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ABSTRACT

Fragile X syndrome, the most common cause of
inherited mental retardation, is caused by the
transcriptional silencing of the fmr1 gene due to
an unstable expansion of a CGG trinucleotide repeat
and its subsequent hypermethylation in its 5’ UTR.
This gene encodes for the fragile X mental retarda-
tion protein (FMRP), an RNA-binding protein that
has been shown to use its RGG box domain to bind
to G quartet-forming RNA. In this study, we
performed a detailed analysis of the interactions
between the FMRP RGG box domain and one of its
proposed RNA targets, human semaphorin 3F (S3F)
RNA by using biophysical methods such as fluores-
cence, UV and circular dichroism spectroscopy.
We show that this RNA forms a G quartet-containing
structure, which is recognized with high affinity and
specificity by the FMRP RGG box. In addition, we
analyzed the interactions of human S3F RNA with
the RGG box and RG cluster of the two FMRP
autosomal paralogs, the FXR1P and FXR2P. We
found that this RNA is bound with high affinity and
specificity only by the FXR1P RGG box, but not by
the FXR2P RG cluster. Both FMRP and FXR1P
RGG box are able to unwind the G quartet structure
of S3F RNA, however, the peptide concentrations
required in this process are very different: a ratio
of 1:6 RNA:FMRP RGG box versus 1:2 RNA:FXR1P
RGG box.

INTRODUCTION

The fragile X mental retardation syndrome (FXMR/
FXS), an X-linked disorder, is the most common cause
of inherited mental retardation (1). At the molecular
level, the progressive expansion of (CGG)n repeats
and the hypermethylation of the CpG island, in the
50-untranslated region (50-UTR) of the fmr1 gene causes its

transcriptional inactivation. The resulting suppression of
the encoded protein, named the fragile X mental retarda-
tion protein (FMRP), has been shown to be the under-
lying cause of this syndrome (2,3). FMRP is a putative
nucleocytoplasmic shuttling protein (4), found abundantly
expressed in the neurons and several studies suggested that
this protein participates in the synaptic plasticity of
neurons by acting on post-transcriptional control
of gene expression (5–7). FMRP has been proposed
to regulate the transport and translation of specific
messenger RNA targets (mRNA) in a manner critical
for neuronal development. It has also been shown that this
protein has nucleic acid chaperone properties (8). The
sequence analysis of FMRP revealed that the 632 amino
acid protein contains two types of RNA-binding motifs:
two K-homology (KH) domains and one arginine-glycine-
glycine rich region (RGG box), suggesting that the protein
exerts its function through RNA binding (9).
FMRP has two autosomal paralogs, the FXR1 and

FXR2 proteins (FXR1P and FXR2P), with which it forms
the fragile X-related protein family (10,11). Sequence
analysis revealed that the two proteins have �60% amino
acid identity, with regions of 90% sequence identity to
FMRP (11,12). FXR1P and FXR2P are also cytoplasmic
RNA-binding proteins, each containing two KH domains.
The FXR2P is divergent from FMRP and FXR1P in the
C-terminal region, in that it has a RG cluster instead of an
RGG box. The fact that the FXR proteins have been
found to be associated predominantly with the ribosomal
60S subunit, and that they have similar RNA-binding
domains lead to the suggestion that the FXR1P and
FXR2P might compensate for the FMRP function (13).
However, the comparison of the expression levels of each
of these proteins in different tissues and cellular distribu-
tions suggests that each of the FXR proteins might have
an independent function (14).
Biochemical studies conducted in vitro showed that

FMRP uses its RGG box to bind with high affinity to
target RNA sequences proposed to contain G quartet
structures (15–19). A G quartet is formed from four
guanine residues arranged in a planar configuration,
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which is stabilized by Hoogsteen-type hydrogen bonds.
Several such planar structures can stack and are stabilized
by potassium or sodium cations, but they do not form in
the presence of lithium cations (20–22). The specific
mechanism by which FMRP interacts with its mRNA
ligands and regulates their translation still remains poorly
understood. Human semaphorin 3F (S3F) mRNA has
been identified both in vivo and in vitro as a potential
mRNA target of the FMRP (16,23) and it has been
proposed that its interactions with the FMRP
RGG box occur in a G quartet-dependent manner (16).
S3F mRNA encodes for the SEMA 3F protein which
belongs to the class 3 semaphorins, a family of secreted
and transmembrane signaling molecules that play crucial
roles in the nervous (neuronal migration and axon
pathfinding), immune and cardiovascular systems. Every
member of this family has the 500 amino acid signature,
the semaphorin domain (24,25). SEMA 3F is a putative
secreted protein that has been suggested to have chemo-
attractant and repulsion functions. The expression of the
SEMA 3F gene has also been reported to suppress tumor
formation in nude mice and to cause the alteration of the
cellular response to drugs inducing apoptosis (26).
The goal of this study is to contribute to our under-

standing of the principles of recognition between FMRP
and its RNA target(s), by analyzing its interactions with
S3F RNA. We show here that S3F RNA adopts a parallel
intramolecular G quadruplex structure and we use
thermodynamic methods to determine if the stability and
the secondary structure of this RNA are altered by its
interactions with the FMRP RGG box. We also
investigate the binding of the RGG box and RG cluster
of the FXR1P and FXR2P to S3F RNA, in an effort to
determine if the recognition of the structural elements in
this RNA is unique to the FMRP RGG box.

MATERIALS AND METHODS

RNA synthesis

The unlabeled RNA oligonucleotides (S3F-lg, S3F-M2
and Munc-13 site 1) were synthesized by in vitro
transcription reactions using T7 RNA polymerase
(produced in-house), following the procedure by
Milligan and Uhlenbeck (27). The synthetic DNA
templates were purchased from Trilink Biotechnologies,
Inc. The RNA oligonucleotides were purified by denatur-
ing gels and electrophoretic elution, followed by extensive
dialysis against 10mM Tris (pH 7.5) or 10mM cacodylic
acid (pH 6.5). S3F-M2 was constructed by introducing
two point mutations in S3F-lg to stabilize the stem
(Figure 2A).
The S3F-M2_15AP RNA used in the fluorescence

spectroscopy studies was constructed by replacing the
adenine at the 15th position in S3F-M2 with the highly
fluorescent analog 2-aminopurine (2-AP) (Dharmacon,
Inc.). The pure 2-aminopurine labeled RNA was
re-suspended in sterile deionized water.
All experiments were performed with RNA samples

that were annealed by heating at 958C, followed by slow
cooling at room temperature for 20min.

Peptide synthesis

The FMRP, FXR1P RGG boxes and the FXR2P RG
cluster were chemically synthesized and purified by the
Peptide Synthesis Unit at the University of Pittsburgh,
Center for Biotechnology & Bioengineering.

UV spectroscopy thermal denaturation experiments

The UV melting curves of the unlabeled S3F-lg, S3F-M2
and of the 2-AP labeled S3F-M2_15AP RNAs were
collected using a Varian Cary 3E spectrophotometer
equipped with a Peltier cell. The samples were annealed
in the standard buffers 10mM Tris, pH 7.5 or 10mM
cacodylic acid, pH 6.5, containing either 150mM KCl or
150mM LiCl. The RNA samples were heated from 20 to
998C at a rate of 0.28C/min, recording points every 18C.
Blank samples were treated in the same manner.
Depending upon the RNA concentration, the spectral
absorbance was measured either at 295 or 305 nm,
wavelengths that have been previously identified to be
sensitive to G quadruplex dissociation (28). To determine
if S3F-M2 folds into an intermolecular or intramolecular
conformation, the melting temperature of the G quad-
ruplex structure was determined at different RNA
concentrations in the range 10–80mM.

RNA:RGG peptide complexes were formed by mixing
the RGG boxes of the FMRP and FXR1P or the RG
cluster of FXR2P with S3F-M2 RNA in a 1:1 ratio, and
allowed to equilibrate for 30min. The melting temperature
of the complex of S3F-M2 with various RGG boxes was
determined using the same parameters described above for
the free RNA. All melting curves of the S3F-M2:RGG
peptide complexes were corrected by subtracting the
melting curves of the corresponding free RGG peptides.

The transition of the G quadruplex dissociation in
S3F-M2 and S3F-M2_15AP was identified and fitted
assuming an independent two state model:

AðTÞ ¼
AU þ AF e

��H0

RT e
�S 0

R

e
��H 0

RT e
�S 0

R þ 1
1

where AU and AF represent the absorbance of the
unfolded and native G quadruplex RNA, respectively,
and R is the universal gas constant.

Circular dichroism spectroscopy

The CD spectra were recorded on a Jasco J-810 spectro-
polarimeter at 258C. The G quartet formation in the S3F-
M2 RNA structure (at a 10 mM concentration in 10mM
Tris, pH 7.5) was monitored by titrating increasing
amounts of KCl from a 4M stock solution to a final
concentration of 150 mM. The spectra were measured
between 200 and 350 nm and corrected for solvent
contributions and dilutions. Each spectrum was scanned
three times with a 1s response time and a 2 nm bandwidth.
For the binding studies, increasing amounts of the RGG
peptides (0–100 mM) were titrated into a fixed concentra-
tion of S3F-M2 RNA (10 mM) in 10mM cacodylic acid,
pH 6.5 and 150mM KCl. The CD spectra were recorded
after each addition of the peptide and the interactions
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were monitored by measuring the molar ellipticity of the
RNA at 264 nm. All spectra were corrected by subtracting
the free RGG peptide contributions at each peptide
concentration.

To determine if the addition of a 1:10 RNA:RGG
peptide ratio results in the degradation of the RNA, these
samples were treated with proteinase K (1 mg) for 1 h at
258C, which degrades the RGG peptides. Subsequently,
the CD spectra were re-recorded and corrected for the
presence of proteinase K.

Fluorescence spectroscopy

Steady-state fluorescence spectroscopy measurements of
S3F-M2_15AP RNA were performed on a J.Y. Horiba
Fluoromax-3 equipped with variable temperature control.
The excitation wavelength was at 310 nm and the emission
spectrum was recorded in the range of 330–450 nm.

The binding of the FMRP RGG box to S3F-M2_15AP
was measured by titrating increasing concentrations of the
peptide to a fixed concentration of 150 nM S3F-M2_15AP.
The same procedure was repeated for the FXR1P RGG
box. The binding dissociation constant, Kd, was deter-
mined by fitting the binding curves to the equation:

F ¼ 1þ
IB
IF

� 1

� �

�
ðKd þ ½P�t þ ½RNA�tÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where IF and IB represent the steady-state fluorescence
intensities of the free and bound S3F-M2_15AP, [RNA]t is
the total concentration of S3F-M2_15AP and [P]t is the
total RGG box peptide concentration.

Competition experiments were performed by monitor-
ing the binding of the FMRP or FXR1P RGG peptides to
S3F-M2_15AP in the presence of a 10-fold excess of
unlabeled Munc-13 site 1 RNA or in the presence of a
6-fold excess of the FXR2P RG cluster peptide.

The thermodynamic parameters for the FMRP
RGG box binding to S3F-M2_15AP were determined by
measuring the Kobs=1/Kd at different temperatures in the
range 20–458C. The standard enthalpy and entropy of
binding were determined from the slope and intercept
of the graph:

R lnKobs ¼ �S0
b �

1

T
�H0

b 3

NMR spectroscopy

The 1D 1H spectra of S3F-M2 RNA were acquired at
298C on a 500MHz Varian Unity Plus spectrometer. The
water suppression was accomplished using the jump-and-
return pulse sequence (29) with the maximum of excitation
set at 11 p.p.m. S3F-M2 RNA (387mM) was prepared in
10mM Tris (pH 7.5) at a 90% H2O/10%D2O ratio.

The melting of the S3F-M2 RNA stem structure was
monitored by recording the 1D 1H NMR spectrum at
different temperatures in the range 20–608C. These
experiments were performed on a Bruker AVANCETM

500MHz NMR spectrometer.

Electrophoretic mobility gel shift assay (EMSA)

EMSA reactions were performed in a total volume of
15 ml. The RNA:peptide complexes were prepared by
mixing the RGG peptides with S3F-M2 or S3F-M2_15AP
in 1:1 or 1:2 ratios and resolved on 15% non-denaturing
acrylamide gels that were run in the presence of 75mM
KCl, at 35V. The electrophoretic mobilities of the free
RNA and the S3F RNA:peptide complexes were visua-
lized by UV-shadowing at 254 nm, using an AlphaImager
HP (AlphaInnotech, Inc.).

RESULTS AND DISCUSSION

Semaphorin 3F mRNA adopts a G quartet structure

It has been proposed that the G quartet motif is important
in the FMRP recognition of its RNA targets, and S3F
mRNA has been identified as a potential in vivo target of
the protein, based on the fact that its G-rich sequence
could fold into this structural motif (16). The interactions
of FMRP with the semaphorin mRNA fragment used in
this study (Figure 1A) have been visualized in living
mammalian cells; moreover, it has been shown that the
mutation of the GG doublets proposed to be involved in
the G quartet formation abolishes these interactions (23),
supporting the idea that the S3F RNA recognition occurs
in a G quartet-dependent manner.
We have expressed and purified a 38-nt RNA, contain-

ing the 34-nt G-rich fragment of human S3F mRNA
proposed to interact with FMRP, to which four extra
nucleotides (GGGA) were added at the 50-end for
transcription purposes (16) (named S3F-lg; Figure 1A).
To determine if this RNA folds into a G quadruplex
structure, we used a combination of CD, fluorescence,
NMR and UV spectroscopy techniques. It is well known
that the G-rich nucleic acid sequences fold in to G quartets
in the presence of cations like K+, by forming cation–
dipole interactions with the guanine residues (21). CD
spectroscopy has been extensively used to analyze the G
quadruplex structure in DNA and RNA. Typically, there
are two types of CD spectra observed for G quadruplexes:
type I, which exhibits a positive band �265 nm and
a negative band �240 nm and type II, which exhibits
a positive band�295 nmand a negative band�260 nm (30).
At least for ‘intermolecular’ G quadruplexes, there is a
strong correlation between the parallel quadruplex and
type I CD spectrum (31,32) and between the antiparallel
quadruplex and type II CD spectrum (33,34). In the case
of intramolecular G quadruplexes, there are also
examples of parallel type quadruplexes exhibiting type I
of CD spectrum (35–38) and of antiparallel quadruplexes
exhibiting type II of CD spectrum (35,39,40). However,
this correlation is not as clearly established in the case of
intramolecular G quadruplexes, since there are not
enough high-resolution structures available. Generally,
the CD spectroscopy results cannot be exclusively used
to assign definitively a particular type of fold to a G
quadruplex structure, as there are examples of more
complex CD spectra exhibiting the features of both, type
I and type II spectra (41).
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The CD spectrum of S3F-lg RNA folded in the presence
of K+ ions is of type I, with a positive band at 263 nm and a
negative one at 238 nm (Figure 1B), confirming the presence
of G quartet structural elements in this RNA. This result
suggests that the fold of this G quadruplex is of parallel
nature, however, as discussed above, this can only be
confirmed by the high-resolution structure of this RNA.
The UV spectroscopy thermal denaturation profile of

S3F-lg measured at 305 nm, shows a characteristic hypo-
chromic transition between 52 and 728C, corresponding to
G quadruplex dissociation (28) (Figure 1C), supporting the
presence of a G quadruplex structure in this RNA.
G-rich sequences are notorious for forming alternate G

quartet structures in vitro, and to determine if this is true
for S3F-lg RNA as well, we used native gel electrophor-
esis. Two conformations are observed on a 15% native gel
performed in the presence of 75mM KCl at all RNA
concentrations investigated (Figure 1D and data not
shown).

To obtain higher-resolution information about the
structure of S3F-lg RNA, we have used one-dimensional
(1D) 1H NMR spectroscopy. Resonances are present in
the 10–12 ppm. proton region corresponding to imino
protons involved in G quartets, however, they are very
broad, suggesting that this RNA exchanges between
different conformations. Surprisingly, we did not observe
any imino proton resonances corresponding to Watson–
Crick base pairs in the 12–14 ppm. region, indicating
that the stem structure proposed in Figure 1A does not
exist in S3F-lg (data not shown). One possible explanation
for this finding is that the addition of the extra four
nucleotides (GGGA) at the beginning of the S3F-lg
sequence might actually promote the folding of this
RNA into an alternate G quadruplex structure, since
they contribute to the formation of an uninterrupted
stretch of 10 purines.

In an effort to promote the folding of S3F RNA into a
single conformer we have removed its first four GGGA
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nucleotides [that were added only for transcription
purposes (16)], and introduced specific point mutations
at positions 3 (G to C) and 4 (G to U) and at the
complementary positions 31 (U to A) and 32 (U to C),
respectively (labeled in blue in Figure 2A). This mutated
RNA, named S3F-M2 RNA, no longer contains a stretch
of 10 purines at its 50 end and of six consecutive guanines

in the region proposed to fold into a stem structure
(Figure 2A). We first investigated whether S3F-M2 RNA
maintained the ability to form a G quadruplex structure.
Upon titration of increasing concentrations of KCl, the
CD spectrum of S3F-M2 RNA showed the spectral
features of a type I G quadruplex CD spectrum, with a
strong positive band at 263 nm and a negative band at
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238 nm (Figure 2C), very similar to that of S3F-lg RNA.
The native gel electrophoresis of S3F-M2 RNA indicates
that at concentrations <10 mM this RNA exists in a single
conformation (black arrow in Figure 2D, and data not
shown), whereas at higher concentrations S3F-M2 adopts
more conformations.
The 1D 1H NMR spectrum of S3F-M2 shows

resonances corresponding to imino protons involved in
G quartets, as well as resonances corresponding to
Watson–Crick base pairs, indicating the presence of
both a stem and a G quadruplex in the structure of this
RNA (Figure 2E). However, the G quartet imino proton
resonances are very broad, consistent with an exchange
between the different S3F-M2 conformers formed at the
high RNA concentration required when using this
technique. The exchange between different RNA con-
formations is also supported by the Watson–Crick imino
protons, whose resonances become much broader upon
addition of increasing KCl concentrations. These findings
hindered our efforts to pursue high-resolution NMR
spectroscopy studies of the S3F-M2 RNA structure.

Thermodynamics of G quartet formation in S3F-M2RNA

We have employed UV spectroscopy to obtain the
thermodynamic parameters of G quartet formation in
S3F-M2 RNA. The UV thermal melting profile of 10 mM
S3F-M2 RNA folded in the presence of 150mM KCl
shows a hypochromic transition between 38 and 678C
(indicated in red in Figure 3A), and a hyperchromic
transition starting around 758C. We assign the 38–678C
hypochromic transition, with a melting point �528C, to
the S3F-M2 RNA G quadruplex dissociation (28). As
expected, this transition is absent when the RNA is folded
in the presence of 150mM LiCl (Figure 3B), since G
quartets do not form in the presence of Li+ ions. We
postulated that the hyperchromic transition starting at
758C corresponds to the S3F-M2 stem structure melting
(42). To test this hypothesis, we have constructed a S3F
RNA from which the stem region has been removed
(named S3F-sh). S3F-sh maintains the ability to form a G
quadruplex structure, as evidenced by its type I (positive
band �265 nm and negative band �240 nm) CD spectrum
and by the presence of G quartet imino proton resonances
in its 1D 1H NMR spectrum (data not shown).
In addition, its UV thermal denaturation profile measured
at 305 nm shows a 40–658C hypochromic transition,
corresponding to a G quadruplex melting point of
�528C (Supplementary Figure 1).
A hyperchromic transition starting around 658C is still

present in the UV melting profile of S3F-sh, which lacks a
stem structure (Supplementary Figure 1). Thus, it is clear
that the origin of the hyperchromic transition observed
in the UV melting profile of S3F-M2 RNA, is not the
melting of its stem structure. We ruled out the possibility
that this hyperchromic transition is due to the RNA
degradation at high temperatures, by checking the
reversibility of the melting curves of S3F-M2 RNA
measured in the range 25–708C and 25–998C, respectively
(Supplementary Figure 2A and B). One possibility for the
presence of the hyperchromic transition in the UV melting

curves of S3F-M2, S3F-sh and S3F-lg RNAs could be that
all have an uninterrupted stretch of 14 purines (starting at
G12 for S3F-M2 RNA- Figure 2A). Upon the melting of
the G quadruplex structure, the liberated rG residues can
stack with their rA nearest neighbors, and these rG-rA
stacks will melt with increasing temperature, giving rise to
the hyperchromic transition observed above 658C (43,44).

Since we could not determine the transition correspond-
ing to the melting of the S3F-M2 stem structure from its
UV melting curve recorded at 305 nm, we used 1D 1H
NMR spectroscopy, since with this technique we can
monitor individually the stem structure of S3F-M2 RNA
(resonances at 13.3 ppm. and 12.0 ppm. in Figure 2E). We
have determined that both resonances corresponding to
Watson–Crick imino protons are no longer present
at 508C, indicating that the stem structure in S3F-M2
RNA is completely melted above this temperature
(data not shown).

It is interesting to note that the G quadruplex forming
sequence of S3F-sh RNA (Figure 2B, nucleotides 8–27) is
wild-type and it is also identical in S3F-lg and S3F-M2
RNAs. Yet, the comparison of the melting points of the G
quadruplex structures formed by these three RNAs
shows that S3F-sh and S3F-M2 RNA likely form a
similar G quadruplex structure (Tm�528C), which is
different from that formed by S3F-lg (Tm �648C). This
supports the idea that the addition of four extra
nucleotides in S3F-lg RNA, promotes the formation of
an alternate G quadruplex structure, different from that
formed by the wild-type S3F-sh. Moreover, this finding
indicates that the mutations introduced in the stem of
S3F-M2 RNA do not affect the ability of the G
quadruplex forming sequence to fold into a structure
similar to that of the wild-type S3F-sh.

To determine if S3F-M2 RNA forms an ‘intramole-
cular’ or an ‘intermolecular’ G quartet structure we have
measured its melting temperature at various RNA
concentrations in the range 10–80 mM. For ‘intermole-
cular’ species with n number of strands, 1/Tm depends
linearly on the natural logarithm of the total RNA
concentration (cT):

1

Tm
¼

Rðn� 1Þ

�H0
vH

ln cT þ
�S0

vH � ðn� 1ÞR ln 2þ R ln n

�H0
vH

4

where R is the gas constant and �H0
vH and �S0

vH are the
Van’t Hoff thermodynamic parameters.

For ‘intramolecular’ species, Tm is independent of the
total RNA concentration cT:

n ¼ 1 and
1

Tm
¼

�S0
vH

�H0
vH

Lower concentrations of RNA (<10 mM) favor the
formation of a single species, with a melting temperature
Tm of �528C (Figure 3C, blue trace). However, at higher
RNA concentrations (>10 mM) a second hypochromic
transition appears in the range 63–868C, corresponding to
a new S3F-M2 conformation with a melting temperature
of �798C (Figure 3C, brown trace). These findings are
consistent with the native gel electrophoresis results that
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showed the presence of more conformations in S3F-M2 at
RNA concentrations higher than 10 mM (Figure 2D). The
Tm of the 38–678C hypochromic transition is independent
of the RNA concentration (Figure 3D), indicating that the
G quartet conformation formed by S3F-M2 at low RNA
concentrations is ‘intramolecular’.

The standard enthalpy, entropy and free energy of
Gquartet formation in S3F-M2RNA,whichwere obtained

by fitting the 38–678C hypochromic transition to Equation
(1) (Materials and Methods section), are summarized in
Table 1. The values of the thermodynamic parameters forG
quartet formation (�H0=�43.1� 0.1 kcal/mol and
�G0=�3.6� 0.1 kcal/mol) are consistent with the pre-
sence of two G quartet planes in the structure of S3F-M2
RNA [the enthalpy of formation of a single G quartet
plane in an intramolecular G quadruplex, measured in
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similar experimental conditions, ranges from �18 to
�25 kcal/mol (45)]. Figure 2B illustrates a possible
S3F-M2 RNA structure consistent with these results, in
which two G-tetrads are stacked in a parallel manner. It
has been proposed that due to their sequence, the
GGA-containing mRNA targets of FMRP might adopt
a more complex structure containing a hexad formed by
a G quartet flanked by two adenines (46), however, our
results are not consistent with this proposal. First, the
amino protons of two guanines involved in the hexad
formation are hydrogen-bonded to adenines at the N7
position, giving rise to sharp resonances in the 1D 1H
NMR spectrum. We do not observe any sharp guanine
amino proton resonances in the 1H NMR spectrum of
S3F-M2 RNA. Second, the CD spectrum of S3F-M2
lacks the small positive band at 305 nm that seems to be
associated with the presence of these hexads (46)
(Lipay,J. and M.-R.M., unpublished data).

Thermodynamics of FMRPRGG box binding to
S3F-M2RNA

To characterize the thermodynamics of FMRP
RGG box binding to S3F-M2 RNA, we have employed
fluorescence spectroscopy. The S3F-M2 RNA used in this
study, named S3F-M2_15AP, was labeled at the 15th
position by the highly fluorescent purine analog 2-AP
(highlighted in red in Figure 2B). Based on previous
studies in our laboratory, we anticipated that the 2-AP at
the 15th position will be a sensitive reporter of the G
quartet formation (42). The CD spectral features of S3F-
M2_15AP indicate that it forms the same type of
G quartet structure like S3F-M2 RNA. Moreover, the
UV melting profiles of S3F-M2_15AP and S3F-M2 are
very similar, indicating that the 2-AP insertion did not
cause major perturbations in the structure and stability of
S3F-M2_15AP RNA (data not shown). In addition, we
determined by EMSA that the FMRP RGG box binds
identically to S3F-M2 and S3F-M2_15AP RNAs
(Figure 4A).
The steady-state fluorescence of 2-AP is sensitive to

stacking interactions, and we expected to observe a change
when S3F-M2_15AP is folded in the presence of K+

versus Li+, since the structures formed by the RNA in the
presence of these ions are likely very different (compare
Figure 2A and B). As shown in Figure 4B, the steady-state

fluorescence of S3F-M2_15AP increases 5-fold when the
RNA is folded in the presence of KCl (forming a G
quartet structure in which the 2-AP reporter is located in a
G quartet surrounding loop) as compared to the case
when it is folded in the presence of LiCl (that does not
promote G quartet formation). This result establishes that
the 2-AP reporter in S3F-M2_15AP RNA is sensitive to
the G quartet structure formation.

Next, we measured the binding of the FMRP
RGG box to S3F-M2_15AP RNA by titrating increasing
concentrations of the FMRP RGG peptide, and monitor-
ing the steady-state fluorescence change of the 2-AP
reporter (Figure 4C). Figure 4C also shows the results of
two negative control experiments: in the first one
increasing amounts of the FMRP RGG box were titrated
into a solution of Sc1-sh RNA, an RNA previously shown
by native gel electrophoresis not to be bound by the
FMRP RGG box (16,42). Sc1-sh RNA forms a G quartet,
but lacks a stem structure, and in our experiment we used
a 2-AP labeled Sc1-sh RNA in which the 2-AP reporter is
located in one of its G quartet surrounding loops (42). In
the second negative control experiment, we have titrated
increasing amounts of the FXR2P RG cluster, a non-
binding peptide (see subsequently) to S3F-M2_15AP
RNA.

A dissociation constant, Kd, of (0.7� 0.3) nM was
obtained by fitting the FMRP RGG box binding curve to
Equation (2) (Materials and Methods section), indicating
that this peptide binds with very high affinity to S3F-
M2_15AP RNA. This corresponds to a free energy of
binding �G0

b of (�12.5� 0.2) kcal/mol. We measured a Kd

value smaller by two orders of magnitude than the value
of 75 nM reported by Darnell et al. (16) for the full-length
FMRP or its RGG box binding to S3F RNA. This
discrepancy could originate from the fact that Darnell
et al. measured an average value for the FMRP
RGG box binding to both S3F conformers that exist
even at low RNA concentrations (our native gel electro-
phoresis results indicate that both S3F-lg conformers are
bound by the FMRP RGG box; data not shown). In the
case of S3F-M2 RNA we measured the FMRP
RGG box binding to the single conformer adopted by
this RNA at nanomolar concentrations.

Another RNA for which the thermodynamics of FMRP
binding has been determined is Sc1 (42), a model G
quartet forming RNA identified by the SELEX method
(16). It is interesting to note that the FMRP
RGG box binds tighter to S3F-M2 RNA by approxi-
mately one order of magnitude: Kd of 0.7 nM for S3F-M2
RNA versus 7 nM for Sc1 RNA, which translates to a
difference in the free energy of binding of 1.5 kcal/mol. A
comparison of the sequences of these two RNA molecules
reveals differences in the G quartet surrounding loops and
in the junction connecting the G quartet structure with the
stem, which likely account for the difference in their
binding by the FMRP RGG box.

To define the forces that drive the interactions between
the FMRP RGG box and S3F-M2 RNA we have
determined the enthalpy and entropy of binding by
measuring the association binding constant, Kobs = 1/
Kd, as a function of temperature. The thermodynamic

Table 1. Thermodynamic parameters for the formation of the G

quartet structure of S3F-M2 RNA

Molecule Tm(8C) �H0
VH

(kcal/mol)
�S0

VH

(cal/mol K)
�G0

VH at 258C
(kcal/mol)

S3F-M2 51.6� 0.1 �43.1� 0.1 �132.1� 0.4 �3.6� 0.1
S3F-M2
+ FMRP RGG

64.7� 0.1 �38.6� 0.1 �114.3� 0.3 �4.5� 0.1

S3F-M2
+ FXR1P RGG

60.6� 0.1 �50.7� 0.1 �152.1� 0.4 �5.4� 0.1

S3F-M2
+ FXR2P RG

53.0� 0.2 �39.7� 0.1 �121.6� 0.7 �3.4� 0.1
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parameters of binding (summarized in Table 2) were
determined from the slope and intercept of the Van’t
Hoff plot of ln (Kobs) versus 1/T, which is linear when
the change in enthalpy (�H0) is independent of tempera-
ture [Equation (3) and Figure 4D]. We found that
the association of FMRP RGG box with S3F-
M2_15AP RNA is enthalpically driven, �H0

b ¼

�41:4� 3:9 kcal=mol, with an unfavorable entropic con-
tribution T�S0

b ¼ �28:9� 3:8 kcal=mol. Contributions
from hydrogen bonds, van der Waal’s or electrostatic
interactions are generally associated with the favorable

negative enthalpy changes, whereas a decrease in the
conformational flexibility or the exposure of hydrophobic
residues to the complex surface are associated with
unfavorable entropy changes. The association between
Sc1 RNA and FMRP RGG box has also been reported
to be enthalpically driven, with an unfavorable
entropic change (42). However, this finding cannot be
generalized for all mRNA targets of FMRP since we
determined that the FMRP RGG box binding to the
microtubule-associated protein, 1B RNA (another pro-
posed G quartet forming RNA target of FMRP) is
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enthalpically driven only at temperatures higher than 308C
(Menon,L. et al., manuscript in preparation).
To evaluate the role played by electrostatic interactions

in the S3F-M2_15AP RNA:FMRP RGG box recognition,
we have determined the association constant Kobs=1/Kd

in the presence of increasing salt concentrations in the
range 150–1000mM. The dependence of Kobs on the
concentration of monovalent salt concentrations is known
as the salt dependence @log Kobs/@log [M

+]. We found that
within experimental error Kobs does not change in the
presence of increasing KCl concentrations in the range
150–1000mM KCl (Figure 4E and Table 3), indicating
that electrostatic contributions do not play a dominant
role in the binding of FMRP RGG box to S3F-M2_15AP
RNA.

The FMRPRGG box stabilizes the G quartet structure
of S3F-M2 RNA

To determine if the FMRP RGG box binding has any
influence upon the stability of the G quartet structure of
S3F-M2 RNA, we measured its melting temperature when
the RNA is in complex with the RGG peptide. The UV
melting curve of the S3F-M2 RNA:FMRP
RGG box complex shown in Figure 3E has been corrected
by subtracting the UV melting curve of the free FMRP
RGG box peptide. The 38–678C UV hypochromic
transition corresponding to G quartet dissociation in the
free RNA is now shifted in the range 42–788C, corre-
sponding to an increase of the G quartet structure Tm

from �528C to �658C (Table 1). Thus, in a 1:1 ratio, the
FMRP RGG box increases the stability of S3F-M2G
quartet structure. It is very interesting to note that upon
binding the RGG peptide, a second hypochromic transi-
tion appears in the range 79–918C, indicating that the
peptide promotes the formation of an alternate more
stable structure of S3F-M2 RNA.
The FMRP RGG box binding has also been shown to

stabilize the G quartet structure of Sc1 RNA (42),
however to a different extent: the difference in melting
temperatures of the G quartet structure in the free RNA

and in the RNA in complex with the RGG peptide is
�208C for Sc1 RNA and �138C for S3F-M2 RNA. Thus,
in the case of S3F-M2, only a small fraction of the FMRP
RGG box binding free energy is used to stabilize the RNA
G quartet structure (Table 1 and Figure 3E). In contrast,
in the case of Sc1 RNA, a significant fraction of the
binding free energy is used to stabilize its G quartet
structure (42).

Interactions of S3F-M2 RNAwith the FXR1P and FXR2P

We inquired next if the recognition of the G quartet
structure in S3F-M2 RNA is unique to the FMRP RGG
box, or if this RNA is also recognized by the two FMRP
autosomal paralogs, the FXR1P and FXR2P. FXR1P has
an RGG box different in sequence from that of the FMRP
RGG box, whereas the FXR2P has an RG cluster, but not
RGG repeats per se (Figure 5A). Using EMSA we
determined that S3F-M2 RNA is bound by the FXR1P
RGG box (Figure 5A, lanes 5 and 6), but not by the
FXR2P RG cluster (Figure 5A, lanes 3 and 4). To get a
quantitative measure of the FXR1P RGG box binding we
determined the binding curve by titrating increasing
amounts of the peptide into a solution of 150 nM S3F-
M2_15AP RNA and monitoring the steady-state fluores-
cence change of the 2-AP reporter (Figure 5B, green
trace). The Kd of (55.0� 3.8) nM, which was determined
by fitting the binding curve with Equation (2), indicates
that the FXR1P RGG box binds with high affinity to S3F-
M2_15AP RNA.

To determine if the binding of the FMRP and FXR1P
RGG boxes to S3F-M2_15AP is specific, we measured
their binding either in the presence of a 10-fold excess of a
non-specific RNA, Munc13 site1 (16) or in the presence of
6-fold excess of the FXR2P RG cluster. As shown in
Figure 5B and C, both the FMRP and FXR1P
RGG boxes bind specifically to S3F-M2_15AP RNA,
since their binding curves are identical in the presence or
absence of a large excess of the Munc13 site 1 RNA or of
the FXR2 RG cluster (the Kd values are reported in the
Figure 5 legend).

This result is in contrast to what has been reported for
the G quartet-forming Sc1 RNA (42), since this RNA is
bound specifically only by the FMRP RGG box, but not
by the FXR1P RGG box. This difference in specificity of
the FXR1P RGG box binding to Sc1 and S3F-M2 RNAs
is likely due to structural differences in their G quartet
and/or junction regions. Thus, the ability of FXR1P
RGG box to bind specifically and with high affinity to the
G quartet-forming mRNA targets of FMRP might be
modulated by subtle differences in the particular G quartet
structure adopted by the RNA. Another level of complex-
ity becomes apparent if one considers the G quartet RNA-
binding activity of the full-length FXR1P, as opposed to
just of its RGG box domain. Recently, it has been
reported that of three different FXR1P isoforms, only one
is able to bind specifically to N19 RNA, a G quartet-
forming segment of the FMRP mRNA (47). Since all these
three FXR1P isoforms contain the RGG box domain,
it has been suggested that the FXR1P RGG box domain is
not sufficient per se to bind to the G quartet structure and

Table 3. The dissociation constants for the S3F

M2 RNA: FMRP RGG box complex measured at

different salt concentrations

KCl (mM) Kd (nM)

150 0.7� 0.3
250 0.8� 0.2
400 0.7� 0.2
1000 1.1� 0.3

Table 2. Thermodynamic parameters for the binding of FMRP

RGG box to S3F-M2_15AP RNA

�H�
b (kcal/mol) �S�

b (cal/mol K) �G�
b(kcal/mol)

�41.4� 3.9 �96.9� 12.7 �12.5� 0.4
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that a 27 amino acid stretch, present only on the FXR1P
isoform that binds specifically to N19 RNA, might
directly assist the FXR1P RGG box in binding the G
quartet, or it might alter the structure of C-terminal

portion of FXR1P, thereby allowing binding. We show
here that the FXR1P RGG box domain can per se bind
specifically to G quartet forming RNA, so it is more likely
that the differences observed in the binding activity of the
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full-length FXR1P isoforms originate from differences in
the C-terminal structure that might have an impact on the
accessibility of the RGG box domain.
Since the FXR1P RGG box binds with high affinity and

specificity to S3F-M2_15AP RNA, we assessed also if this
peptide has any effect upon the stability of the RNA G
quadruplex structure. Figure 5D shows that the 38–678C
UV hypochromic transition corresponding to G quartet
dissociation in the free RNA is shifted in the range 50–
728C when the RNA is complexed with the FXR1P RGG
box, corresponding to a Tm of �618C (Table 1). Thus, the
FXR1P RGG box binding is also slightly stabilizing the G
quadruplex structure of S3F-M2 RNA. Moreover, like the
FMRP RGG box, the FXR1 RGG box binding induces
the formation of an alternate G quadruplex structure in
S3F-M2 RNA, whose dissociation has a hypochromic
transition in the range 73–938C.
The FXR2 RG cluster has no effect upon the stability of

the S3F-M2G quadruplex structure (Table 1) and it does

not promote the formation of a secondary alternate
structure (Figure 5E).

At high concentrations the FMRP and FXR1P
RGG boxes induce the unwinding of the G quadruplex of
S3F-M2 RNA

To investigate the effect of the FMRP and FXR1P
RGG boxes on the intramolecular G quartet structure
of S3F-M2 RNA, we compared the CD spectra of the
free RNA with those of the RNA in complex with the
RGG peptides. At a 1:1 ratio of S3F-M2 RNA:RGG
peptide, the intensity of the CD band at 263–238 nm was
almost unchanged, for both the FMRP and FXR1P
RGG boxes (Figure 6A and B). However, at higher ratios
of the RNA:RGG box, both peptides induced the
unstacking of the G qudruplex structure of S3F-M2,
as reflected by a decrease of intensity of the 263 nm CD
band as well as a shift to 265 nm. As a negative control we
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258C, to check for the degradation of the RNA.
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have also performed the same experiment in the presence
of the non-binding FXR2 RG cluster (Supplementary
Figure 3) It is interesting to note that the actions of the
FMRP and FXR1P RGG peptides are very different: the
FXR1P RGG peptide starts to unwind the G quartet
RNA structure at only an 1:2 RNA:peptide ratio, whereas
this effect occurs for the FMRP RGG box at an 1:6 ratio.
At RNA:RGG peptide ratios higher than 1:4 the solutions
become turbid, similar to what has been reported for the
RGG box of nucleolin protein interactions with MS2
phage RNA (48). To rule out the possibility that the RNA
is degraded in the presence of the large excess of the RGG
peptides, we have treated the solution containing the 1:10
RNA:peptide complexes with proteinase K, which
degrades the RGG peptides, and re-acquired its CD
spectrum (corrected for the proteinase K contribution). As
shown in Figure 6C and D, the removal of the RGG
peptides, allows the free RNA to refold into a G
quadruplex structure, indicating that the spectral changes
we observed in the presence of a large excess of the RGG
peptides are not due to the RNA degradation, but due to
the G quadruplex structure unstacking.

We cannot easily reconcile the findings that in an 1:1
RNA:peptide ratio, both the FMRP and FXR1P
RGG boxes stabilize the S3F-M2G quadruplex structure,
whereas at higher ratios, they induce the G quadruplex
unwinding.

The unwinding of the S3F-M2 RNA G quartet
structure by the FMRP RGG box occurs at high
RNA:peptide ratios and it is accompanied by an increase
in the solution turbidity; thus it is not clear if this event is
biologically significant. However, the finding that the
FXR1P RGG box starts to unwind the G quartet
structure of S3F-M2 RNA at only an 1:2 RNA:peptide
ratio might be relevant considering that the FXR1P has
been shown to exist in living cells as a homo-multimeric
complex (12).

It is tempting to speculate that the FMRP and FXR1P
might compete for, and act differently on the G quartet
RNA structure; however, it remains to be seen if this
G quadruplex unwinding effect is observed for other
FMRP G quartet forming RNA targets besides S3F-M2
and also for the full-length FMRP and FXR1P.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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