
Bayesian Inference for the Lead Time in Periodic Cancer
Screening

Dongfeng Wu1,*, Gary L. Rosner2, and Lyle D. Broemeling2
1Department of Mathematics and Statistics, Mississippi State University, Mississippi State, Mississippi 39762,
U.S.A.

2Department of Biostatistics and Applied Mathematics, The University of Texas, M.D. Anderson Cancer
Center, Houston, Texas 77030, U.S.A.

Summary
This article develops a probability distribution for the lead time in periodic cancer screening
examinations. The general aim is to allow statistical inference for a screening program's lead time,
the length of time the diagnosis is advanced by screening. The program's lead time is distributed as
a mixture of a point mass and a piecewise continuous distribution. Simulation studies using the HIP
(Health Insurance Plan for Greater New York) study's data provide estimates of different
characteristics of a screening program under different screening frequencies. The components of this
mixture represent two aspects of screening's benefit, namely, a reduction in the number of interval
cases and the extent by which screening advanced the age of diagnosis. We present estimates of these
two measures for participants in a breast cancer screening program. We also provide the mean, mode,
variance, and density curve of the program's lead time. The model can provide policy makers with
important information regarding the screening period, frequency, and the endpoints that may serve
as surrogates for the benefit to women who take part in a periodic screening program. Though the
study focuses on breast cancer screening, it is also applicable to other kinds of chronic disease.
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1. Introduction
A potentially effective way to increase the cure rate or prolong survival of cancer patients is
to detect the disease early and treat it at an early state. The primary technique for implementing
early detection is periodic screening examinations, by which the disease may be found before
the onset of symptoms. According to a recent report (NIH, 2000), breast cancer is the most
common form of cancer among women in the United States and the second leading cause of
cancer deaths among women. There is great interest in studying the relative contribution of
chemotherapy and screening on the reduction of breast cancer mortality seen in the United
States (Berry et al., 2005).

The past four decades have seen many large randomized breast cancer screening trials, as well
as some observational studies. Accompanying the increased effort at early detection, questions
have arisen concerning the efficient design of a periodic cancer screening program, such as at
what age to initiate screening programs and the best exam frequencies (Eddy, 1980). Optimal
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design of screening trials is hampered, however, because the theory of screening has not been
fully developed to date. In particular, there has been a major controversy over the benefits of
mammography to detect breast cancer for women in their 40s (NIH, 1997). Very often the
recommended frequency in a periodic screening program is arbitrary.

The effectiveness of a screening program directly depends on the availability of effective
therapy and improved outcome if one receives treatment for the disease in its earliest stages of
development. When evaluating the effectiveness of a screening program, one should account
for the fact that the age at diagnosis is earlier if the disease is detected by screening rather than
by the onset of clinical symptoms. The difference between the age of diagnosis with screening
and the future onset of clinical disease without screening is called the lead time. Even in the
absence of effective therapy, screening will appear to lengthen the time from diagnosis until
death. If one does not account for the lead time when analyzing the benefit of screening, then
one's inference is subject to lead-time bias.

We assume the commonly followed disease progression model (Zelen and Feinleib, 1969).
According to this model, the disease develops by progressing through three states, denoted by
S0 → Sp → Sc. Respectively, these states refer to the disease-free state; the preclinical disease
state, in which an asymptomatic individual unknowingly has disease that a screening exam can
detect; and the disease state at which the disease manifests itself in clinical symptoms. We
allow for the sensitivity of the screening exam to be less than 100%, so that an exam might
yield a false-negative call. We do not consider false positives in this model.

If a person enters the preclinical state (Sp) at age t1 and becomes clinically incident (Sc) later
at age t2, then (t2 − t1) is the sojourn time in the preclinical state. If, however, this person
undergoes a screening exam at time t within the time interval (t1, t2) and cancer is diagnosed,
then the length of time (t2 − t) is the person's lead time. This is illustrated in Figure 1.

As mentioned earlier, the rationale behind screening is that early detection and treatment
hopefully lead to a better prognosis. For a particular case detected by the screening exam, the
lead time is, of course, unobservable. The distribution of the lead time depends on the
distributions of the sojourn time, the sensitivity, and the transition probability into the
preclinical state. Our model may be an aid in characterizing the effectiveness of screening
programs and determining the optimal interval of periodic screenings.

Many researchers have proposed methods to infer lead time among participants in a screening
program, whether within a randomized study or not. Prorok (1982) made a major contribution
by deriving the conditional probability distribution of the lead time, given detection at the ith
screening exam. He then applied his model in simulations to study the properties of the lead
time, assuming different sojourn time distributions. He noted that when one increases the
number of exams, keeping the between-exam interval fixed, the local lead time properties
appeared to stop changing after four or five screening exams in his examples. The stabilization
of the local lead-time properties suggested a stopping rule for comparative studies, in that
further screening exams will not yield more information about the benefit of screening versus
no screening. His work, however, has limited applicability. He considered only screen-detected
cases, ignoring interval cases for whom the lead time is zero. His results apply to cases who
are screen detected at the ith screening exam. He did not estimate the whole proportion of cases
who were not detected by the periodic screening.

Straatman, Peer, and Verbeek (1997) estimated the mean lead time among participants in a
screening program, applying ideas similar to Prorok (1982). They assumed an exponential
distribution for the sojourn time in the preclinical state. Because of the memoryless nature of
the exponential distribution, the lead time had the same exponential distribution as the sojourn
time in their models. Walter and Day (1983) considered other distributions, such as a lognormal
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distribution and a step-function for the sojourn time, in addition to an exponential distribution.
They derived a formula to estimate the mean lead time. Other publications (Kafadar and Prorok,
1994,1996,2003;Xu and Prorok 1995;Kafadar, Prorok, and Smith, 1998;Xu, Fagerstorm, and
Prorok, 1999) have provided estimates of the mean and variance of the lead time. The main
focus of these papers is on screen-detected cases and on the survival benefits, rather than on
the inference of the lead time.

In this article, we derive the exact probability distribution of the lead time for the whole cohort
taking part in the screening program, including screen-detected cases and interval-incident
cases. Our model includes the result of Prorok (1982) as a special case. Hence, our model
allows estimation of the proportion of patients whose lead time is zero and the proportion that
truly benefits from the program. We apply our methodology to a periodic screening program
that involves at least 10 screening exams (e.g., for women from 50 to 80 years old, who will
take annual exams) to get information on the benefits of the screening program. This inference
will help determine how a long-term screening program may contribute to public health.

The remainder of the article is organized as follows. In Section 2, we set up the probability
model and derive the distribution for the lead time for the whole cohort. We also derive the
lead-time distribution for the screen-detected cases, which will lead to the same result as in the
formula (2) in Prorok (1982). In Section 3, we present some simulation results for different
screening intervals and apply our method to the HIP data using Bayesian inference. We
conclude with a discussion in Section 4.

2. Methods
Consider a cohort of initially asymptomatic individuals who enroll in a screening program. Let
β(t) be the sensitivity of the screening modality; that is, the probability that the screening exam
is positive conditional on the individual being in the preclinical state, where t is the individual's
age at the screening exam. Define w(t) dt as the probability of a transition from S0 to Sp during
(t, t + dt). Let q(·) be the probability density function of the sojourn time in Sp, and let
Q(z) = ∫z

∞q(x) dx be the survivor function of the sojourn time in the preclinical state Sp.
Throughout this article, the time variable t represents the participating individual's age.

2.1 Lead-Time Distribution for Potential Patients
When we consider the concept of the lead time (i.e., the time gained because of early detection
by screening), we assume that the person will develop symptomatic cancer. Therefore, the lead
time distribution is, in fact, a conditional distribution given that someone will ultimately
develop clinical disease before death. We will study the case of an initially asymptomatic
woman with no history of cancer who goes through a series of periodic screening exams and
develops breast cancer later in her life. Define D as a binary random variable, with D = 1
indicating development of clinical disease and D = 0 indicating the absence of the clinical
disease before death.

Denote as L the lead time for individuals detected on screening. We consider the lead time to
be 0 for individuals whose disease is not detected by the screening exam but who develop
clinical symptoms. The distribution of the lead time for a woman will be a mixture of a point
mass at zero and the density of a piecewise continuous, positive random variable. That is, the
distribution of the lead time is a mixture of the conditional probability P(L = 0 | D = 1) and the
conditional density function fL(z | D = 1), for ∀0 < z < (T − t0). Here, T represents the span of
the human life, and t0 is the woman's age at her initial screening exam. One might consider
treating T as a random variable and allow for competing causes of death when modeling T. We
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implicitly condition on a fixed upper bound, T, in our model and do not pursue the more
complicated model in this article.

We need to calculate several probabilities to compute these conditional probabilities explicitly.
In particular, we need P(D = 1), the probability of developing breast cancer during one's lifetime
after age t0, the joint probability P(L = 0, D = 1), and the joint probability density function
fL(z, D = 1). We assume that the individual is asymptomatic at age t0.

The probability of developing breast cancer after the initial screening exam (at age t0) is the
following. Suppose a woman is incident with clinical disease at age t ∈ (t0, T). Then, one must
move from S0 to Sp before age t, say at age x. The sojourn time in the preclinical state is (t −
x). Hence,

P(D = 1) = ∫t0T∫0tw(x)q(t − x) dx dt. (1)

We illustrate the key ideas underlying the formulation of P(L = 0, D = 1) and fL(z, D = 1) using
as an example a periodic screening program with two screening exams. At the end of this
section, we give the general results for the distribution of the lead time for any number of
examinations.

Consider a cohort of initially asymptomatic women who are aged t0 (usually t0 ≥ 40) at study
entry and who will develop breast cancer at some time before dying. The study offered two
screening exams, one at age t0 and the other at age t1(>t0).

If a woman goes through the two screening exams without being detected, then her lead time
will be zero, and she will not benefit from the screening program at all. We now calculate this
probability. Define t−1 ≡ 0 and the first screening interval as (t0, t1), and the second screening
interval as (t1, T). Correspondingly, the ith generation of women consists of those who enter
Sp during the ith screening interval (i = 1, 2). The 0th generation includes all women who enter
Sp before t0, the age at the initial screening exam. A participant's lead time is zero if and only
if she is diagnosed in the clinical state Sc within the intervals (t0, t1) or (t1, T); that is, if she is
an interval case. Hence,

P(L = 0, D = 1) = I2,1 + I2,2,

where I2,1 is the probability of being an interval case in (t0, t1), and I2,2 is the probability of
being an interval case in (t1, T). The first index reminds us that there are two screening exams
in the program. For a woman to be an incident case in (t0, t1), either she belongs to the 0th
generation (i.e., she entered Sp before t0) and has a false-negative screening result at t0, or she
belongs to the first generation (i.e., entered Sp in (t0, t1)). Hence,

I2,1 = (1 − β0)∫t0
t1∫0t0w(x)q(t − x) dx dt

+ ∫t0
t1∫t0t w(x)q(t − x) dx dt

= (1 − β0)∫0t0w(x){Q(t0 − x) − Q(t1 − x)} dx

+ ∫t0
t1w(x){1 − Q(t1 − x)} dx,

where βi = β(ti) is the sensitivity at age ti. Similarly, we obtain
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I2,2 = (1 − β0)(1 − β1)∫t1T∫0
t0w(x)q(t − x) dx dt

+ (1 − β1)∫t1T∫t0
t1w(x)q(t − x) dx dt

+ ∫t1T∫t1t w(x)q(t − x) dx dt

= (1 − β0)(1 − β1)∫0t0w(x){Q(t1 − x) − Q(T − x)} dx

+ (1 − β1)∫t0
t1w(x){Q(t1 − x) − Q(T − x)} dx

+ ∫t1T w(x){1 − Q(T − x)} dx.

The lead time will be greater than zero for the screen-detected cases. These are the people who
might truly benefit from periodic screening exams, because their disease is detected and treated
at an early stage.

We derive the probability density function in the following way. We partition the support of
z into (0, T − t1] and (T − t1, T − t0]. When the lead time z ∈ (0, T − t1], there are two possibilities:
either this person is detected at t0 and would have entered the clinical state Sc at age tc = t0 +
z without the screening exam at t0; or she is detected at t1 and would have entered Sc at age
t1 + z without screening. See Figure 2, where x represents onset of the Sp, and tc indicates the
age at the transition into Sc.

Therefore, the joint density is

f L (z, D = 1) = P(detected at t0 and would have been incident at t0 + z if not screened)

+ P(detected at t1 and would have been incident at t1 + z if not screened)

= β0∫0t0w(x)q(t0 + z − x) dx

+ β1{(1 − β0)∫0t0w(x)q(t1 + z − x) dx + ∫t0
t1w(x)q(t1 + z − x) dx},

when z ∈ (0, T − t1 .

When the lead time z ∈(T − t1, T − t0], there is only one possibility: she must have been detected
at t0 because her lifetime is bounded by T. Hence

f L (z, D = 1) = β0∫0t0w(x)q(t0 + z − x) dx,

when z ∈ (T − t1, T − t0 .

Combining the above results, the distribution for the lead time is

P(L = 0 | D = 1) = P(L = 0, D = 1)
P(D = 1) (2)

f L (z | D = 1) =
f L (z, D = 1)

P(D = 1) . (3)

The validity of this mixed or semicontinuous distribution can be verified by
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P(L = 0 | D = 1) + ∫0T−t0 f L (z | D = 1) dz = 1. (4)

Now we generalize this result to any number of screening exams. Assume the protocol calls
for K-ordered screening examinations that occur at ages t0 < t1 < · · · < tK−1. The ith generation
of women are those who enter Sp between the ith and the (i + 1)th screening exams (i.e., between
ti−1 and ti), i = 1, 2, … , K − 1. The 0th generation includes all who enter Sp before the initial
screening exam. We let t−1 ≡ 0, and tK = T. In order to calculate the distribution, we need to
calculate the joint probability P(L = 0, D = 1) and the joint probability density function fL(z,
D = 1).

The lead time is zero if and only if an individual is an interval case. Let IK,i denote the
probability of being an interval case in the ith interval (ti−1, ti) in a sequence of K-screening
exams. Then

P(L = 0, D = 1) = IK ,1 + IK ,2 + ⋅ ⋅ ⋅ + IK ,K ,

where

IK , j = Σ
i=0

j−1
(1 − βi) ⋅ ⋅ ⋅ (1 − β j−1)

× ∫ti−1

ti w(x){Q(t j−1 − x) − Q(tj − x)} dx

+ ∫t j−1

tj w(x){1 − Q(tj − x)} dx, for all j = 1, … , K .

(5)

It can be proved by mathematical induction that, if the sensitivity is less than 1, then for any
fixed sequence t0 < t1 < · · · < tK−1 < T,

I1,1 ≥ (I2,1 + I2,2) ≥ ⋅ ⋅ ⋅ ≥ (IK ,1 + ⋅ ⋅ ⋅ + IK ,K ).

In other words, more screening reduces the probability that the lead time equals zero among
women who would go on to develop cancer.

For the cases whose lead times are greater than zero, we calculate the joint probability density
function fL(z, D = 1), where z ∈(0, T − t0]. When T − t1 < z ≤ T − t0, detection must have
occurred at t0. In general, when T − tj < z ≤ T − tj−1, j = 2, 3, … , K, one was screen detected
at ti, i = 0, … , j − 1. Thus, with T − tj < z ≤ T − tj−1, j = 2, 3, … , K (i.e., tc = ti + z < T, i = 0,
… , j − 1),

f L (z, D = 1) = Σ
i=1

j−1
βi{ Σr=0

i−1
(1 − βr) ⋅ ⋅ ⋅ (1 − βi−1)

× ∫tr−1

tr w(x)q(ti + z − x) dx

+ ∫ti−1

ti w(x)q(ti + z − x) dx}
+ β0∫0t0 w(x)q(t0 + z − x) dx.

(6)

When j = 1 and T − t1 < z ≤ T − t0 (i.e., one must have been detected at t0), the above formula
becomes

Wu et al. Page 6

Biometrics. Author manuscript; available in PMC 2007 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



f L (z, D = 1) = β0∫0t0w(x)q(t0 + z − x) dx. (7)

Again, the validity of this probability distribution can be verified by

Pr(L = 0 | D = 1) + ∫0T−t0 f L (z | D = 1) dz ≡ 1,

where P(D = 1) is given in equation (1). Hence, the lead-time distribution is a mixture of a
point mass and a piecewise continuous distribution. The probability density function of the
lead time is not continuous at the points (T −tj), j = 1, … , K − 1, which can be verified easily
from (6) and (7).

2.2 Lead-Time Distribution for the Screening-Detected Cases
Prorok (1982) derived the probability distribution for the lead time if one were diagnosed at
the ith screening exam. The derivation used properties of forward and backward recurrence
times from renewal process theory. He did not take into consideration the interval cases, whose
lead time is zero. We will obtain the same result as in Prorok (1982) by conditioning on
detection by the ith screening exam.

Assume K exams and define events:

Aj = {one will be detected at ( j + 1)th exam at time tj},
j = 0, … , K − 1.

The (conditional) probability density function for the lead time given Aj is

f L (z | Aj) =
f L (z, Aj)

P(Aj)
. (8)

The numerator is

f L (z, Aj) = Σ
i=0

j
f L (z, Aj, and she is from the ith generation)

= βj{ Σ
i=0

j−1
(1 − βi) ⋅ ⋅ ⋅ (1 − β j−1)

× ∫ti−1

ti w(x)q(tj + z − x) dx

+ ∫t j−1

tj w(x)q(tj + z − x) dx}.
(9)

The denominator is

P(Aj) = βj{ Σ
i=0

j−1
(1 − βi) ⋅ ⋅ ⋅ (1 − β j−1)∫ti−1

ti w(x)Q(tj − x) dx

+ ∫t j−1

tj w(x)Q(tj − x) dx}. (10)
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This is exactly the same result in the formula (2) in Prorok (1982) (which he called the local
lead-time p.d.f. [probability density function]) without the use of forward and backward
recurrence times.

3. Application to the HIP Study
According to the results in Section 2, it is clear that the lead-time distribution depends on the
sensitivity β(·), the transition probability w(·), and the sojourn time distribution in the
preclinical state q(·). Hence, accurate estimation of these parameters is essential in the
estimation of the lead-time distribution.

We applied our method to the Health Insurance Plan for Greater New York (HIP) data (Shapiro
et al., 1988). Wu, Rosner, and Broemeling (2005) estimated the age-dependent sensitivity β
(t), the transition probability w(t), and the sojourn time distribution q(·) from the HIP study
group data. They characterized the sensitivity β(t) as a function of age t using a logistic model,

β(t) = 1
1 + exp { − b0 − b1(t − t̄ )} ,

where t̄. is the average age at entry in the study group. The transition density function was

w(t | μ, σ2) = 0.2
2πσt exp { − ( log t − μ)2/ (2σ2)}, σ > 0,

which is the probability density function of a lognormal(μ, σ2) multiplied by 20% (the upper
limit corresponding to a lifetime risk). The log-logistic distribution was adopted as the
distribution for the sojourn time in the preclinical state, so that the survivor function and the
hazard function are, respectively,

Q(x) = 1
1 + (xρ)κ

and h (x) = κx κ−1ρκ

1 + (xρ)κ
, κ > 0, ρ > 0,

where x is the sojourn time in the state of Sp. The density is q(x) = h(x) Q(x). (See section 2.2
in Wu et al. [2005] for details.)

The unknown parameters in the above model are θ = (b0, b1, μ, σ2, κ, ρ). Let H represent the
HIP data. The likelihood function L(θ | H) was derived in section 2.1 in Wu et al. (2005). Let
π(θ) be the prior distribution of θ. The posterior distribution is

f (θ | H ) ∝ L (θ | H )π(θ).

We used Markov chain Monte Carlo (MCMC) to draw posterior samples from f(θ | H). The
MCMC sample size was 2000 draws from two parallel chains with overdispersed starting
values (Wu et al., 2005).

Given the HIP data, the posterior predictive distribution of the lead time can be estimated as
follows:

f (L | H ) = ∫ f (L , θ | H )dθ (11)

= ∫ f (L | θ, H ) f (θ | H ) dθ (12)
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= ∫ f (L | θ) f (θ | H ) dθ (13)

≈ 1
n Σi

f (L | θi∗), (14)

where θi
∗ is a random sample drawn from the posterior distribution f(θ | H). The last step is

Monte Carlo simulation (see Gilks, Richardson, and Spiegelhalter, 1996, p. 4).

We combined our earlier results with the current model to make inference in the case of a
program consisting of periodic screening exams for women aged 50–80 years. We examined
various screening intervals. The results are for both screen-detected and interval cases, that is,
inference concerns the program's lead time that includes the point mass at zero and the
piecewise continuous density function.

Table 1 summarizes the Bayesian posterior inference. The time interval Δ between screens was
6, 9, 12, 18, and 24 months within ages 50 (t0) and 80 years (T). The density curves for the
lead time are shown in Figure 3 for different screening intervals.

From these results, we see that if a woman begins annual screening (i.e., Δ = 12 months) when
she is 50 years old and continues until she reaches 80, then there is a 23.37% chance that she
will not benefit from early detection by the screening program if she develops breast cancer
during those 30 years. Her chance of no benefit from the screening program decreases to 8.95%
if the exams are 6 months apart.

Table 1 shows that the mean lead-time increases as the screening time interval decreases. In
other words, more screening exams will contribute to a longer lead time, which would translate
to treatment of the disease at an earlier stage and, potentially improved prognosis. The increase
in the mean lead time is partly due to the smaller point mass for zero lead time when screening
exams are closer together.

The standard error of the lead time decreases as the time between screening exams increases.
Table 1 also reveals that the standard deviation for the program's lead time is larger than the
mean lead time. In the table, the largest mode is 0.5 years (6 months), corresponding to
screening exams every 6 months. With annual exams, the mode value for the lead time is 0.3
years (3.6 months).

4. Discussion
We provided the exact probability distribution for the lead time in a periodic screening scenario.
We consider the distribution of the lead time as a mixture of a point mass at zero and a piecewise
continuous density function. The mixture formulation considers all cases among participants
in a screening program, namely, those diagnosed by screening and interval cases. Our model
includes the local lead-time distribution given in Prorok (1982) as a special case.

Our model characterizes two aspects of a screening program's benefit. One aspect is the
proportion of interval cases among the program's participants (that is, the probability assigned
to the point mass at zero). The second aspect is the length of time by which screening advances
the age of diagnosis of cancer. This length of time will hopefully lead to treatment of disease
in earlier stages of development and a better prognosis. The P(L = 0 | D = 1), the fraction of
participants who will develop clinical cancer and diagnosed as interval case, was used in the
Appendix A of Baker et al. (2006). The other measure is the mean lead time E(L | D = 1), which
is equivalent to P(L > 0 | D = 1)E(L | L > 0, D = 1), that is, the fraction of persons detected on
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screening times the benefit of detection. This endpoint was used in Dwyer et al. (1983) in their
study of scheduling follow-up exams for cancer patients after the initial detection of cancer.
The ultimate goal of a screening program in cancer is to reduce cancer mortality. Reduction in
cancer mortality is discussed in Baker et al. (2003),Flanders and Longini (1990) and Chen et
al. (1997) in the context of evaluating periodic screening.

Our model contributes to the study of a screening program in other ways. First, the model
allows inference about the lead-time distribution for the whole cohort who will develop breast
cancer in their lifetime. Previous work on the lead time focused on screen-detected cases only.
Second, predictive inference can extend easily to any number of screening exams with our
model. Thus, one can use the model to infer outcome measures that relate to different scenarios
of periodic screening, such as the proportion of people who stand to benefit from various
screening programs. One can thus use our model to evaluate and compare the characteristics
of different possible screening programs. For example, the model can provide answers to
questions, such as what may be the outcomes of periodic screening exams for a woman in her
50s or 60s? How do these outcomes change as the frequency of screening exams changes (e.g.,
screening every 6, 12, or 24 months)? What is the probability that a woman's cancer will be
detected early if she has cancer? How does changing the screening program affect the lead-
time distribution? Our model showed that the mean lead time increases as the interval between
screening exams becomes shorter.

When evaluating a screening program, one has to consider benefits and costs. In the case of a
cancer screening program, for example, the benefit is reduction in cancer mortality. The costs
may include invasive biopsies that are not necessary, possible side effects of the screening
modality or follow-up action, needless anxiety, time, and financial cost. In addition, more
screening exams may lead to more false-positive results, which we have not yet incorporated
into the model. Any decision-theoretic approach should account for false-positive and false-
negative screening errors and consequences of these assessments.

We have not incorporated information on mortality after detection into the model. The effect
of a screening program on disease-specific mortality is a very important consideration.
Although one might incorporate a screening-and-subsequent-treatment effect in the model, it
would be complex and would require additional assumptions. Including mortality would also
require long-term follow-up, which is not necessary to apply in our approach.

Zelen (1993) proposed a utility function to find the optimal scheduling for (n + 1) exams by
assigning different weights to probabilities of screen-detected cases and interval-incident cases.
His simulation was based on the assumptions that the sensitivity is independent of age, and the
sojourn time is exponentially distributed.

In Prorok (1982), the local lead-time distribution stabilized after four or five exams when β =
0.9, w = 0.002, or 0.004, and the screening interval was 1 year. In his simulations, he assumed
that the local lead-time distribution has domain (0, ∞). In our simulations, if we fix β, w, and
the screening interval as Prorok did, the probability P(L > 0 | D = 1) (equivalently, P(L = 0 |
D = 1)) will also stabilize after four or five exams. Our lead time has finite support (0, T −
t0); however, the mean and the standard error increase as T increases. When the sensitivity and
the transition probability are both age dependent as in our model, an asymptotic distribution
for the lead time does not exist within the realm of realistic scenarios.

Further work to individualizing risk assessment would include considering other covariates
besides age. Each woman probably has a different risk of developing breast cancer during her
lifetime. If she has a close relative who had breast cancer, then her risk of developing breast
cancer increases. This risk is reflected in the w(t) in our model, which could be modeled with
covariates to individualize risk assessment.

Wu et al. Page 10

Biometrics. Author manuscript; available in PMC 2007 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our model has conditioned on the event that the person will ultimately develop clinical disease
(e.g., symptomatic breast cancer). This conditioning effectively removes from consideration
cancers that never reach the clinical state. A further improvement to the model would
incorporate the competing risk of death from other causes. Parmigiani (2002) discusses a
decision model based on transitions between health states. His approach allows one to model
the transition intensities, thus allowing for the competing risk of death before the transition to
clinical disease. By incorporating the possibility of death from a cause other than breast cancer,
for example, the inference can extend to provide information about how a screening program
may affect a woman's risk of dying from breast cancer or even her risk of a diagnosis of breast
cancer during her lifetime. We are working on this model.

5. Supplementary Materials
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of disease development and lead time.
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Figure 2.
Calculation of the joint density fL(z, D = 1) with 2 screening exams.
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Figure 3.
Density curve for the lead time in the HIP study using Bayesian inference.
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