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Summary
The peroxisome proliferator activated receptor gamma (PPARγ) is a member in the nuclear receptor
superfamily which mediates part of the regulatory effects of dietary fatty acids on gene expression.
As PPARγ also coordinates adipocyte differentiation, it is an important component in storing the
excess nutritional energy as fat. Our genes have evolved into maximizing energy storage, and
PPARγ has a central role in the mismatch between our genes and our affluent western society which
results in a broad range of metabolic disturbances, collectively known as the metabolic syndrome.
A flurry of human and mouse studies has shed new light on the mechanisms how the commonly used
insulin sensitizer drugs and PPARγ activators, thiazolidinediones, act, and which of their
physiological effects are dependent of PPARγ. It is now evident that the full activation of PPARγ is
less advantageous than targeted modulation of it's activity. Furthermore, new roles for PPARγ
signaling have been discovered in inflammation, bone morphogenesis, endothelial function, cancer,
longevity, and atherosclerosis, to mention a few. Here we draw together and discuss these recent
advances in the research into PPARγ biology.
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Introduction
Peroxisome proliferator-activated receptor-gamma (PPARγ, NR1C3) belongs to a nuclear
receptor superfamily of transcription factors. It is mainly known to regulate adipocyte
differentiation and fatty-acid uptake and storage (reviewed in [1-3]). The two distinct isoforms
of PPARγ protein, PPARγ1 and PPARγ2, originate from one PPARγ gene through the use of
separate promoters and 5' exons (Fig. 1), and differ by the presence of an extra 28 (human) –
30 (mouse) amino acids at the NH2-terminal end of PPARγ2 [4-10]. This extension of the
ligand-independent activation domain makes PPARγ2 a better transcriptional activator relative
to PPARγ1 [11]. Not only the protein structure of PPARγ1 and 2 is different but both isoforms
show also a distinct expression pattern. PPARγ2 expression is mainly limited to the adipose
tissue whereas PPARγ1 is ubiquitously expressed [12,13]. The transcriptional activity of
PPARγ is controlled by the promiscuous binding of small lipophilic ligands into the ligand-
binding pocket. Although a natural compound exhibiting specific, high-affinity binding
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characteristics remains unidentified, endogenous polyunsaturated fatty acids and eicosanoids,
derived from nutrition or metabolic pathways, have been recognized as ligands for PPARγ
[14-16]. In addition, many synthetic compounds, most particularly the thiazolidinediones
(TZDs), are potent PPARγ agonists (reviewed in [17,18]).

Human metabolism is evolutionarily equipped to cope with pre-agricultural cycles of feast and
famine, and physical activity and rest. Because of the rapid emergence of the modern
westernized life-style, exposing people to chronically elevated levels of natural PPARγ ligands
and positive energy balance, our genetic makeup has become ill adapted to cope with our
lifestyle [19-21]. The continual PPARγ activation promotes adipogenesis and fatty-acid
storage, and eventually obesity and associated metabolic diseases such as hyperlipidemia,
insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases including
hypertension, which constitute a heavy social and economic burden. Among the most potent
current treatment strategies for T2DM are the TZDs which exert their antidiabetic effects by
sensitizing the body to insulin's action. However, the clinical use of these full PPARγ agonists
is limited by weight gain due to increased adiposity, fluid retention, and heart failure in up to
15% of patients [22-24]. In addition, despite their fairly wide use, the long-term adverse effects
of TZDs are not very well known, and they may increase the risk for osteoporosis [25,26] and
colon cancer [27,28].

In this review we summarize the studies that have shed new light on the role of PPARγ in
energy homeostasis not only in the main metabolic tissues i.e. adipose tissue, liver and skeletal
muscle, but also in other tissues. The reviewed studies also emphasize that insulin sensitization
can be achieved without concomitant increase in fat deposition by modulating PPARγ activity.
In addition to obesity, altered PPARγ activity, elicited by our westernized lifestyle, has
potentially influenced bone homeostasis, longevity, cardiovascular and kidney function and
cancer risk, as recent literature supports a significant role for PPARγ in these processes.
Furthermore, animal models with altered PPARγ activity have elucidated the distinct roles of
PPARγ in various tissues, as well as PPARγ-dependent and independent actions of TZDs
therein. We can introduce here only a fraction of the existing information on this nuclear factor,
and will thus mostly concentrate on the lessons learned from the study of various natural or
engineered genetic variants of PPARγ that have altered PPARγ activity.

Human PPARγ genetic variants
The vital role of PPARγ in adipogenesis began to emerge more than a decade ago [12] and has
remained undisputed since. Both of the processes central in adipogenesis, namely preadipocyte
differentiation and fatty acid storage in mature adipocytes, are controlled by PPARγ, and
particularly the PPARγ2 isoform (reviewed in [2,3,20,21]). Genetic association studies in
humans underscore the role for PPARγ in adipogenesis as well as the complexity of PPARγ
biology. One of the first links was the discovery that PPARγ locus on chromosome 3p25-p24
associates with obesity in Pima Indians [29]. To date, dozens of reports have revealed
associations of genetic variation and population risk to T2DM or related conditions, as
summarized in Table 1 for Pparγ. The most widely reproduced association is that with the
PPARγ2 gene polymorphism Pro12Ala (Fig. 1B) [30,31] which has been suggested to induce
a modest impairment of transcriptional activation due to decreased DNA-binding affinity
[31,32]. The original reports describing a significantly reduced risk of T2DM in the normal-
weight carriers of the Ala12 allele [30,31] have subsequently been confirmed by many
independent studies, as reviewed in [2], and by recent meta-analyses [33-35]. For example, a
meta-analysis compiling over 25,000 cases of diabetes unequivocally confirmed the
association between the PPARγ Pro12 allele and T2DM, and suggested that patients who carry
the Pro12 allele have a 1.27-fold higher risk for developing T2DM than Ala12 carriers [33].
This seemingly modest effect translates into a staggering 25% population-attributable risk

Heikkinen et al. Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2007 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



because of the high frequency of the Pro12 allele (up to ∼80-100%), especially in Japanese
and European populations [33].

Genes do not work in a vacuum, but react to e.g. environmental stimuli. Clear demonstration
of this, in the context of Pparγ, is the apparently paradoxical linkage of the Ala12 allele to
higher body mass index (BMI) in obese (BMI ≥27) subjects [34]. Thus, pre-existing obesity
may be required for the Ala12 allele to cause further increase in obesity, whereas in lean
subjects the effect is either lacking [34] or opposite [31,36]. Furthermore, the phenotypic effects
of PPARγ Pro12Ala variant, also other than those on BMI and T2DM, have been shown to be
modulated by the superimposition of environmental factors like obesity, physical activity, and
the dietary fatty acid composition [37-40]. For example, Ala12 allele causes an increase in
muscle glucose uptake only in lean carriers and not in obese [37]. The Pro12Ala variant in
itself has also been associated with such additional phenotypes as longevity, cognitive decline,
atherosclerosis, hypertension, birth weight, myocardial infarction and cancer which may
provide further insight into the function of this variant in vivo [41-48]. Taken together, current
evidence supports a role for PPARγ at the interface between the environment and the control
of metabolism [40,49].

Genes not only react to environmental signals, but also interact with each other. As most human
metabolic disorders are clearly polygenic in nature, recently the combined effects of PPARγ
mutations and variants of other genes have been investigated. For example, Pro12Ala variant
has been shown to interactively influence insulin sensitivity and body composition with the
A-376C variant of fatty acid binding protein 4 (FABP4) gene [50], representing a synergistic
(1+1>2) interaction where the combined effect is more than what would be expected from
simply adding up the individual effects. On the other hand, only additive (1+1=2) interaction
was found among three common T2DM risk alleles (Lys23 of KCNJ11, Pro12 of PPARγ, and
the T allele at rs7903146 of TCF7L2) [51]. There is also evidence for a subtractive (1−1=0)
interaction, albeit within one gene, as two variants of PPARγ, Pro12Ala and C-681G were
recently reported to have an opposite effect on growth in British school children [52]. Similarly,
the C1431T variant (a.k.a. His477His) can negate the beneficial effects of the Pro12Ala variant
on T2DM [53]. Furthermore, the effect of Pro12Ala polymorphism may be restricted to certain
ethnic groups, as suggested for Caucasian subpopulations by a recent meta-analysis of pre-
diabetic traits in about 32,000 nondiabetic subjects [35]. Interestingly, genetic background has
also had a profound effect in certain mouse models with altered PPARγ activity, as discussed
below. The above genetic interaction studies clearly indicate that the genetic makeup of an
organism adds to the complex nature of PPARγ biology.

In contrast to the relatively mild effects of the common Pro12Ala variant, rare dominant
negative and loss-of-function mutations affecting the ligand-binding domain of PPARγ have
been identified in patients afflicted with partial lipodystrophy (loss of fat from the limbs and
gluteal region), hepatic steatosis, dyslipidemia, severe insulin resistance, diabetes and
hypertension. These and other currently described functional or otherwise important human
PPARγ variants are depicted in Figure 1B. The first identified loss-of-function mutations were
185Stop [54], Val290Met (also called V318M) [55], Arg425Cys (also R397C) [56], and
Pro467Leu (also called P495L) [55,57]. Apart from 185Stop, which results in a truncated
protein, the rest of these mutant receptors retain ability to bind target DNA but exhibit severely
reduced transcriptional activation via diminished capacity to recruit cofactors [55,58]. A very
recent report described five new mutations, three of which (Cys114Arg, Cys131Tyr and
Cys162Trp) prevent PPARγ from binding to the target DNA while the other two lead to
missense (Arg357X) or truncated (315Stop) proteins [59]. Heterozygous carriers of these new
mutations are severely insulin resistant and hepatosteatotic, and display partial lipodystrophy;
some of the patients are also hypertensive [59]. Although these studies provide direct genetic
evidence of a link between PPARγ action and the regulation of mammalian glucose
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homeostasis, it remains uncertain whether the profound effects on insulin resistance observed
in these individuals is only a manifestation of reduced adipose tissue mass or whether other
direct effects of PPARγ action on insulin signaling are impaired. Recent evidence, however,
suggests that dysfunction rather than relative lack of the adipose tissue may be more significant
[49].

Contrasting the loss-of-function mutations, a rare Pro115Gln substitution is a gain-of-function
mutation which renders PPARγ constitutively active and results in extreme obesity while,
paradoxically, normal insulin sensitivity prevails [60]. On the other hand, Phe388Leu (also
F360L) [61], Tyr355X [62] and a PPARγ promoter 4 variant A-14G [63] represent cases of
haploinsufficiency where the affected allele reduces PPARγ function without interfering with
the wild-type PPARγ protein. However, patients carrying these variants still exhibit the
stereotypical partial lipodystrophy, fatty liver, severe insulin resistance if not T2DM and
hyperlipidemia. Additional human PPARγ variants include a common silent His477His
polymorphism in PPARγ exon 6 (also called C1431T, C161T of exon 6, or CAC478CAT),
associated originally with altered leptin levels, higher BMI and lower bone mineral density
[64-66], and later with increased myocardial infarction risk [67] as well as with potential
protection from atherosclerotic lipid alterations [68]; a C-2821T variant in the PPARγ2
promoter, associating with whole-body insulin action and hepatic insulin sensitivity, likely via
altered binding on the overlapping E2-box, a binding consensus site for e.g. myogenin
differentiation 1 (MyoD) [69]; a C-681G variant in the promoter of the shorter form of
PPARγ1 (also called PPARγ3), associating with increased body size and plasma LDL levels,
via reduced binding of signal transducer and activator of transcription 5B (STAT5B) onto the
PPARγ promoter [70]; and a C-689T variant in the PPARγ2 promoter, associating again with
increased body weight and plasma LDL levels [71]. Recently also intronic PPARγ variants,
associating with body size, BMI and glucose levels, have been identified [72].

Mouse genetic variants
PPARγ exerts pleiotropic functions in a wide range of tissues and in processes beyond
metabolism. Genetic manipulations in the mouse offer excellent opportunities to unravel the
complex physiological effects of altered PPARγ activity in a well-controlled genetic
background and environmental setting. First came the generation of a conventional PPARγ
deficient mice which, unfortunately, die in utero due to major placental and cardiac defects.
Although a single PPARγ−/− animal was rescued by tetraploid aggregation, it survived the
severe lipodystrophy for only a few days [73]. The lipodystrophy of the rescued PPARγ−/−

mouse, together with the characterization of mice chimeric for PPARγ−/− ES cells [74], showed
the importance of PPARγ in adipose tissue development in vivo. Next, the physiological
function of PPARγ in mice was studied in the heterozygous PPARγ+/− mice. These
heterozygous PPARγ knock-out mice are a difficult model to understand, as both resistance
[75] and susceptibility [76] to high-fat diet induced obesity and subsequent insulin resistance
have been reported; for thorough discussion about the potential reasons, see [76]. To overcome
the embryonic lethality of the germ-line PPARγ deficient mice, tissue-specific deletions of
PPARγ have been generated subsequently in mice to help to elucidate the tissue specific
activities of PPARγ [77] (summarized in Table 2 for main metabolic tissues as targets, and in
Table 3 for other tissues).

PPARγ in adipose tissue
The essential role of PPARγ in adipogenesis was revealed by inactivation of both PPARγ1 and
PPARγ2 in the adipose tissue [78-80]. Moreover, the vital role of adipose tissue per se was
exemplified by the significant mortality rate (>40%) of the severely lipodystrophic WAT-
specific hypomorphic PPARγ1 and PPARγ2 knockdown mice (PPARγhyp/hyp) [78]. When an
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aP2-driven Cre recombinase transgene was used to ablate PPARγ1 and PPARγ2 from the
mature adipocytes, a more moderate reduction of adipose mass was observed, which was
accompanied by hyperlipidemia, liver steatosis, and protection from high-fat diet induced
increase in adiposity [79,80]. Interestingly, the surviving adult PPARγhyp/hyp mice did not have
liver steatosis or dyslipidemia due to efficient oxidation of excess lipids in the muscle by
PPARα and PPARβ/δ-driven pathways [78]. Intriguingly, all three adipose PPARγ-deficient
models had close to normal glucose tolerance [78-80]. The importance of PPARγ in the survival
of mature adipocytes was high-lighted by yet another independent ablation of total PPARγ
function in adipocytes, this time in a temporally controlled manner in adult mice [81].

To gain more insight to the relative roles of PPARγ1 and 2, mice with selective disruption of
the more adipogenic and adipose-tissue restricted PPARγ2 isoform have been generated.
However, these studies have provided somewhat confusing results. On C57Bl/6 genetic
background, ablation of PPARγ2 resulted in diminished adipose tissue (WAT) mass, decreased
insulin sensitivity and reduced adipocyte differentiation in vitro. In addition, it provided
protection against high-fat diet induced weight gain [82]. In contrast, on a 129 background,
PPARγ2-deficiency led to insulin resistance without affecting adiposity in vivo, even on high-
fat diet, although in vitro a defect in fat cell differentiation was clear [83]. Despite the
differences in adiposity and insulin sensitivity/resistance in these two models, likely due to the
different genetic backgrounds of the mice in the two studies, the authors of both papers linked
the phenotype to reduced levels of plasma adiponectin [82,83]. Moreover, the fact that there
still was fat in the PPARγ2-deficient mice indicates that also PPARγ1 is able to initiate at least
some adipocyte differentiation.

PPARγ in skeletal muscle
Although PPARγ is predominantly expressed in adipose tissue, also skeletal muscle expresses
it at low levels. Furthermore, muscle is an important tissue in glucose and fuel homeostasis.
Considering the large relative mass of muscle in the body, even a small change in PPARγ
activity might have significant metabolic effects. However, the role of PPARγ in the muscle
is fairly minor according to the two independent reports, albeit with essentially opposite results,
of muscle-specific PPARγ knock-out mouse models [84,85]. The report published first [84]
described muscle-specific PPARγ knock-out mice with normal glucose homeostasis and
insulin levels, but with reduced hepatic insulin sensitivity which was attributed to the increased
WAT mass. The inability of PPARγ-deficient muscle to effectively use lipids as fuel explained
the shunt of lipids to the adipocytes and thus the resulting adiposity. Since the beneficial effects
of TZDs on glucose homeostasis prevailed in the absence of muscle PPARγ, it was concluded
that the insulin-sensitizing effects of TZDs are independent of muscle PPARγ [84]. These
findings are consistent with the observations in the PPARγhyp/hyp mouse model where adipose
tissue PPARγ expression was shown to be crucial for the insulin-sensitizing effects of TZDs,
as TZD treatment ameliorated only the glucose intolerance but not the insulin resistance of
these mice [78]. In contrast to the first report, the second study [85] showed that muscle-specific
PPARγ-deficient mice develop severe muscle insulin resistance, leading to hyperinsulinemia,
glucose intolerance and hypertriglyceridemia. Since TZD treatment failed to enhance insulin-
stimulated glucose disposal into PPARγ-deficient muscle, suggesting a lack of improvement
in muscle insulin sensitivity, it was concluded that muscle PPARγ is the direct target of TZD
actions [85]. According to most studies, however, it seems that PPARγ in the muscle is more
responsible for coordinating the use of energy rather than directly controlling glucose
homeostasis or responses to insulin [78,79,84,86,87]. Thus it is likely that the insulin-
sensitizing effects of PPARγ are predominantly mediated by WAT. Therefore, in addition to
the role as master regulator of adipogenesis in vivo, PPARγ in the WAT also directs glucose
and lipid homeostasis.
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The role of PPARγ in the adipocytes differentiation is well established. Interestingly,
PPARγ seems to have a role also in muscle differentiation, at least in vitro. A recent study by
Singh et al [88] shows that correct regulation of PPARγ activity is vital for proper C2C12
myocyte differentiation as both 25-30% increase and similar decrease in PPARγ protein levels
resulted in virtually complete inhibition of myocyte differentiation. However, it seems that in
the in vivo setting there are compensatory mechanisms at play since none of the muscle specific
or heterozygous whole-body PPARγ knock-out models have been described with muscular
dystrophy.

PPARγ in the liver
Like skeletal muscle, also the liver expresses low levels of PPARγ. Again, consistent with the
adipose tissue and muscle-specific PPARγ knock-out models, also the liver-specific ablation
of PPARγ leads to impaired lipid balance. Lack of PPARγ in the livers of two separate mouse
models with pre-existing liver steatosis (leptin-deficient ob/ob or lipodystrophic A-ZIP/F-1
mice) protected the mice from the development of fatty liver by reducing liver triglyceride
content [86,87]. However, it also led to elevated serum levels of FFA and lipoprotein as well
as insulin resistance, illustrating PPARγ's role in liver lipogenesis. PPARγ in the liver was
shown to be critical for the ability of TZDs to lower triglycerides and glucose in conditions of
lipodystrophy. Indeed, in the absence of WAT, liver PPARγ regulates both fat and glucose
homeostasis [86], but in the presence of WAT, the impact of PPARγ in the liver on glucose
homeostasis is minimal.

An interesting alternative, especially useful for overexpression studies, is the systemic
adenoviral delivery of a transgene, typically resulting in liver-specific expression. Using this
methodology, in conjunction with PPARα-deficiency, the independent role of PPARγ1 in the
liver has been elucidated [89,90]. In contrast to the lack of PPARγ, overexpression of
PPARγ1 in the mouse liver leads to hepatic steatosis not only in the absence of PPARα but
also to some degree in wild-type mice via a mechanism involving transcriptional activation of
genes linked to adipogenesis, some of which are novel as PPARγ target genes [89,90]. Using
classical transgenesis, the artificial Leu468Ala/Glu471Ala double variant of PPARγ has also
been expressed in the mouse liver [91]. This model, resulting in suppression of both PPARα
and PPARγ target genes, revealed potentially distinct roles for PPARα and PPARγ in fasting
and high-fat diet induced hepatic steatosis.

The PPARγ-deficient mouse models specific to the three main metabolic tissues have helped
us to realize that when PPARγ is absent in any of them, whole-body lipid homeostasis and
insulin sensitivity are significantly altered. This is a fascinating observation considering that
PPARγ expression levels vary greatly among these tissues. The resulting repartitioning of lipids
that occurs in these mouse models has also unveiled the presence of a complex network of
cross-talk between the liver, adipose and muscle that is essential to the maintenance of energy
balance. This balance is in part achieved by the adaptation of PPARγ in the non-targeted tissues
and by the other PPAR isoforms, PPARα and β/δ, which enhance fatty acid oxidation to
minimize hyperlipidemia and the consequential insulin resistance.

PPARγ in pancreas
Based on the evidence from rat and human pancreatic islets, PPARγ is expressed by the beta-
cells [92,93]. However, in contrast to adipose tissue, muscle and liver, the deletion of
PPARγ in pancreatic beta-cells did not result in metabolic phenotype. Instead, it high-lighted
the antiproliferative role of PPARγ because on chow diet these mice had a 2-fold increase in
pancreatic islet size. Opposite to this, on a high-fat diet the normal expansion of beta-cell mass
was markedly blunted in the absence of PPARγ [94]. Another study, using high-fat fed
PPARγ+/− mice, identified a role for PPARγ in insulin secretion and triglyceride partitioning
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into the islets upon high-fat feeding, leading to protective effects against lipotoxicity [95].
However, the importance of these findings, when it comes to translating them to human
biology, may be reduced by the fact that PPARγ gene expression in mouse islets [95] is very
low compared to human (and rat) islets [92,93]. This difference in PPARγ expression in the
pancreas is also evident in the SymAtlas gene expression data sets for mouse and human (http://
symatlas.gnf.org/SymAtlas/).

PPARγ in the macrophages
As the role of PPARγ in atherosclerosis, in which macrophages are integral players, is covered
by another review in this issue of BBA, we present and discuss here only those studies utilizing
mice with macrophage-specific PPARγ inactivation. PPARγ has a similar function in
macrophages and adipocytes as it modulates lipid homeostasis in both cell types via regulation
of genes including e.g. lipoprotein lipase and CD36. Studies using macrophage-specific
PPARγ-deficient mice have identified a definite antiatherogenic role for PPARγ as in these
mice lipid homeostasis in the arterial wall is significantly impaired and the development of
atherosclerosis enhanced [96-98]. Mechanism behind the antiatherogenic properties of
PPARγ involves stimulation of cholesterol efflux from macrophages into the plasma (reduced
in knock-out mice) and inhibition of monocyte recruitment into the developing atherosclerotic
lesion, the latter suggested by increased CC chemokine receptor 2 gene expression [97].
Interestingly, macrophage-specific ablation of PPARγ results in exaggerated insulin resistance
upon high-fat feeding, suggesting that macrophage PPARγ has a protective role in obesity
[99]. Indeed, an intriguing link between macrophages, inflammation, adipose tissue and T2DM
has recently emerged [100-102]. In obesity, the adipose tissue is continually under metabolic
stress, leading to the activation of stress and inflammatory pathways, which in turn result in
macrophage accumulation within the adipose tissue. Subsequently, adipocytes release
cytokines, adipokines and free fatty acids, which may cause insulin resistance not only locally
but also in the liver and/or skeletal muscle. Further research is needed to discover how
macrophage PPARγ fits into the developing picture on the role of adipose-macrophages in
insulin resistance.

PPARγ in cardiovascular system
In an attempt to elucidate the mechanisms by which PPARγ ligands ameliorate hypertension
in humans, the role of PPARγ in vascular endothelial cells has been investigated using tissue-
specific PPARγ-deficient mice (PPARγ E-null) [103]. These mice did not have apparent
developmental, reproductive or biochemical abnormalities, nor changes in systolic blood
pressure or heart rate on chow diet. However, upon a challenge with high-fat diet, an increase
in both blood pressure and heart rate was evident in the PPARγ E-null mice, whereas only the
heart rate was affected upon salt-loading [103]. Although treating the mice with rosiglitazone
was clearly effective per se, as indicated by the decreased plasma insulin, it failed to lower the
high-fat diet induced hypertension in PPARγ E-null mice, contrary to the effect in wild type
mice. Even in the absence of mechanistic data, this study demonstrates the central role for
PPARγ in mediating the antihypertensive effects of rosiglitazone, especially under conditions
partly simulating human type 2 diabetes.

Due to the presence of PPARγ in cardiac muscle, combined with the fact that at super-clinical
doses TZDs cause cardiac hypertrophy, the role of PPARγ in the heart has been investigated
[104,105]. Initial observation on PPARγ+/− mice was that under pressure-overloaded
conditions the heterozygous PPARγ-deficiency leads to cardiac hypertrophy, and that
pioglitazone surprisingly provides either full (wild type) or partial protection (PPARγ+/−)
against the condition, suggesting that pioglitazone action is mostly PPARγ-dependent [104].
In a more recent study [105], also the selectively absence of PPARγ in the heart muscle resulted
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in cardiac hypertrophy, similar to that caused by rosiglitazone, but systolic function was
retained. The study of Duan et al [105] also provides deeper mechanistic insight by showing
that the promotion of cardiac hypertrophy by rosiglitazone and cardiac-specific PPARγ-
deficiency are mediated by different mechanisms, as evidenced by the differential effects on
gene expression, NF-κB activity and the activation of the members of MAPK pathways. In
this respect, the most noteworthy observation was the PPARγ-independent effect of
rosiglitazone on Erk1/2 activation [105]. This study is yet another demonstration of the
potential that the PPARγ cell type-specific knock-out models provide for discerning the
PPARγ-dependence of e.g. pharmacological interventions.

Taken together, these studies emphasize the importance of PPARγ in the maintenance of
cardiac and vascular function and shed light on the PPARγ-dependent and independent
mechanisms of TZD action in this organ system.

PPARγ in kidney
Edema and fluid retention are common and serious side effects of TZD treatment. Since
PPARγ is a significant target for TZDs and it is expressed in the collecting ducts of the kidneys,
the specific involvement of PPARγ in fluid metabolism has been recently elucidated by two
groups using mice with collecting duct-specific ablation of PPARγ [106,107]. Both studies
show a critical role for PPARγ in systemic fluid retention through the regulation of renal sodium
transport, and that the adverse effects of TZD in fluid metabolism are indeed PPARγ-
dependent. Scnn1g, a gene encoding for the gamma subunit of the epithelial Na+ channel
(ENaC) was identified as a critical PPARγ target gene in the control of fluid metabolism
[107].

PPARγ in the lung
PPARγ expression has been detected in the lung, in particular the airway epithelium [108]. A
specific role for PPARγ in lung maturation was recently revealed by Simon et al [109] using
mice where PPARγ deletion was initiated specifically in conducting airway epithelium at late
fetal to early postnatal stage. Physiological consequences of the PPARγ deletion in the airway
epithelium include a persistent, but not progressive enlargement of airspaces in adult mice,
which together with other phenotypic changes in the lungs point to a role for PPARγ in postnatal
lung maturation [109]. Gene expression studies corroborated the physiological phenotype and
suggested a role for PPARγ in differentiation as well as lipid metabolism in the lung. Although
these mice were kept in pathogen-free conditions, to exclude inflammation as a confounding
factor [109], it is likely that these mice are susceptible to inflammation as PPARγ is a
recognized regulator of inflammatory response. For example, it has been shown that PPARγ,
together with PPARα, down-regulates several immune system parameters in a murine model
of human asthma [110,111]. Thus, not only PPARγ but also PPARα should be targeted for the
best therapeutic effect when combating the allergic or inflammatory reactions within the
airways.

PPARγ in mammary epithelium, B- and T-cells, and in ovarian cells
Cui et al generated separate knock-out lineages where PPARγ was inactivated either in
mammary epithelial cells during pregnancy and lactation (WAP-Cre) or in mammary epithelial
cells, salivary gland, B- and T-cells, oocytes, granulose cells and megacaryocytes (MMTV-
Cre) [112]. Their results show that PPARγ is not necessary for mammary development nor
function, nor does it's absence lead to increased tumorigenesis in this tissue. Also B- and T-
cell development is normal in the absence of PPARγ. However, the lack of PPARγ in ovarian
cells, including oocytes, granulose cells and corpora lutea, but not in the uterus, resulted in
impaired female fertility, possibly due to disturbances in implantation. This points to a role for
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PPARγ in female reproduction, in line with other recent research (reviewed in [113]). In fact,
also sperm has been shown to express PPARγ [114], and it will be interesting to see if
PPARγ has a significant role also in male reproduction.

PPARγ in the gastrointestinal tract
In the mouse intestine, PPARγ regulates cell growth and differentiation. In addition, PPARγ
is highly expressed in the (epithelium of) colon and cecum [28,115]. This suggests that
PPARγ has potential for colon cancer association. However, the available evidence continues
to be conflicting in whether PPARγ acts as a promoter or inhibitor in intestinal tumorigenesis,
let alone in general. Administration of PPARγ ligands, i.e. PPARγ activation, increases
tumorigenesis in C57BL/6J-APCMin/+ mice which are predisposed to intestinal neoplasia
[27,28]. However, increased susceptibility to colon cancer has been shown to result also from
heterozygous PPARγ-deficiency in a chemical model of tumorigenesis induced by
azoxymethane administration [116]. Furthermore, when the intestinal PPARγ was fully or
partly inactivated on the same C57BL/6J-APCMin/+ background as above, spontaneous
tumorigenesis was significantly enhanced in the colon, and in female mice also in the small
intestine, suggesting an antitumorigenic role for PPARγ in the gastrointestinal tract [117].
Intestinal PPARγ may also have a sex-specific developmental role, as some female embryonic
lethality was reported. The above studies seem to suggest that an optimal level of intestinal
PPARγ may exist from which any significant deviation will promote tumorigenesis. In fact,
the suggested requirement for a balanced PPARγ activity in intestinal tumorigenesis resembles
the effects of PPARγ in muscle cell differentiation (see above) [88]. In addition, the cellular
context of PPARγ cofactors (e.g. APC (see above) and retinoblastoma protein [118]) seems to
influence tumorigenesis.

Another independently generated intestine-specific PPARγ knock-out model [119]
demonstrated the importance of PPARγ as a protective agent against experimental
inflammatory bowel disease (IBD), as mice lacking PPARγ in the colon epithelium had
increased susceptibility to dextran sodium sulphate (DSS) induced IBD and cytokine gene
expression. This model recapitulates earlier results where heterozygous whole-body loss of
PPARγ also rendered the mice more susceptible to experimental IBD [120]. Furthermore, the
involvement of PPARγ in the anti-inflammatory effects of 5-aminosalicylic acid, which is a
drug widely used to treat the human IBD, has been recently shown in PPARγ+/− mice where
the drug protected only the wild type mice from IBD [121]. On the other hand, the anti-
inflammatory effect of rosiglitazone in experimental IBD seems to be independent of
PPARγ, as the colon-specific PPARγ knock-out mice benefited from the treatment similarly
to wild-types [119]; this is in contradiction to the PPARγ-dependent anti-inflammatory role of
rosiglitazone in macrophages [122].

Taken together, these results are in line with the suggested role of PPARγ as an anti-
inflammatory agent. Furthermore, they suggest that the anti-inflammatory function of TZDs
may act via different routes in the colon epithelium from that in macrophages. Although the
tumorigenesis-related and anti-inflammatory effects of PPARγ have been clarified, to a degree,
by the above studies, possible systemic effects of intestinal PPARγ remain unclear as metabolic
phenotyping is lacking in the intestinal-specific PPARγ knock-out mice.

PPARγ in the epidermis
PPARγ activation stimulates keratinocyte differentiation and reduces inflammatory response
in the skin. Using dermal-specific PPARγ knock-out mice, it has been possible to demonstrate
that the dermal effects of TZDs on keratinocyte differentiation are indeed PPARγ-dependent
but the effects on inflammation seem independent of PPARγ [123]. In basal conditions,
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however, all the key functions of the epidermis were normal in these mice and the only observed
phenotypic effects were a patchy hair loss upon aging and a slight epidermal hyperplasia.

PPARγ in the neural tissues
High-level PPARγ expression has been detected in the mouse embryonal brain and neural stem
cells, but in the adult brain in general PPARγ expression is very low [124]. The data of Wada
et al [124] demonstrate a role for PPARγ in the developing brain where it promotes
differentiation as the embryonal neural stem cells from heterozygous PPARγ knock-out mice
have decreased growth rates. In addition, PPARγ agonists stimulate the growth of neural stem
cells whereas antagonists cause apoptosis [124].

There is also a role for PPARγ in the inflammatory diseases of the brain, as heterozygous
PPARγ knock-out mice have an exacerbated response in an experimental allergic
encephalomyelitis model, which is a Th1 cell-mediated inflammatory demyelinating
autoimmune disease resembling multiple sclerosis [125,126].

PPARγ and bone homeostasis
Physical activity is a prerequisite for food procurement, food is a prerequisite for energy
storage, and stored energy is a prerequisite for physical activity. Because of this inextricable
linkage, it is plausible that concomitant with the role PPARγ has in fuel storage and use, it also
regulates bone mass to provide the structural strength required in procuring the next meal.
Further link between energy storage and bone arises from the fact that both adipocytes, whose
differentiation PPARγ promotes, and osteoblasts differentiate from the same mesenchymal
progenitor cells. On the other hand, osteoclasts, mediating bone resorption, originate from
hematopoietic precursors [127]. The initial suggestion that PPARγ might influence bone
development and homeostasis came from an investigation of 404 Japanese menopausal women
carrying a silent His477His variant of PPARγ which associated with mildly decreased bone
mineral density (BMD) [65]. Although this association has been recently challenged by the
lack thereof in otherwise comparable 263 Korean women [128], other evidence is aplenty and
irrefutable. For example, natural and synthetic PPARγ agonists hinder bone formation in mice
[129-131]. On the other hands, heterozygous PPARγ-deficient mice have enhanced
osteoblastogenesis resulting in increased bone mass [132]. Similarly, the specific absence of
PPARγ in fat robustly increases bone mass as it favors osteogenic rather than adipogenic
differentiation of mesenchymal precursor cells [26]. The absence of PPARγ in adipocytes also
limits their capacity to secrete antiosteogenic-signaling factors, including leptin, further
enhancing the bone phenotype [26]. In addition, the strongly enhanced bone mass
consequentially reduces the bone marrow cavity volume and suppressed hematopoiesis which
is, however, compensated for by extramedullary hematopoiesis in the spleen [26]. Moreover,
PPARγ haploinsufficiency (PPARγ+/−) in vitro promotes osteoblastogenesis but does not affect
osteoclast differentiation [25], further strengthening the evidence for the antiosteogenic role
of PPARγ.

If these data obtained in the mouse models can be extrapolated to humans, inhibition of
PPARγ activity could be an interesting strategy to combat osteoporosis. It also warrants careful
monitoring of T2DM patients treated with PPARγ agonists to detect the eventual development
of osteoporosis. The most favorable pharmacological approaches to combat diabetes and
osteoporosis via PPARγ-targeting would be those that segregate the positive effects on insulin
resistance from the adverse effects on e.g. osteoporosis and cancer.
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PPARγ and longevity
Obesity is accompanied by insulin resistance, hyperlipidemia and T2DM which are risk factors
for many other diseases that are likely to shorten lifespan. On the other hand, also lipodystrophy
is known to shorten lifespan and it results in complications surprisingly similar to those seen
in obesity, both in mice and humans (reviewed in [133,134]). Conversely, caloric restriction
promotes longevity and is accompanied by reduced fat mass and improved insulin sensitivity
(reviewed in [135,136]). Indeed, decrease in adipose mass and alterations in the insulin/IGF-1
signaling pathway are consistently implicated as critical in mediating the extension of lifespan,
as exemplified by the prolonged life of the fat-specific insulin receptor knock-out mice [137].
Among the recently identified mediators of insulin signaling are the Forkhead box
‘Other’ (FOXO) proteins (reviewed in [138]). Fittingly, the modulation of FOXO expression
specifically in the adipose tissue of Drosophila or C. elegans is sufficient to mediate FOXO's
effects on life span [139-141]. However, also the inhibition of PPARγ can explain the beneficial
effects of caloric restriction on longevity. SIRT1, the mammalian ortholog of silent information
regulator Sir2, is a NAD+-regulated protein deacetylase and a transcriptional inhibitor
associating strongly with longevity. SIRT1 represses PPARγ and hence genes controlling fat
storage by docking to the PPARγ corepressors NCoR and SMRT [142]. In Sirt1+/− mice, release
of fatty acids from white adipocytes upon fasting is reduced, supporting Sirt1 mediated
PPARγ inactivation as part of the molecular pathway connecting caloric restriction to life
extension in mammals [142]. However, this model does not account for how SIRT1 mediates
increased insulin sensitivity under long-term caloric restriction if it represses PPARγ. The
insulin sensitizing effect of SIRT1 is, on the other hand, more likely linked to enhanced
mitochondrial activity and energy expenditure as recently demonstrated [143]. Consistent with
the Sirt1+/− mouse model, however, is the fact that the human Pro12Ala PPARγ variant with
reduced function also associates with increased longevity [42]. Nonetheless, at present it
remains unclear precisely how PPARγ influences aging and by what mechanism.

Human PPARγ mutations in the mouse
Mouse models carrying specific PPARγ mutations have been generated to further refine the
information gained from the whole-body and tissue-specific deletions of PPARγ. First such
model was the knock-in of alanine at position 112 (S112A) which prevents serine
phosphorylation and renders PPARγ constitutively active, thus resembling but not replicating
the human Pro115Gln mutation [144]. In mice this mutation preserves insulin sensitivity during
diet-induced obesity due to undersized adipocytes, and elevated serum adiponectin and reduced
FFA levels. This suggests that modulation in the phosphorylation state of PPARγ may serve
as a pharmacological target for insulin sensitization free of weight gain. Another synthetic
PPARγ variant reconstituted in mouse is the Leu466Ala variant, which in vitro is a strong
dominant-negative mutant with altered coactivator (absent) and corepressor (enhanced)
recruitment characteristics [145]. While this variant is lethal when homozygous, in
heterozygous mice it remarkably reproduces the phenotype of adipose tissue-specific
PPARγ knock-out mice [79,80] as the mice exhibit lipodystrophy and hepatosteatosis on chow
diet, and insulin resistance on high-fat diet [146]. In addition, Leu466Ala female mice become
hypertensive upon high-fat feeding [146], whereas in mice deficient of PPARγ in vasculature,
high-fat diet induces hypertension in both males and females [103]. Unfortunately, published
data is lacking on the hypertensive status of the adipose-specific PPARγ knock-outs.

Also the de facto human genetic variants of PPARγ are starting to find their way into mice.
Similarly to Leu466Ala, the homozygous Pro465Leu PPARγ mutant (P467L or P495L in
humans) (Fig. 1B) proved lethal [147,148]. In heterozygous state both independent versions
of Pro465Leu mutant mice had, surprisingly, normal insulin sensitivity on chow diet. This is
in stark contrast to the severe insulin resistance described in Pro467Leu humans [55,57].
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Although the mutation in the adjacent Leu466 did lead to lipodystrophy (see above), the authors
of Pro465Leu mice raised a question of how well the results obtained from PPARγ mutant
mouse models actually translate to human physiology [147]. However, similarities between
humans and mice with this mutation also exist, including the redistribution of fat depots
[147,148], hypertension [148] and impairment in the postprandial lipid clearance [147].
Furthermore, when bred to hyperphagic ob/ob genetic background, severe insulin resistance
and other metabolic disturbances became evident [147]. In mice, thermogenic capacity is also
diminished due to Pro465Leu PPARγ genotype, and the brown adipocyte recruitment within
the WAT is decreased [149].

Together with the vasculature-specific PPARγ-deficient mice [103], exhibiting hypertension
in the absence of lipodystrophy or insulin resistance, the Pro465Leu mice [148] provide
evidence against the dogma that hypertension is a consequence of the insulin resistance in the
wake of PPARγ deficiency and lipodystrophy [150]. The uncoupling between lipodystrophy,
insulin resistance and hypertension implies direct modulation of blood pressure by PPARγ,
possibly through regulating the reninangiotensin system activity in adipose tissue [148,150].
Furthermore, this hypothesis provides an explanation for the decrease in blood pressure
observed with TZD treatment and emphasizes the continued value of using natural mutations
and targeted gene deficiency models to understand receptor function and pharmacology
[151,152].

Conclusions and perspectives
The phenotypic effects of human PPARγ variants and various mouse models with modified
PPARγ expression levels unequivocally demonstrate the highly complex nature of PPARγ
biology. Despite occasionally confusing results, accumulating evidence confirms the critical
role for PPARγ in adipogenesis, maintenance of glucose and lipid metabolism, bone
homeostasis, and control of inflammation and blood pressure. The specific roles for PPARγ in
each tissue are also emerging, as adipogenesis is regulated by PPARγ of the adipose, an
inflammatory role for PPARγ is evident at least in intestinal epithelium and the brain,
hypertension due to high-fat diet is modulated by endothelial PPARγ, and fluid retention is
controlled by PPARγ of the kidney collecting ducts. On the other hand, concerted efforts of
PPARγ in adipose tissue, liver, muscle and possibly also the macrophage are required to
maintain normal insulin sensitivity. However, PPARγ is not working alone, as many of the
above roles are partly complementary to those of PPARα, implicated in inflammation and fatty
acid oxidation in the liver and other tissues, and the less studied, ubiquitously expressed
PPARδ, also implicated in the control of inflammation as well as fat homeostasis (for review,
see e.g. [153]). Taken together, in light of the adverse side effects of full PPARγ agonists,
future pharmacological strategies for treatment of T2DM, metabolic syndrome and other
related conditions will undoubtedly benefit both from compounds that modulate PPARγ
specifically in a tissue-selective fashion [154] and compounds targeting more widely the PPAR
family [155-157].

The improvement in longevity during human evolution has occurred because efficient energy
conservation and storage has allowed survival through periods of famine whereas an enhanced
innate immune response has protected from infections, uncontrolled cell proliferation and
cancers. The fact that PPARγ has been implicated in several of these biological processes, as
reviewed above, and in particular in adipogenesis and glucose homeostasis, suggests that
PPARγ plays an active role in age-related pathophysiologies. It is certain that the investigation
of PPARγ has already impacted on many scientific fields e.g. by revealing significant roles for
PPARγ in several tissues, and not only in those directly related to fat storage. This trend is
likely to continue, long into the future.
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Figure 1.
Human PPARγ genetic variants. A: Genomic structure of the human PPARγ gene (>150 kb)
with thus far described promoter mutants below the structural scheme. Exons are presented as
boxes with identification above. Exons A1 and A2 are non-coding, while B encodes for the N-
terminal addition in PPARγ2 which is missing in PPARγ1. The exon sizes are exaggerated for
clarity. Note the recently identified additional exon in the intron 3 which contains an in-frame
stop codon and the use of which results in a truncated protein (Kim et al, Biochem. Biophys.
Res. Commun. 347 (2006) 698-706). Promoters are indicated by angled arrows. Numbering
for the promoter mutants is relative to the transcriptional initiation site for each promoter. B:
Functional structure of PPARγ protein with currently identified human PPARγ functional
variants. Hatched section at the N-terminal end indicates the 28 amino acids specific for
PPARγ2. AF1, ligand independent activation domain 1; DBD, DNA binding domain; LBD,
ligand binding domain. PPARγ mutations are shown as arrowheads along the structural regions,
color indicating the type of mutation as follows: green, gain of function; yellow, partial loss
of function; red, loss of function, dominant-negative; grey, silent variant; white, unknown.
Note that the amino acid numbering of the variants follows that of the originating publications,
and thus some refer to PPARγ1, some PPARγ2. H477H is not likely to be a functional variant,
but it is included here due to the fair number of papers associating it with various disease states.
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Table 3
A comparison of PPARγ knockout models specific to other tissues.

Targeted tissue
(Cre promoter)

Main phenotypic characteristics

Vasculature, endothelial
cells (Tie2)[103]

Normal plasma profile
Blood pressure normal on chow, increased on high-fat diet
Hypertension unresponsive to rosiglitazone on high-fat diet

Heart, cardiomyocytes
(αMHC)[105]

Normal body weight and plasma glucose
Cardiac hypertrophy but normal (or slightly improved) systolic function

Kidney, collecting ducts
(Aq2)[106,107]

Protection from thiazolidinedione-induced edema

Lung, conducting airway
epithelium (CC10)[109]

Impaired lung maturation (non-progressive condition)

Mammary epithelium
(WAP, MMTV)[112]

Normal mammary function
No differences in tumorigenesis

B- and T-cells, and ovaries
(MMTV)[112]

Normal B- and T-cell production
Partial to complete infertility (due to impaired implantation?)

Intestine (Villin)[117]
(on ApcMin/+ background)

Normal body weight
Enhanced intestinal tumorigenesis (some gender differences)

Colon, epidermal cells
(Villin)[119]

Sensitization to experimental inflammatory bowel disease with similar relative protection
by rosiglitazone

Epidermis (K14)[123] Normal skin function

αMHC, alpha myosin heavy chain; Aq2, aquaporin 2; WAP, whey acidic protein; MMTV, mouse mammary tumor virus; Apc, adenomatosis polyposis
coli; K14, keratin 14.
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