specific cytochrome was
taken as the sum of the reaction velocity vs substrateincorporating an exponent consistent with substrate

activation (Hill equation) [12, 13, 16–19]. These analyses concentration equations for the three metabolites. For
human liver microsomes in vitro, or during actual clinicalyielded an estimate of the maximum reaction velocity

(Vmax) and the substrate concentration (Km) correspond- administration, the overall contribution of a cytochrome
will depend on the intrinsic metabolic activity of thating to a reaction velocity of 50% of Vmax. The Vmax/Km

ratio is termed ‘intrinsic clearance’, and represents the enzyme (as calculated above) as well as its quantitative
abundance [13, 14]. Relative abundance was estimatedapproximate proportionality constant between reaction

velocity and substrate concentration at very low substrate from mean relative quantities determined by immuno-
quantitative methods in studies of a series of human liverconcentrations (without consideration of the exponent in

the Hill equation). samples [21]. The partitioning of total CYP2C immu-
noactivity into 2C9 vs 2C19 was assigned using a 351For studies involving coincubation with metabolic

inhibitors, the reaction velocity at a given concentration ratio from our previous studies [13]. Individual
cytochrome contributions were then normalized forof inhibitor was expressed as a percentage ratio vs the

control velocity with no inhibitor present [20]. The relative abundance, and expressed as a function of the
concentration of the substrate (zolpidem).relation of velocity ratio to inhibitor concentration was

analysed by nonlinear regression to determine the
inhibitor concentration producing a 50% reduction in
reaction velocity (IC50). The IC50 value may depend on

Relation of chemical inhibition in vitro to drug interactions
substrate concentration, but is not dependent on the

in vivo
biochemical mechanism of inhibition. Since multiple
cytochromes contribute to zolpidem biotransformation, Inhibition of zolpidem biotransformation by the azole

antifungal agent ketoconazole, itraconazole, and flucona-we did not attempt to calculate inhibition constants (Ki ),
which require knowledge of or assumptions regarding zole in human liver microsomes in vitro was compared

with inhibition of zolpidem clearance by the same threethe mechanism of inhibition.
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compounds in a clinical pharmacokinetic drug interaction Table 2). TAO also was a potent inhibitor at the substrate
concentration of 100 mm that was tested. The other azolestudy [22].
antifungal agents, itraconazole and fluconazole (also
CYP3A inhibitors [24]), inhibited zolpidem biotransform-

Results
ation, but with IC50 values an order of magnitude higher
than that of ketoconazole (Figure 4). At 100 mm zolpidem,Zolpidem metabolite formation by human liver microsomes
none of the other chemical inhibitors produced more

The M-3, M-4, and M-11 metabolites all were formed
than a 10% change in metabolite formation rate. At

by human liver microsomes in vitro (Figure 3). The M-3
10 mm zolpidem, sulfaphenazole (10 mm) produced an

pathway had the highest values of Vmax and also the #15% decrement in reaction velocity; this concentration
lowest Km values. Based on the Vmax/Km ratios, the M-3

of sulfaphenazole is within the range of relative specificity
pathway accounted for an average of 84% of intrinsic

for inhibition of CYP2C9. At 10 mm zolpidem, quinidine
clearance, the M-4 pathway for 12%, and the M-11

at concentrations of 5 mm or lower (close to the range of
pathway for 4% (Table 1). There was no evident influence

relative specificity for CYP2D6 [23]) had minimal effect
of the presumed genetic polymorphic deficiencies (2D6

on zolpidem metabolite formation.
or 2C19) on any of the kinetic parameters.

Zolpidem biotransformation by expressed human cytochromes
Inhibition studies

All three metabolites of zolpidem were formed by human
Ketoconazole, a relatively specific inhibitor of CYP3A

CYP3A4 expressed by cDNA-transfected human lym-
[23], was a potent inhibitor of zolpidem metabolite

phoblastoid cells (Table 3). Formation of metaboites M-3
formation regardless of substrate concentration (Figure 4,

and M-11 by CYP3A was best fit by Hill equations;
however, the Hill coefficients were not significantly
different from unity. CYP2C19 formed detectable
amounts only of M-3, while CYP2C9, 1A2, and 2D6
formed both M-3 and M-4. Formation of M-4 by
CYP2C9 was consistent with the Hill equation, having
a Hill coefficient (A=1.63) significantly greater than
unity. Figure 5 shows rates of formation of the M-3
metabolite by the five isoforms.

Relative abundance values for the five cytochromes
are shown in Table 3. After correction for relative
abundance, 83% of net intrinsic clearance was accounted
for by formation of M-3, 10.5% for M-4, and 6.6% for
M-11. These are nearly identical to relative values
determined in the independent studies of liver microsomes
(Table 1). When net intrinsic clearance for all pathways
was partitioned based on the relative contributions of
individual cytochromes, values were: 61% for 3A4, 22%
for 2C9, 14% for 1A2, 2.5% for 2D6, and 0.5% for
2C19. Figure 6 shows the relation of substrate (zolpidem)
concentration to predicted relative contribution of
each cytochrome to net velocity of zolpidem bio-
transformation.

Discussion

Biotransformation of zolpidem by human liver micro-Zolpidem (mM)
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somes in vitro proceeded by parallel hydroxylation at three
Figure 3 Rates of formation of the M-3, M-4, and M-11 sites on the molecule. Formation of the metabolite
metabolites of zolpidem in relation to concentration of the

termed M-3 accounted for more than 80% of net intrinsicsubstrate, zolpidem, by a representative human liver microsomal
clearance in vitro. This is consistent with previous in vitropreparation in vitro. Lines represent functions consistent with
and in vivo studies demonstrating that M-3, via theMichaelis-Menten kinetics. Insert, above: low substrate

concentrations shown on an expanded scale. corresponding acid formed by further metabolism, is
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Figure 4 Rates of formation of the M-3 metabolite of zolpidem in relation to concentrations of metabolic inhibitors (+
ketoconazole, : itraconazole, Q fluconazole, ! sulfaphenazole, &– –& a-naphthoflavone, P quinidine.
Reaction velocities were expressed as a percentage ratio vs the control velocity value with no inhibitor present. The zolpidem
concentration was fixed at 10 mm. See Table 2 for IC50 values.

quantitatively dominant [7]. CYP3A isoforms account pharmacokinetic studies, therapeutic doses of ketocona-
zole typically cause the area under the plasma concen-for #60% of intrinsic clearance of zolpidem. This

estimate is derived from studies of cytochromes contained tration curve (AUC) for oral triazolam or midazolam to
increase by a factor of 10 or more [18, 28, 29]. Underin microsomes expressed by cDNA-transfected human

lymphoblastoid cells, with contributions of individual the same experimental conditions, ketoconazole causes
AUC for oral zolpidem to increase by a factor of 1.7cytochromes appropriately normalized for anticipated

relative abundance in vivo. A similar estimate of the 3A [22]. This is reflected by a corresponding difference in
susceptibility to inhibition in vitro. At 10 mm zolpidem,contribution was provided by studies of inhibition of

zolpidem biotransformation in liver microsomes in which ketoconazole inhibited M-3 metabolite formation with a
mean IC50 of 0.61 mm (Table 2); in contrast, ketoconazoleketoconazole, a relatively specific 3A inhibitor in the

0.5–1.0 mm range, produced 60–70% inhibition of zolpi- inhibits triazolam hydroxylation in vitro with IC50 values
approximately an order of magnitude smaller [24]. Thedem metabolite formation. CYP2C9 is estimated to

account for another fraction of zolpidem clearance (22%), findings are similar for two other azole antifungal agents,
itraconazole and fluconazole. In clinical studies, both ofconsistent with inhibition studies using the CYP2C9

inhibitor sulfaphenazole. CYP1A2 apparently accounts these drugs cause large increases in AUC for oral
triazolam and midazolam [29–32], whereas they increasedfor a small fraction of clearance, although significant

inhibition by a-naphthoflavone and furafylline could not zolpidem AUC by factors in the range of only 1.2–1.4
[22, 33]. This is likewise reflected in correspondingbe detected. Projected contributions of 2D6 and 2C19

were less than 3%. It is of interest that formation of the differences in IC50 values in vitro [24]. Norfluoxetine, the
principal metabolite of fluoxetine in humans, is aM-4 metabolite of zolpidem by heterologously expressed

CYP2C9 was best explained by a Hill equation, consistent moderately potent CYP3A inhibitor in vitro and in many
clinical studies [34]. Norfluoxetine inhibits triazolamwith binding cooperativity or substrate activation [19].

Although this feature is most commonly associated with hydroxylation in vitro [18], but fluoxetine coadministration
produced only a small increase in triazolam AUC in vivoCYP3A4 [25], a similar pattern has been described for

CYP1A2 and CYP2C9 [25, 26]. In our previous stud- [35]. Fluoxetine treatment also produced minimal alter-
ation of zolpidem clearance in human volunteers [36, 37].ies we have observed Hill kinetics for heterologously

expressed CYP2C9 using phenacetin [27], and amitripty- The influence of rifampicin, a potent CYP3A inducer,
on clearance of oral triazolam, midazolam, and zolpidemline [12] as substrates.

The participation of multiple human cytochromes in has also been evaluated in clinical pharmacokinetic
studies. Pretreatment with rifampicin increased clearancethe metabolism of zolpidem, in contrast to triazolam and

midazolam whose clearance is dependent almost entirely and reduced AUC of all three compounds, but the degree
of induction of triazolam and midazolam clearance wason CYP3A, has implications for the susceptibility to drug

interactions involving metabolic inhibition. In clinical greater than for zolpidem [38–40].

© 1999 Blackwell Science Ltd Br J Clin Pharmacol, 48, 89–97 93
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Figure 6 Estimated relative contribution of five human
cytochromes to net rate of zolpidem biotransformation in vitro.
Functions were generated using reaction velocity vs substrate
concentration relationships for the five cDNA-expressed
cytochromes (Table 3 and Figure 5), after normalization for
relative abundance of the individual cytochromes (RA values in
Table 3).

condition and during coadministration of therapeutic
doses of ketoconazole, itraconazole, and fluconazole [22].
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Fractional decrements in mean values of zolpidem oral
Figure 5 Rates of formation of the M-3 metabolite of zolpidem clearance were; 0.41 with ketoconazole, 0.24 with
in relation to concentration of substrate, zolpidem, in vitro by itraconazole, and 0.20 with fluconazole. The mean trough
microsomes from cDNA-transfected human lymphoblastoid cells (minimum) steady-state total plasma concentration (Css)expressing CYP 1A2, 2C9, 2C19, 2D6, or 3A4. Data have not

of the respective inhibitors measured during this studybeen normalized for relative abundance. Insert, above: the low
were: 1.78 mm ketoconazole; 0.05 mm itraconazole (andrange of substrate concentrations shown as an expanded scale. See
0.19 mm hydroxy-itraconazole); and 11.7 mm fluconazole.Table 3 for kinetic analysis.
The fractional decrement in reaction velocity in vitro in
relation to concentration of inhibitor ( I ) can be approxi-Inhibition constants from in vitro studies have been

used for quantitative forecasting of pharmacokinetic drug mated by I/( I+IC50), if IC50 has been determined at
concentrations of substrate well below the reaction Km.interactions [28, 41–49]. The applicability of such scaling

models is limited, because the concentration of inhibitor Accordingly the IC50 in this equation was taken as the
mean value determined at 10 mm zolpidem (Table 3).to which the enzyme is exposed in vivo cannot be easily

identified. We calculated the anticipated enzyme-available Equating this result to the observed decrement of
clearance in vivo yields an estimate of I to which theconcentrations of inhibitor based on a controlled clinical

pharmacokinetic study in which single doses of zolpidem enzyme is exposed in vivo. For ketoconazole and
fluconazole, estimated enzyme-available values of I werewere administered to healthy volunteers in the control

Table 1 Kinetics of zolpidem metabolite
formation by human liver microsomes
in vitro.

Mean (±s.e.mean, n=4) value for metabolite
M–3 M–4 M–11

Vmax (nmol min−1 (mg−1 protein)) 1.35 (±0.13) 0.66 (±0.07) 0.16 (±0.03)
Km (mm ) 114 (±8) 403 (±18) 292 (±54)
Vmax/Km×1000 12.0 (±1.3) 1.63 (±0.14) 0.61 (±0.16)
(ml min−1 (mg−1 protein))
% of net Vmax/Km 86.3 (±0.5) 11.7 (±0.7) 4.1 (±0.7)

© 1999 Blackwell Science Ltd Br J Clin Pharmacol, 48, 89–9794



Zolpidem in vitro

Table 2 Inhibition of zolpidem
metabolite formation by chemical
inhibitors.

Mean (±s.e.mean) IC50 values vs metabolite
Inhibitor M–3 M–4 M–11

At zolpidem=100 mm

Ketoconazole 0.91(±0.29) 1.03 (±0.27) 0.86 (±0.30)
Itraconazole 22.3 (±6.5) 18.5 (±3.9) 26.6 (±9.5)
Fluconazole 14.7 (±6.1) 15.7 (±3.6) 16.4 (±4.8)
TAO 0.66 (±0.23) 0.68 (±0.22) —

At zolpidem=10 mm

Ketoconazole 0.61 (±0.27) — —
Itraconazole 15.7 (±6.3) — —
Fluconazole 20.3 (±5.1) — —

Table 3 Formation of zolpidem metabolites in vitro by expressed Although ketoconazole and itraconazole both are more
human cytochromes contained in microsomes from cDNA- than 98% bound to plasma components, these data,
transfected human lymphoblastoid cells. together with other clinical findings and experimental

studies of partitioning into liver tissue, strongly indicate
Zolpidem metabolite

that plasma binding cannot be assumed to restrict hepaticCYP M–3 M–4 M–11
uptake, and unbound plasma concentrations cannot be
assumed to be equal to the concentrations available to3A4 (RA: 47.3%)

Vmax 3.95 1.409 1.749 the enzyme [18, 47, 48, 50, 51]. For fluconazole, which
Km 140 387 454 is only weakly protein-bound, apparent enzyme-available
A 1.04 — 1.006 concentrations were 43% of total plasma levels. Enzyme
Vmax/Km 28.2 3.6 3.9 availability of these and other metabolic inhibitors is

2C9 (RA: 22.3%)
likely to depend on a complex combination of lipophilic-Vmax 3.04 0.155 —
ity, plasma binding, and intrahepatic binding both toKm 117 92.2
metabolic enzymes and to other nonspecific sites [41–43,A — 1.63

Vmax/Km 26.0 1.7 47, 49, 52].
2D6 (RA: 2.5%)

Vmax 1.95 4.68 — This work was supported by Grants MH-34223, DA-05258,
Km 216 243 MH-19924, and RR-00054 from the Department of Health and
Vmax/Km 9.0 19.3 Human Services. Dr von Moltke is the recipient of a Scientist

1A2 (RA: 20.7%) Development Award (K21-MH-01237) from the National Institutes
Vmax 0.72 0.07 of Mental Health.
Km 43 45
Vmax/Km 16.7 1.6

2C19 (RA: 7.3%) References
Vmax 0.26 — —
Km 151 1 Nowell PD, Mazumdar S, Buysse DJ, et al. Benzodiazepines
Vmax/Km 1.7 and zolpidem for chronic insomnia: a meta-analysis of

treatment efficacy. JAMA 1997; 278: 2170–2176.
RA represents the immunologically determined relative abundance, 2 Roth T, Puech AJ, Paiva T. Zolpidem—place in therapy.
normalized to 100%. In Zolpidem: an Update of its Pharmacological Properties and
Units are: Vmax ( pmol min−1 (pmol CYP)−1) (not adjusted for Thereapeutic Place in the Management of Insomnia, eds H.
relative abundance). Freeman, A. J. Puech, T. Roth. Paris: Elsevier, 1996:
Km, mm. 215–230.
A, no units (Hill coefficient). 3 Hoehns JD, Perry PJ. Zolpidem: a nonbenzodiazepine
Vmax/Km (nl min−1 (pmol CYP)−1) (not adjusted for relative hypnotic for treatment of insomnia. Clin Pharm 1993; 12:
abundance). 814–828.
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