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ABSTRACT

Riboswitches are genetic control elements within
non-coding regions of mRNA. They consist of
a metabolite-sensitive aptamer and an adjoining
expression platform. Here, we describe ligand-
induced folding of a thiamine pyrophosphate (TPP)
responsive riboswitch from Escherichia coli thiM
mRNA, using chemically labeled variants. Referring
to a recent structure determination of the TPP/
aptamer complex, each variant was synthesized
with a single 2-aminopurine (AP) nucleobase repla-
cement that was selected to monitor formation of
tertiary interactions of a particular region during
ligand binding in real time by fluorescence experi-
ments. We have determined the rate constants for
conformational adjustment of the individual AP
sensors. From the 7-fold differentiation of these
constants, it can be deduced that tertiary contacts
between the two parallel helical domains (P2/J3-2/
P3/L3 and P4/P5/L5) that grip the ligand’s ends in
two separate pockets, form significantly faster than
the function-critical three-way junction with stem P1
fully developed. Based on these data, we character-
ize the process of ligand binding by an induced fit
of the RNA and propose a folding model of the TPP
riboswitch aptamer. For the full-length riboswitch
domain and for shorter constructs that represent
transcriptional intermediates, we have additionally
evaluated ligand-induced folding via AP-modified
variants and provide insights into the sequential
folding pathway that involves a finely balanced
equilibrium of secondary structures.

INTRODUCTION

Among all three domains of life, gene regulatory systems
have evolved that do not require assistance of proteins and

that basically act on the level of RNA. So-called
‘riboswitches’ are represented by non-coding regions of
mRNA that selectively recognize metabolites (1–5).
Depending on metabolite concentration, two mutually
exclusive structures are adopted according to the ligand-
bound versus unbound state. This structural response is
harnessed by the RNAs to lead to the sequestration or
accessibility of Shine–Dalgarno sequences, the formation
or destabilization of transcription terminator stems, the
activation of ribozymes or the activation of splice sites.
A riboswitch consists of an aptamer domain that upon
ligand binding is stabilized and thereby alters the base-
pairing arrangements in the adjoining expression plat-
form. While the aptamer segments are highly conserved
in sequence, the expression platforms are variable. The
sequences in the platform determine the ‘ON’ or ‘OFF’
character of a riboswitch, meaning that gene expression is
either turned on or off in case of ligand binding, and they
typically determine the functional level (transcription,
translation or splicing).

The thiamine pyrophosphate-sensing riboswitch
accounts for one of the earliest discovered representatives,
and it is most widespread among bacteria, archaea,
fungi and plants (6–11). The very motif also exists in
tandem riboswitch modules (12,13), and in all cases, this
riboswitch class controls genes that are involved in the
synthesis or transport of thiamine and its phosphorylated
derivatives. The structure of the TPP-bound aptamer
reveals a complex folded RNA in which one subdomain
forms an intercalation pocket for the pyrimidine moiety of
TPP, whereas another subdomain offers a wider pocket
using bivalent metal ions together with water molecules to
make contacts to the pyrophosphate moiety of the ligand
(14–17) (Figure 1).

Despite the scores of detailed structural and biochemi-
cal studies on TPP riboswitches, the TPP-induced folding
process of its aptamer and its full-length domains has not
yet been kinetically investigated by biophysical methods,
such as fluorescence spectroscopy. This is mainly due to
the fact that selective labeling of RNA with the respective
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size of 50–200 nt is synthetically highly challenging.
Moreover, the ligand TPP and its binding-competent
analogs are non-fluorescent and thus cannot be applied
for fluorescence studies on ligand-binding kinetics, as
has been demonstrated previously in case of FMN (19)
and purine riboswitches (20–22), whose ligand FMN
and ligand analog 2-aminopurine provide effective fluor-
escence emission.

In the present study, we have assessed ligand-induced
folding of the Escherichia coli thiM riboswitch by a
fluorescence spectroscopic approach that we have pre-
viously applied successfully to rationalize folding of a
different class of riboswitches (23). For the TPP aptamer
domain investigated here, we observe adaptive recognition
of the ligand TPP and we reveal the temporal progress
of tertiary structure formation. Moreover, while the
full-length riboswitch domain remains completely respon-
sive to TPP with kinetic parameters comparable to the
aptamer domain alone, ligand binding to RNA variants
that represent shorter transcriptional intermediates is
hindered. This behavior can be rationalized by competing
alternative conformations that are adopted during sequen-
tial folding and that are incompetent of ligand binding.

MATERIALS AND METHODS

Preparation of riboswitch AP variants

The 72, 81, 82, 109, 125 and 151 nt thiM RNAs containing
site-specific 2-aminopurine labels were accessible by means
of chemical solid-phase synthesis and enzymatic ligation
using T4 RNA and/or T4 DNA ligase together with
DNA and/or 20-O-methyl RNA templates (Scheme 1), as
previously described for 20-methylseleno modified and
AP-modified purine riboswitch domains (23–25). All
RNAs were purified by anion exchange HPLC under
strong denaturating conditions (6M urea, 808C). The
expected molecular weights of all RNAs were confirmed

by LC-ESI mass spectrometry. Yields of typical RNA
preparations (chemical synthesis and enzymatic ligation)
were 30 nmol (�800mg; �27 OD260 nm) and 6 nmol
(�290 mg; �10 OD260 nm) of HPLC-purified U62AP thiM
82 and U62AP thiM 151, respectively.

Fluorescence spectroscopy

All experiments were measured on a Cary Eclipse
spectrometer (Varian, Palo Alto, USA) equipped with a
peltier block, a magnetic stirring device and a RX2000
stopped-flow apparatus (Applied Photophysics Ltd.,
Leatherhead, UK).

Binding affinities. Using quartz cuvettes equipped with
a small stir bar, RNA samples were prepared in 0.3 mM
concentration in a total volume of 1ml of buffer
(50mMKMOPS, 100mMKCl, 2mMMgCl2, pH 7.5 at
258C). The samples were heated to 908C for 2min, allowed
to cool to room temperature and held at 258C in the
peltier controlled sample holder. Then, TPP was manually
pipetted in aliquots in a way not to exceed a total volume
increase of 3%. The solution was stirred during each
titration step and allowed to equilibrate for at least 10min
before data collection. Spectra were recorded from 320
to 500 nm using the following instrumental parameters:
excitation wavelength, 308 nm; increments, 1 nm; scan
rate, 120 nm/min; slit widths, 10 nm. The apparent binding
constants (KD) were determined by following the decrease
or increase in fluorescence after each titration step via
integration of the area between 330 and 450 nm. Data
were fit using a KD quadratic equation solution for 1:1
stoichiometry (for the precise equation and further
details see Supplementary Methods and Supplementary
Figure S1).

Rate constants. Rate constants k for individual riboswitch
AP variants were measured under pseudo-first-order
conditions with TPP in excess over RNA. Stock solutions
were prepared for each AP variant [concentration
cRNA=0.6 mM; 50mMKMOPS (pH 7.5 at 258C),
100mM KCl, 2mM MgCl2] and for TPP [concentration
cTPP=3–12 mM; 50mM KMOPS (pH 7.5 at 258C),
100mM KCl, 2mM MgCl2]. Mixing equal volumes of
these stock solutions via the stopped-flow apparatus
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resulted in a final concentration of 0.3 mM RNA and of
1.5–6mM TPP (corresponding to 5–20 equivalents).
Spectra were recorded using the following instrumental
parameters: excitation wavelength, 308 nm; emission
wavelength, 372 nm; increment of data point collection,
0.05 s; slit widths, 20 and 10 nm, respectively. All
experiments were conducted at 258C. The stopped-flow
fluorescence data were fit to a single-exponential equation
F=A1+A2e

�k0t where A1 is the initial fluorescence and
A2e

�k0t is the change in fluorescence over time t at the
observed rate k0. Each measurement was repeated at least
twice and the mean of the observed rates k0 was plotted
against TPP concentration to obtain the rate constant k
from the slope of the plot. For thiM 82 variants U62AP,
G72AP, U79AP and A69AP, the rate constants k were
additionally determined at 15, 20 and 308C to obtain
activation energies from Eyring plots (Supplementary
Figures S6, S7 and Supplementary Table 1). All data
processing was performed using Kaleidagraph software
(Synergy Software, Reading, UK).

RESULTS AND DISCUSSION

Concept

Our fluorescence-spectroscopic approach to study
folding of the E. coli thiM TPP riboswitch is based on a

recently solved X-ray structure of its ligand-bound
aptamer domain (14). The structure reveals a number
of nucleobases that can be substituted individually by
the fluorescent nucleobase analog 2-aminopurine (AP)
(26–32) without disturbing the overall fold (Figure 2).
Following the criteria of retaining hydrogen-bonding
patterns and of maintaining highly conserved sequence
portions, we selected seven positions of nucleobases that
participate in crucial tertiary structure interactions of the
aptamer, and synthesized the corresponding RNA var-
iants, each of them labeled with an individual AP at a
particular position (A69, G72, U79, U62, U46, A53, A85;
thiM 82; Figure 2B). Based on their fluorescence response
upon addition of TPP, binding was confirmed for all
variants and binding constants were in the submicromolar
range at 258C (Table 1 and Supplementary Figure S1),
being well comparable to reported KD values for TPP
riboswitch aptamers (6,13). Further evidence for the
correct functionality of the AP variants came from the
observation that their fluorescence emission did not
change when thiamine monophosphate or thiamine was
added in the same concentration range (10-fold excess
over RNA). These control experiments with structurally
closely related compounds of TPP confirmed the high
specificity of the AP riboswitch variants for their
dedicated ligand (Supplementary Figure S2).

The concept presented here allowed us to follow using
real-time kinetics the ligand-binding induced movement of
selected nucleobases in the various subregions of the
aptamer—in both a qualitative and quantitative manner.
With this basis, we propose a detailed model for the
ligand-induced folding process of the thiM aptamer.
Additionally, we investigated TPP-induced folding of the
full-length riboswitch, as well as of shorter constructs
representing transcriptional intermediates. The AP var-
iants (Figure 2C) provided insights into sequential folding
of the riboswitch and into potential alternative secondary
structure formation during transcription.

The TPP aptamer—structural basis for AP variants
and fluorescence behavior

The TPP/aptamer complex is organized by two parallel
helical domains (P2/J3-2/P3/L3 and P4/P5/L5) connected
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Table 1. Apparent binding constants KD and rate constants k of thiM

TPP-riboswitch variants

Riboswitch variant K25�C
D,app [nM]a k258C [M�1s�1]b

A69AP thiM 82 325 14.2� 0.45� 104

G72AP thiM 82 265 12.1� 0.73� 104

U79AP thiM 82 375 12.0� 0.42� 104

U62AP thiM 82 320 9.26� 0.16� 104

U46AP thiM 82 250 7.53� 0.23� 104

A53AP thiM 82 435 3.85� 0.14� 104

A85AP thiM 82 260 2.30� 0.20� 104

U62AP thiM 81 495 8.66� 0.14� 104

U62AP thiM 151 420 8.13� 0.16� 104

aValues are arithmetic means, determined from at least two indepen-
dent titration experiments. bValues determined from at least three
independent stopped-flow measurements.
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to a helix (P1) by means of a three-way junction
(Figure 3A). We first explored the interaction which is
most distant from the three-way junction, namely the
tertiary contacts between L5 and P3. In the ligand-bound
state, the loop nucleotide A69(L5) perfectly stacks
between nucleotides A70(L5) and C24(P3) (Figure 3B,
left). Upon TPP addition to the free A69AP thiM 82
variant, we expected a prominent fluorescence decrease
which is consistent with a movement of the nucleobase
into its final stacked position and indeed observed this
behavior (Figure 3B, right). Under pseudo-first-order
conditions, the rate constant k258C was determined to be
14.2� 0.45� 104M�1 s�1 (Figure 4).

Another nucleotide which represented a good
candidate for AP replacement in loop L5 was G72.
In the ligand-bound state, this nucleotide is directed
from loop L5 towards TPP and approaches its thiazol
ring to �3 Å [see ref. (14), Supplementary Figure S3B].
Upon TPP addition to the G72AP variant, we observed a
defined fluorescence decrease and determined a rate
constant k258C of 12.1� 0.73� 104M�1 s�1 (Figure 4).

The crystal structure of the TPP/aptamer complex
reveals that U62 at the interface of stems P4 and P5
(which shape the binding pocket for the pyrophosphate
moiety of TPP) protrudes into solution and is completely
‘unstacked’ from neighboring nucleotides (Figure 3C).
Upon TPP addition to the free U62AP variant, we
observed a prominent fluorescence enhancement which is
consistent with the local twisting out of this particular
nucleotide. Under pseudo-first-order conditions, the rate
constant k258C was determined to be 9.26� 0.16
� 104M�1 s�1 (Figure 4). Also nucleotide U79 which
resides in the opposite strand of the P4/P5 interface is
forced into an extrahelical position and protrudes
into solution upon TPP binding (Supplementary
Figure S3C). The rate constant measured for the
corresponding U79AP variant was slightly higher
(k258C=12.0� 0.42� 104M�1 s�1) (Figure 4).

The 50-helical domain consists of stems P2 and P3
with junction J3-2 shaping the binding pocket for the
pyrimidine ring of TPP. Junction J3-2 consists of the
sequence 50-U(39)GAGAA adopting a highly complex
fold making direct hydrogen-bonding contacts (G40)
and direct stacking interactions (G42/pyrimidine/A43) to
the pyrimidine ring of TPP. The arrangement is
further characterized by non-canonical base pairs,
A43�U39 and G42�G19, and by water-mediated hydro-
gen-bonding networks (A41�G18). In principle, one of
the J3-2 nucleotides (A44) could be substituted by AP
without major structural impairment. However, we
decided not to even slightly perturb this highly conserved
recognition element and selected the adjacent single
nucleotide bulge U46 (of stem P2) for a replacement by
AP to detect conformational changes within the 50-helical
domain. Like U62 and U79, U46 is unstacked in the
ligand-bound state and protrudes into solution
(Supplementary Figure S3D). Upon TPP addition to the
U46AP variant, we observed a defined fluorescence
increase and determined a rate constant k258C of
7.53� 0.23� 104M�1 s�1 (Figure 4).
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The three-way junction connecting stems P1/P2/P4
comprises junction J2-4 and is stabilized by two stacked
tetrades in the TPP-bound state. A close-up shows that
A53 forms a non-canonical base pair with A84 via the
Hoogsteen face and that the nucleobase is sandwiched
between U52 and G83 [Figure 3D, ref. (14)]. The
corresponding A53AP variant shows a weak but defined
fluorescence enhancement. We determined the rate con-
stant k258C to be only 3.85� 0.14� 104M�1 s�1 (Figure 4).
Additionally, the AP replacement at position 85 allowed
us to monitor the structuring of the three-way junction via
formation of the first base pair of stem P1 (A85:U14)
(Figure 3E). The rate constant k258C of 2.30� 0.20
� 104M�1 s�1 (Figure 4) measured for the corresponding
A85AP variant was also significantly smaller compared
to the rate constants for AP movements in the helical
domains.
Among the AP-modified aptamer variants studied,

U62AP thiM 82 showed the most prominent fluorescence
response during ligand-induced folding. This can be
rationalized by the structural change that resembles
single nucleotide flipping and unstacks the nucleobase.
Because of its high sensitivity and because of its position
at the binding site, U62AP represents the most
indicative label to assess binding of TPP in a direct
manner. In this sense, we synthesized thiM 72 as U62AP
variant lacking all of stem P1 except the first potential
base pair (A85:U14) (Figure 2B). This variant did
not respond to addition of TPP in 10-fold excess (and it
hardly responded to a 100-fold excess of TPP) although
all primary recognition elements for TPP are available
within the two large helical domains. The simple connec-
tion of these domains by junction J2-4 hence does
not provide sufficient entropic stabilization to support
binding.

Amodel forTPP-induced foldingof theaptamer—recognition
of TPP by the two helical domains is significantly faster
than formation of the three-way junction

Our fluorescence study on the E. coli thiM TPP aptamer
corroborates a folding model that is characterized by
the adaptive recognition of TPP. Strategic positioning
of AP fluorescent labels allows us to spectroscopically
monitor the individual nucleobase movements in the
various subregions until the final fold of the aptamer/
TPP complex has been adopted. For each AP movement,
an individual rate constant has been assessed and we find a
remarkable 7-fold differentiation among the values. This
range is large when compared with ligand-induced folding
of the equally sized adenine riboswitch aptamer that we
investigated previously and where rate differentiation was
just �2-fold (23). In the present case of the TPP aptamer,
the pronounced differentiation in regional AP folding
rates can be well rationalized (Figure 5). The ‘fast’ rate
constants concern AP replacements (G72AP, U62AP,
U79AP) very close to the pyrophosphate recognition site
in the 30-helical domain (P4/P5). Variant A69AP—for
which the highest rate constant is measured—also resides
in the 30-helical domain (L5) and is a sensor for formation
of tertiary contacts between loop L5 (30-helical domain)
and stem P3 (50-helical domain). The AP label of aptamer
variant U46AP resides in the 50-helical domain (P2, P3,
J3-2) very close to the pyrimidine recognition site and is
therefore appropriate to reflect its reorganization. U46AP
gives a rate constant somewhat slower than G72AP and
U79AP, but still comparable to the rate of U62AP at the
pyrophosphate recognition site. Variants A53AP and
A85AP whose AP replacements are accommodated in
the three-way junction (J2-4, P1) lead to a subset of ‘slow’
rate constants; their responses reflect reorganization of
J2-4 and completion of stem P1, respectively. In the free
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RNA aptamer, stem P1 seems to be partly preformed since
the corresponding A12AP variant remains unaffected
upon TPP addition (Supplementary Figure S3E), suggest-
ing that the base pair AP12:U87 may already exist.
In contrast, A85AP results in a defined fluorescence decay
that can be attributed to formation of the stem-closing
base pair (A85:U14) at the three-way junction.
Importantly, variant U62AP thiM 72 which lacks stem
P1 (Figure 2) did hardly respond to TPP. Formation
of stem P1 is therefore a strict requirement for TPP
binding although it is not directly involved in ligand
recognition.

Taken together, a ligand-induced folding model is
proposed where fast recognition of the pyrophosphate
moiety of TPP by the 30-helical domain occurs almost
simultaneously with recognition of the pyrimidine moiety
by the 50-helical domain. TPP acts like a clamp between
the two large helical domains and supports—on the same
timescale—formation of tight hydrogen bonding and
stacking networks between interdomain (L5/P3)

nucleobases that are distant from the three-way junction.
Formation of the three-way junction and closure of stem
P1 result from this initial recognition/folding process
and require significantly more time to be fully accom-
plished. Based on this chronological formation of
structure interactions, we favor the view that the large
50- and 30-helical domains of the free aptamer are
preorganized in parallel orientation (Figure 5).
It is important to be aware that the AP approach used

here is inherently able to detect local conformational
rearrangements and remains speculative on global folding.
Strictly spoken, the AP approach is able to cover
spectroscopically the very final time period of a global
folding event starting from the point at which contacts
between nucleotides are beginning to emerge until their
hydrogen-bonding patterns and stacking interactions have
completely evolved. However, we cannot easily distinguish
between a preceding global movement of existing domains
(that contain the AP sensor in a non-changing micro
environment until tertiary interactions take place) and
preorganization (of the very domains). Nevertheless,
since the AP approach delivers a series of individual
rate constants for the various regions of an RNA fold,
the differentiation of these values provides some valuable
hints on the succession of global motions and/or on
potential preorganization of particular domains as sug-
gested above.

Ligand-induced folding of the TPP full-length riboswitch
domain and of aptamers with 3’-flanking sequences
mimicking transcriptional intermediates

Previous biochemical and structural studies on the E. coli
thiM TPP riboswitch suggested a model on translational
control that is illustrated in Figure 6. In the absence
of TPP, interaction of the anti-Shine–Dalgarno (SD)
sequence (orange; nucleotides 108–111) with the anti-anti-
SD sequence (red; nts 83–86) allows P8� pairing. This
interaction permits the ribosome to access the SD element
(blue; nts 126–129), and thus translation is on-regulated.
In the presence of TPP, the obligate formation of stem
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the 30-helical domain (P4/P5) occurs almost simultaneously with
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of stem P1 result from this initial recognition/folding process
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P1 sequesters a portion of the anti-anti-SD element (red;
nts 83–86) and by formation of stem P8, the SD-sequence
(blue; nts 126–129) becomes inaccessible to the ribosome,
and consequently, translation is off-regulated.
Very recently, Famulok and coworkers (33) refined this

model and provided evidence by chemical and enzymatic
structural probing that the TPP-free full-length riboswitch
is able to adopt a secondary structure with an extended
30-helical domain that involves nucleotides (up to number
125) of the expression platform in base pairing with
parts of the aptamer sequence. The structure is character-
ized by an ACCA tetraloop (nt 96–99) and a 40 nt long
unstructured 30-terminus (up to nucleotide 165) containing
the SD sequence. The proposed fold implies that a subtle
secondary structure equilibrium (34,35) exists between
the extended 30-helical domain (with the ACCA loop)
and the binding-competent P4/P5/L5 domain required
for phosphate recognition of TPP (Supplementary
Figure S9).
Originally, we considered three AP constructs highly

potential for a kinetic assessment of the full-length
riboswitch; these variants are U62AP thiM 151, A12AP
thiM 151 and A128AP thiM 151 (Figures 2C and 6B).
Titration of TPP to the U62AP thiM 151 variant indeed
resulted in a pronounced fluorescence increase, with a rate
constant almost the same as observed for the U62AP thiM
81 aptamer alone (k258C, 81 nt=8.66� 0.14� 104M�1 s�1;
k258C, 151 nt=8.13� 0.16� 104M�1 s�1) (Figure 7 and
Supplementary Figure S8). The aptamer that is extended
by the expression platform therefore remains fully
responsive to its ligand.
The other full-length variants, A12AP thiM 151 and

A128AP thiM 151, possess single AP labels at positions
that are not directly sensitive to TPP binding but that
are expected to be sensitive to the proposed TPP-
induced formation of stems P1 and P8, respectively.
Unfortunately, for both variants, hardly any fluorescence
change was detected upon TPP titration. A likely
explanation is that the full-length riboswitch construct
investigated in this study adopts a conformation in vitro
that is already very close to the TPP-bound conformation
with stems P1/P8 mostly developed as depicted in
Figure 6B (Supplementary Figure S9). An alternative
explanation is that the AP modification may reside in two
chemical microenvironments that cause it to give a nearly
identical fluorescence report although two different overall
global folds are involved (see conformations C, D and
D�TPP in Supplementary Figure S9).
When we investigated shorter than full-length ribo-

switch constructs which mimic transcriptional intermedi-
ates (Figures 2C and 7), the AP approach provided insight
into the obligate interplay between stems P1/P8 versus P8�

(Figure 6A). For these experiments, we used the highly
sensitive label at position 62 at the TPP recognition site.
Variant U62AP thiM 109 lacks the SD element, and not
unexpectedly, we observed that TPP binding was sig-
nificantly hampered as can be deduced from the weak
relative fluorescence change (Figure 7A). This behavior
can be rationalized by adoption of an alternative fold
characterized through formation of a stable 30-terminal
stem-loop structure involving anti-SD (orange)

and anti-anti-SD (red) pairing (Figure 7C and
Supplementary Figure S10). This structure comprises the
characteristic ACC(A99)-loop segment corresponding to
the fold described by Famulok. As soon as the SD element
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Figure 7. ThiM riboswitch and mimics of transcriptional intermediates
with U62AP replacements; (A) Relative fluorescence increase of U62AP
variants of 81, 109, 125 and 151 nt length. Conditions: cRNA=0.3 mM,
cTPP=3 mM, 50mM KMOPS, 100mM KCl, 2mM MgCl2, pH 7.5 at
258C. Due to the weak fluorescence increase of thiM 109 and thiM 125,
TPP binding seems to be hindered, while for the full-length thiM 151
variant, ligand-binding capacity is well comparable with the aptamer
domain alone; a likely explanation are alternative competing secondary
structures that are binding incompetent: (B–E) and Supplementary
Figure S10.
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(blue) becomes available, represented by variant U62AP
thiM 125 (Figure 7D and Supplementary Figure S10),
ligand-binding capacity is already significantly restored
as reflected in a definite fluorescence increase upon TPP
addition (Figure 7A). This can be understood by the
availability of a terminal 30-sequence stretch, which
competes for masking of the anti-SD element (orange),
resulting in a shift towards the ligand-binding competent
fold (Figure 7D). When the 30-sequence stretch is further
extended—like in the U62AP thiM 151 derivative—almost
complete TPP-binding capacity is retained, supported
by formation of the larger and hence more stable
30-stem-loop element (Figure 7A and E, and
Supplementary Figure S10). Taken together, the fluores-
cence experiments on transcriptional intermediate mimics,
U62AP thiM 81, 109, 125 and 151, well support a finely
balanced structure equilibrium that is required for the
riboswitch’s ability to function as genetic control device.

CONCLUSIONS

In the present study, we have applied chemical synthesis
and enzymatic ligation to obtain a large set of thiM TPP
aptamer variants with site-specific 2-aminopurine labels at
positions that are non-perturbing with respect to the RNA
overall fold. These RNA probes allow to study TPP-
induced individual conformational changes in the various
regions of the aptamer by their fluorescent response. From
the remarkable 7-fold differentiation of the rate constants,
it can be deduced that recognition of the pyrophosphate
moiety of TPP by the 30-helical domain (P4/P5) occurs
almost simultaneously with recognition of the pyrimidine
moiety by the 50-helical domain (J3-2), thereby tightening
the interdomain nucleotide interactions (L5/P3) on the
same timescale. Formation of the three-way junction
and closure of stem P1 result from this initial recognition/
folding process and require significantly more time
to be fully accomplished. Moreover, the AP-labeled
mimics of transcriptional intermediates provide insight
into potential alternative secondary structures that
are involved during transcription for the nascent RNA.
Importantly, the full-length riboswitch domain recognizes
TPP with kinetic parameters as performed by the
aptamer alone.

The present study on the TPP riboswitch and our
previous studies on adenine riboswitches (23) demonstrate
that the AP approach will be a powerful tool to kinetically
characterize ligand-binding interactions and ligand-
induced folding of other riboswitch classes as well. To
reveal the details of riboswitch folding in vitro provides
a basis for the elucidation of the associated response
mechanisms in vivo; folding studies of this kind are
therefore of fundamental importance to understand
riboswitch function in a comprehensive way (36).
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35. Höbartner,C., Ebert,M.-O., Jaun,B. and Micura,R. (2002) RNA
two-state conformation equilibria and the effect of nucleobase
methylation. Angew. Chem. Int. Ed., 41, 605–609.

36. Blount,K.F. and Breaker,R.R. (2006) Riboswitches as antibacterial
drug targets. Nat. Biotechnol., 24, 1558–1564.

5378 Nucleic Acids Research, 2007, Vol. 35, No. 16


