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Accurate predictions of carbon and energy cycling rates in the environment depend on sampling frequencies
and on the spatial variability associated with biological activities. We examined the variability associated with
anaerobic biodegradation rates at two sites in an alluvial sand aquifer polluted by municipal landfill leachate.
In situ rates of methane production were measured for almost a year, using anaerobic wells installed at two
sites. Methane production ranged from 0 to 560 , Imol m-2 * day-' at one site (A), while a range of 0 to 120,000
,umol * m-2 - day-' was measured at site B. The mean and standard deviations associated with methane
production at site A were 17 and 57 ,umol .m-2 * day-', respectively. The comparable summary statistics for
site B were 2,000 and 9,900 ,umol .m-2 * day-'. The coefficients of variation at sites A and B were 340 and
490%, respectively. Despite these differences, the two sites had similar seasonal trends, with the maximal rate
of methane production occurring in summer. However, the relative variability associated with the seasonal
rates changed very little. Our results suggest that (i) two spatially distinct sites exist in the aquifer, (ii)
methanogenesis is a highly variable process, (iii) the coefficient of variation varied little with the rate of
methane production, and (iv) in situ anaerobic biodegradation rates are lognormally distributed.

Groundwater supplies in the United States are limited, and
withdrawal rates continue to increase. The accidental or
deliberate release of organic chemicals has caused concern
over the quality and quantity of drinking water supplies (21).
This concern has prompted many studies on the fate (16, 40),
transport (28), and risks (18) associated with organic pollutants
in subsurface environments. Numerous computer models have
been used to predict the migration of contaminants in ground-
water (8, 22, 37). Many models consider only the physical and
chemical interactions of the solute with the environmental
matrix. However, the terrestrial subsurface is known to harbor
a diverse microbiota (2, 15) capable of transforming a variety
of pollutants (9, 16, 26, 27). Biotransformation processes often
govern the destruction of contaminants from subsurface envi-
ronments (7). Therefore, information on biodegradation kinet-
ics is required for an accurate assessment of the dangers of
subsurface chemical contamination.

Aquifer heterogeneities (39) and other unknown factors that
affect biodegradation rates in aquifers make it difficult to
extrapolate biodegradation kinetics from the laboratory to the
field. Modeling efforts are often hampered because of the
uncertainty in specific fate processes, the values of model
parameters, and the spatial and temporal variations of these
processes (1). One approach is to account for the natural
heterogeneity of groundwater environments by describing
them in a probabilistic fashion (12, 39). This often results in
quantitative process predictions encompassing a range of
estimates rather than absolute determinations. We decided to
quantitatively assess the variability associated with in situ
biodegradation rates. We chose to study the variability in
methane production rates in a shallow, anoxic aquifer as a
measure of the end product of anaerobic biodegradation
activity. We found that (i) biodegradation rates were tempo-
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rally variable and correlated with seasonal temperature fluctu-
ations, (ii) coefficient of variations in biodegradation rates
changed very little with the mean rate, (iii) hot spots of
biodegradation existed within the aquifer, and (iv) biodegra-
dation rates were lognormally distributed. Our results demon-
strate that biodegradation activity was significantly different at
two locations in a shallow aquifer.

MATERIALS AND METHODS

Site description and sampling. The aquifer chosen for study
receives leachate from a recently closed municipal landfill (2).
Previous research indicates that two chemically and spatially
distinct sites are located in close physical proximity within the
aquifer (2). One site (site A) is characterized by a low
concentration of dissolved organic carbon (80 to 160 ppm) in
the groundwater, a high sulfate concentration (52 to 540 ppm),
and a low rate of methane production (0.06 to 1.0 ppm-
day-'1 g-'). This assessment was made relative to another site
(site B) that exhibited the opposite characteristics. That is,
dissolved organic carbon was high (up to 1,100 ppm), sulfate
values were often an order of magnitude less than those at site
A and were generally undetectable during the summer, and
methane production was several orders of magnitude higher
most times of the year (2). The sediment at both sites is a
quaternary recent alluvium, composed mostly of sand but also
silt, clay, and gravel (38). Geologically, the aquifer is relatively
uniform, with the top of the water table averaging 0.61 to 1.5
m below the soil surface. Our assumption is that variation in
biodegradation rates as evidenced by methane production in
more complex environments will be at least as variable as that
measured in this relatively simple aquifer.
The sites were prepared by removing overlying vegetation

and waste materials and leveling the ground surface. Sixteen
bore holes, 1.8 m apart, were placed in a four by four grid
pattern on the aquifer surface. The grids were centered around
existing monitoring devices that have been in place since 1986.
Polyvinylchloride anaerobic wells were installed in each bore-
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Syringe and needle
used to sample gases

FIG. 1. Diagram of the anaerobic well used to collect gas samples from the aquifer.

hole, filled with groundwater, and closed at one end with a
number 12 rubber stopper through which a severed balch tube
was inserted (Fig. 1). The wells were placed 0.61 m below the
water table to ensure that they would remain submerged
despite fluctuations in the height of the water table. The wells
were allowed to equilibrate for 3 months prior to the start of
the study. Gases (0.5 to 5 ml) collecting at the top of the wells
were sampled by syringe at about 2-week intervals for 9
months. The sampling procedure typically created a slight
vacuum, so the syringe needle was momentarily stopped in the
rubber stopper and allowed to equilibrate against atmospheric
pressure. The gas volume was recorded, and then the sample
was placed in a nitrogen-flushed anaerobic culture tube and
transported to the laboratory for subsequent methane analysis.
The volume of gas remaining in the anaerobic well was
determined in a similar manner. Methane analysis was per-
formed by using a Varian model 3300 gas chromatograph
equipped with a flame ionization detector as previously de-
scribed (2). Methane production rates are expressed as micro-
moles of methane -meter-2 * day- '. When methane levels
were below detection limits or too little gas was produced to
sample, the detection limit of the assay for each site was
substituted for the methane production rate in the anaerobic
well. This value varied depending on the sampling time
interval, but the minimum detection limits observed for sites A
and B were 0.21 and 0.16 pLmol of CH4 m-2 * day-', respec-
tively.

Statistical analysis. Comparison of the frequency distribu-

tions for methane production rates at the sites were made by
using quantile-quantile (Q-Q) plots, a specialized probability-
plotting method (11, 14, 45). These plots provide an effective
way of comparing unknown frequency distributions and eval-
uating their potential relatedness through an assessment of
linearity. The log-transformed biodegradation rates from each
site were converted to standard normal deviates, and the
empirical quantiles for site A were plotted against those at site
B. The normality of the methane production rates at the two
sites was assessed by ranking the biodegradation rates for each
site and season and plotting the data against corresponding
Gaussian quantiles (34). Normally distributed data yield a
straight line in such plots, while lognormally distributed data
will be linear in such plots after being logtransformed. Signif-
icant differences in methane production between the two sites
were evaluated by using a two-tailed t test on untransformed
data, a two-tailed t test on log-transformed data, and a mean
confidence interval overlap method for lognormally distributed
data (32). The confidence intervals about the means were
calculated with a BASIC computer program (USDA Technol-
ogy Transfer Document NSTL91-3) as described by Parkin et
al. (33).

RESULTS

Temporal variability in methane production. Typically,
about 1 to 50 ml of gas accumulated in each well at each
sampling, although a range from <1 to 200 ml of gas was
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FIG. 2. Box-and-whisker plots of the natural logarithms of the
methane production rates integrated over time for sites A and B. The
bottom of the box represents the 25th percentile, and the top repre-
sents the 75th percentile. The middle line of the box represents the
50th percentile, or the median. The whiskers at the bottom and top of
the box represent the 10th and 90th percentile, respectively. The small
open circles represent the 10% lowest and highest methane production
rates. x is in units of micromoles of CH4 - meter-2 - day-'.

occasionally measured. Some gas samples had no detectable
methane content or the wells produced such a small gas
volume (<1.0 ml) that reliable sample measurement was
precluded. These methane values are reported as being below
the detection limit and are referred to as left censored data
(17). Various recommendations exist for analyzing censored
data sets (17, 19, 36, 44). Helsel (19) notes that the substitution
of0 for the censored value produces means that are biased low,
while substitution of the detection limit produces means that
are biased high. We calculated the mean of the data set by
replacing the censored values with either 0 or with the detec-
tion limit of the methane analysis. The means calculated in the
latter fashion were an average of 0.53% higher than those
calculated by the former method. The largest difference in
means was 2.2%. These small differences were due to the wide
range and magnitude of methane production rates that were
measured. We considered these differences small and there-
fore used the detection limit for the censored data.
Methane production in the wells located at site B ranged

from 0.16 to 120,000 ,umol of methane m2 - day-1, while site
A had a narrower range of 0.21 to 560 ,umol of methane-
m-2* day-'. The median (50th percentile) methane produc-
tion rate at site B was greater than that observed for site A
(Fig. 2). The coefficient of variation for both sites was >340%
even though site A had a mean methane production rate
210-fold less than that measured at site B.
A seasonal comparison of the methane production rates is

shown in Fig. 3. The middle 50% of the distribution in the
methane production rates at site B was greater than that of site
A in both the summer and the fall. Generally, only the lower
methane production rates for site B (<25th percentile) over-
lapped with the middle 50% of the rates at site A at these times
of the year. During the spring, however, a large degree of
overlap in biodegradation rates between the two sites was
evident (Fig. 3).
Both sites exhibited seasonal trends in methane production

rates with the highest rates observed in the summer, followed
by the fall and spring (Table 1). Despite the seasonal trends in
the rates of biodegradation, the relative variation associated
with these rates remained extremely high (Table 1). That is,
the coefficient of variation was >340% for site B in the
summer and spring even though there was a 130-fold differ-
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FIG. 3. Box-and-whisker plots of the natural logarithms of the
methane production rates. (Top panel) Box plots for sites A and B
during the spring season; (middle panel) box plots for sites A and B for
the summer season; (bottom panel) box plots for sites A and B for the
fall season. x is in units of micromoles of CH4 - meter-2 - day-'.

ence in the methane production rate between the two seasonal
means. This large relative variation also remained high when
the two sites were compared. For example, the coefficient of
variation was >290% for sites A and B in the summer even
though site B had a 170-fold-greater methane production rate
than site A (Table 1).

Spatial variability in methane production rates. The spatial
variability of the methane production rates is most apparent
when mean values in each well within each site are considered
(Fig. 4). These values varied from 1 to 97 and from 16 to 10,500
,umol of methane m2 - day-' at sites A and B, respectively.
This corresponds to a 74-fold difference in the minimum and
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TABLE 1. Seasonal trends in methane production rates
at sites A and B

Methane production

Season Site (,umol m 2 - day-') Coefficient of
variation (i{)

Mean Median

Summer A 26 4.4 290
B 4,400 56 340

Fall A 14 0.21 330
B 550 1.3 410

Spring A 4.6 0.62 320
B 33 1.0 370
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maximum methane production rates observed at site A, while
a 670-fold difference was noted at site B. Such values demon-
strate the extreme spatial variability in anaerobic biodegrada-
tion activity. To exemplify, a mean methane production rate of
10,500 p.mol of methane m-2 day-' was observed in one
well at site B, while an adjacent well had a comparable rate of
only 40, a 260-fold difference in biodegradation activity. This

-3 -2 -1 0 1 2
site A (x-g)/s

FIG. 4. Spatial plot demonstrating the extreme variability of the

methane production rates for sites A (top) and B (bottom). The
column represents the mean methane production rate observed during
the study period, with the actual rate above each column. Methane is
reported as micromoles of CH4 - meter' - day'.

FIG. 5. Q-Q plots comparing the methane production rate fre-
quency distribution between sites A and B for each season. (x - [L)/s
is the normal standard deviation of the natural log-transformed
methane production rate. r2, observed coefficient of determination
between the normal standard deviations.

spatial variability was also evident at site A (Fig. 4). A mean

methane production rate of 50 p.mol of methane * m-2 - day-'
was observed in one site A well, while an adjacent well had a

mean rate of I p.mol of methane * m-2 * day-'. The coefficients
of variation for the means at sites A and B were 148 and 145%,
respectively, so the relative variabilities in biodegradation
activity at the two sites were similar.
Hot spots of high biodegradation activity occurred at both

sites and accounted for a substantial portion of total methane
production. For example, two of the anaerobic wells accounted
for 54 and 53% of the total methanogenic activity observed at
sites A and B, respectively (Fig. 4). Conversely, cold spots of
biodegradation activity were also noted where the rates were

relatively low. Cumulative methane production from eight
other wells accounted for only 10 and 3% of the total methane
production at sites A and B, respectively.

Biodegradation frequency distributions. While the rates of
methane production were greater at site B than site A, both
sites exhibited a similar degree of variability in methane
production. The similarity in the distribution of methane
production between the two sites was evaluated with Q-Q
plots. Figure 5 shows that the frequency distributions of
methane production rates at sites A and B are similar in both
summer and fall (r2 = 0.96 and 0.93, respectively). However,
the similarities in the two underlying methane frequency
distributions at the two sites are less pronounced in the spring,
as evidenced by the deviations from linearity (r2 = 0.78) (Fig.
5). Thus, even though the rate of methane production is
generally greater at site B than site A, the observed frequency
distributions at the two sites are similar for most of the study
period.
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FIG. 6. Histograms of the methane production rates from sites A

and B. Methane is reported as micromoles of methane- meter2.
day-'. Site B, 103.

Lognormal distribution of biodegradation activity. The
methane production rates at the two sites were highly skewed
to the right (Fig. 6). A graphical method with greater diagnos-
tic power was used to assess the fit of the data to normal and
lognormal distributions. The ordered untransformed and log-
transformed data were plotted against the probits of a standard
normal distribution (11, 14, 34, 45); the linearity of the data
points is an indication of how well the data follow the normal
or lognormal distribution, respectively. Since the transformed
data of lognormally distributed variables are themselves nor-
mally distributed, a straight line on this curve is an indication
of a lognormal distribution (34, 42). The probit plots clearly
indicate the methane production rates in the summer, fall, and
spring were not normally distributed (Fig. 7). An approxi-
mately linear relationship is observed when the empirical
quantiles of the logtransformed data are plotted against the
probits of the normal distribution. For example, both sites
appear to be well approximated by a lognormal distribution in
the summer and fall, as indicated by the straight line when the
log-transformed data are plotted against the corresponding
probits of the normal distribution (Fig. 7). The coefficient of
determination (r2) for both sites in the summer and fall is equal
to or greater than 0.96. In the spring, the values for site B also
appear to be approximated by a lognormal distribution (r2 =

0.966), while site A exhibits more deviations away from this
distribution (r2 = 0.887). These deviations suggest that site A
may have an even more complex frequency distribution (Fig.
7).
Although earlier studies suggested that there were two

chemically and spatially distinct sites in the aquifer (2, 3), there
was no a priori reason to assume that there were statistically
significant differences in the rates of methanogenesis between
the sites. For example, if the rates in methane production were
highly variable, differences between the sites could easily be
obscured. For example, a Student t test detected only 1
significant difference of 18 comparisons between the two sites
when their mean methane production rates were compared at
the P = 0.05 level of significance (data not shown). This is
undoubtedly due to the highly skewed data set which reduces
the power of the t test for detecting differences (32). However,
there was a low statistically associated probability with the
observed t values for all the comparisons made. With one
exception, all comparisons exhibited a probability of 0.25 or
less. These consistently low probabilities suggest that a signif-
icant difference in the mean rate of methane production
between sites A and B was likely. Eight significant differences
between the two sites were observed when a mean confidence
interval overlap method (one-sided 95% confidence limits) was
used to evaluate differences in the methane production rates
(33). Since the data were shown to be lognormally distributed,
the assumption of normality can be met if a log transformation
is performed on the data (42). A t test performed on the
log-transformed data resulted in 12 significant differences of 18
comparisons (67%) at the P = 0.05 level of significance.
However, it should be clear that the median, rather than the
mean, of the two sites was compared in this analysis.

DISCUSSION

To accurately model and predict the fate of xenobiotic
compounds in the environment, reliable information on rates
of biodegradation and on the variability associated with those
rates is needed. A variety of methods to measure rates of
biodegradation exist. We chose to measure the rate of methane
production, since this gas is a relatively insoluble end product
of anaerobic biodegradation. The study site was a shallow
anoxic aquifer impacted by leachate from a municipal landfill.
Although it appears that this alluvial sand aquifer is relatively
geologically and hydrologically simple, the spatial variability
associated with the rate of methane production was high.
Several lines of evidence suggest that methane production and
therefore biodegradation rates are lognormally distributed: (i)
the coefficients of variations were extremely high, (ii) large
differences were observed between the sample means and
geometric means, (iii) histograms of the rates of methane
production were highly skewed, and (iv) the logarithms of the
biodegradation rates appeared to be normally distributed.
Our results support the earlier contention that there are two

spatially distinct sites located in the aquifer with respect to
methane production and other physicochemical characteristics
of the aquifer (2, 3). The mean, median, and geometric mean
of site B exceeded the same summary location parameter
estimates for site A for all comparisons except one. The reason
for this exception is as yet unknown. However, the phenome-
non occurred in the spring of the year, when we have histori-
cally measured high sulfate concentrations in the groundwater
(3). The intrusion of sulfate at site B may have depressed
aquifer methanogenesis to rates that were comparable to those
measured at site A. As sulfate gets utilized at site B, the flow
of carbon and energy through methanogenesis likely returns in
later portions of the year. This possibility will be investigated in
subsequent studies. Although we do not know the cause(s) of
the variability, we were able to quantitate it and note that it was
similar at both sites.
The biodegradation rates at both sites also varied temporally
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FIG. 7. Probit plots for sites A (top panels) and B (bottom panels) during the summer (left panels), fall (middle panels), and spring (right
panels) seasons. The untransformed methane production rates (open circles) and the log-transformed methane production rates (closed circles)
were plotted against the probits corresponding to the cumulative probabilities of the normal distribution. Cumulative probabilities were calculated
according to (in - 0.5)/n, where i is the numerical rank of the ith sample, and n is the number of samples. r2, observed coefficient of determination
between the probits and ordered data; x, untransformed methane production rate in units of micromoles of CH4* meter-2 * day-'.

and spatially. The highest methane production rates for both
sites were seen in the summer, followed by the fall and spring.
Methane production rates in these sediments were shown to be
significantly influenced by pH, temperature, and sulfate con-
tent, although additional variables also influenced biodegrada-
tion rates (3). Similar variations in methane production rates in
other environments have been observed. For example, sea-
sonal variations in methane releases have been observed in
freshwater sediments (24, 35, 47) and soils (25). A large
amount of this variation was attributed to temperature changes
(5, 25, 46, 47) and to a combination of temperature and
sedimentation events (35, 41). A high spatial variability in
methane production has also been observed in other environ-
ments. Pedersen and Sayler noted high spatial variability in
methane production in freshwater sediment samples and be-
tween replicate subsamples (35). King and Wiebe (25) noted
high spatial variability in methanogenesis from a salt marsh,
while Dise (6) suggested that methane fluxes in peatlands were
lognormally distributed. King and Wiebe attributed 20% of the
variation in methane production to the heterogeneous distri-
bution of organic matter (25). The temporal and spatial
variabilities of biodegradation rates observed at our sites as
evidenced by methane production appear to be common
phenomena.

Other microbial activities in sediments are also known to be
highly variable. For example, the spatial variability associated
with bacterial hydrolase activities were found to be very high
with coefficient of variations ranging from 43.3 to 87.6% (43).
Federle et al. (10) investigated the spatial distribution of
microbial biomass, microbial activity, and the biodegradation
of linear alkylbenzene sulfonate and linear alcohol ethoxylate
in the subsurface. They found up to a 100-fold decrease in the
distribution of microbial activities below 2 to 3 m in the vadose
zone, as evidenced by the rate of fluorescein diacetate hydro-
lysis and incorporation of thymidine. Linear alkylbenzene
sulfonate was mineralized in the upper 2 m of the vadose and
in the saturated zone with little to no mineralized between 2
and 14 m. Linear alcohol ethoxylate mineralization decreased
with depth, similar to the activity measurements. Biodegrada-
tion rates of methanol, phenol, and tert-butyl alcohol also were
shown to vary considerably over small distances, both horizon-
tally and vertically (20). Denitrification is a biological process
that is also extremely spatially variable. Coefficients of varia-
tion of >100% are typical and often are several hundred
percent (4). A variety of biological activities appear to be
highly spatially variable in the subsurface environment. It is
likely that geological, hydrological, and microbiological varia-
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tion all contribute to our observed spatial variation in biodeg-
radation rates.
Some of the spatial variability that was encountered in our

study was evidenced by the presence of hot spots of biodegra-
dation activity in a few of the wells. For example, at both sites
A and B, >50% of the total biodegradation activity was
observed from only 12% of the wells. Similar hot spots of
microbial denitrification activity were observed by other inves-
tigators (30). Denitrification hot spots wherein 25 to 85% of
the total denitrification activity of intact soil cores was associ-
ated with particulate organic matter representing from 0.4 to
0.08% of the total mass of the soil cores were observed. Similar
high heterogeneities in biodegradation activity were also ob-
served in sediments (23). The occurrence of hot spots of
biodegradation activity does not appear to be unusual and may
be a frequently occurring phenomenon.
The variability in biodegradation activity remained high for

both sites throughout the year. This is evident by a coefficient
of variation of >290% for sites A and B throughout the study
period despite a maximum difference of 950-fold in the meth-
ane production rates. This finding was somewhat surprising,
since we hypothesized that the variability and skewness in
biodegradation rates would become less when (i) methane
production activity was minimal because of seasonal tempera-
ture and pH fluctuation and/or (ii) when all variables for
methane production were near optimal, as in summer (3). A
varying relative variability was observed with denitrification
(30). Parkin observed highly skewed field denitrification rates
with a coefficient of variation of 410%, while the relative
variability of denitrification enzyme activity was only 48%.
Since major controlling factors have been optimized in the
latter assay, the variability associated with these denitrification
measurements is due only to the dispersion of potentially
active denitrifying enzymes in the soil. Christensen et al. also
found the relative variability of denitrification to change, and
in some cases the probability distribution was changed (4). For
example, denitrification was less skewed in soil with a moisture
content above the water-holding capacity than in soil held at
the water-holding capacity. Similarly, the addition of high
concentrations of organic matter changed the probability dis-
tribution so it conformed to a normal distribution. In both of
the preceding investigations the relative variability of denitri-
fication decreased when the factors controlling the process
were optimized. At our two sites, the constant relative vari-
ability observed in biodegradation rates might suggest that the
controlling factors are not optimal, even in the summer.

This constant high relative variability throughout the study
period at sites A and B suggested a similarity between the two
sites. The similarity between the two sites was compared by
using probability plotting methods and normalizing the biodeg-
radation rates by the standard deviation estimates. This dem-
onstrated that the underlying distributions of methane produc-
tion rates at sites A and B were similar and suggests that
biodegradation rates are not random. Since histograms of the
biodegradation rates were highly skewed to the right and the
mean of the biodegradation rates was greater than the median,
we hypothesized that the rates might be lognormally distrib-
uted (34). Probit plots were used to assess the lognormality of
the biodegradation rates. These plots demonstrated that the
biodegradation rates were better approximated by a lognormal
distribution than a normal distribution. Many environmental
variables (13) and biological activities (31) are known to be
lognormally distributed.
The high variability of natural processes translates into a

high degree of uncertainty regarding statistical estimation and
inferences (34). Often, attempts are made to estimate biodeg-

radation rates by (i) disregarding the variability and assuming
a Gaussian distribution, or (ii) using surrogate numbers such as
total biomass or total cell numbers. However, it is difficult to
accurately quantify the active biomass. For example, in a
marine sediment over 90% of the sediment-water interface
community was not actively growing (29). Ignoring the vari-
ability and making statistical inferences assuming a Gaussian
distribution leads to inaccurate or incorrectly made decisions.
Knowing the underlying distribution of biological processes
allows one to choose more appropriate summary location
parameters and methods for calculating the confidence inter-
val about the mean, leading to more accurate estimates of
biodegradation rates (34). Ignoring the variability in the bio-
degradation rates and applying parametric tests based on a
different distribution leads to incorrect conclusions. For exam-
ple, t tests are often used in hypothesis testing for detecting
differences in rates of biodegradation. We have shown that
using the t test is clearly inadequate for detecting differences in
biodegradation rates between sites A and B. The assumption
of normality for the t test is invalidated because of the
lognormal distribution of the biodegradation rates. A mean
confidence interval overlap method which has more power to
detect differences in means from lognormal distributions was
able to detect eight differences in methane production between
the two sites. The greatest number of differences between the
two sites was observed when the median methane production
rates were compared. However, the mean is a more appropri-
ate location parameter when evaluating the magnitude of a
microbial process (34) such as methane production rates.

Including biodegradation coefficients into stochastic model-
ing efforts of environmental pollutants in the subsurface envi-
ronment requires information on the variability of this process.
Understanding and quantitating the variability in biological
processes begin to lay the foundation to more accurately
predict in situ biodegradation rates with a certain level of
confidence. Realizing that biodegradation rates in the field are
lognormally distributed will aid in selecting more appropriate
methods for calculating confidence intervals about the mean,
leading to more accurate predictions of biodegradation rates.
Assuming that biodegradation rates are normally distributed
could result in significant over- or underestimates of the
predicted values. Many factors interact to control and cause
variability in biological processes. To begin to identify and
understand the effects of these factors requires information on
the variability of that process. At our two sites we have
quantitated this variability and demonstrate that the anaerobic
biodegradation rates are better approximated by a lognormal
than a normal distribution. Our tacit assumption is that the
variability associated with biodegradation rates in deeper and
more complex geological settings will be at least as high.
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