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Abstract
Continuous wave electron paramagnetic resonance imaging for in vivo mapping of spin distribution
and spectral shape requires rapid data acquisition. A spectral-spatial imaging technique is presented
that provides an order of magnitude reduction in acquisition time, compared to iterative tomographic
reprojection. The proposed approach assumes that spectral shapes in the sample are well-
approximated by members from a parametric family of functions. A model is developed for the
spectra measured with magnetic field modulation. Parameters defining the spin distribution and
spectral shapes are then determined directly from the measurements using maximum a posteriori
probability estimation. The approach does not suffer approximation error from limited sweep width
of the main magnetic field and explicitly incorporates the variability in signal-to-noise ratio versus
strength of magnetic field gradient. The processing technique is experimentally demonstrated on a
one- dimensional phantom containing a nitroxide spin label with constant g-factor. Using an L-band
EPR spectrometer, spectral shapes and spin distribution are accurately recovered from two
projections and a spectral window which is comparable to the maximum linewidth of the sample.
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1 Introduction
Electron paramagnetic resonance imaging (EPRI) is a noninvasive technique capable of
mapping unpaired electrons for both endogenous and introduced free radicals [1,2]. The
technique has evolved over two decades to become an important tool for studying free radicals
in many branches of science [3–5] and has potential for the study of living biological systems
[6–9]. Despite progress, high-quality EPR imaging has been limited by several technical factors
including resolution, sensitivity, and acquisition time [10,11].

Spatial EPRI is capable of mapping the distribution of free radicals under the assumption that
spectral lineshape is invariant throughout the object. Thus, for samples having spatially varying
linewidths, or multiple radical species, accurate mapping of spin distribution is not possible
using spatial EPRI. More importantly, spatial imaging only quantifies the spin content,
providing no information about the nature of spins. To overcome this limitation, an additional
dimension, the spectral dimension, is required to express spatially variant line-shape [12]. The
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imaging technique that includes a spectral dimension is termed spectral-spatial imaging. An
example application of spectral-spectral EPRI is oximetry based on linewidth broadening from
Heisenberg spin exchange interaction between a paramagnetic EPR spin probe and unpaired
electrons in molecular oxygen [13].

In continuous wave (CW) EPRI, data is collected in the form of projections [14] which are
acquired by measuring the absorption signal as a function of magnetic field in the presence of
a static gradient. The strength and the orientation of the gradient vector are varied from
projection to projection to encode the spectral and spatial information of the spins. Once an
adequate number of projections are acquired, an image can be reconstructed using filtered
backprojection (FBP) [15], which is based on the direct inversion of the Radon transform. To
image the spectral dimension, projections are acquired at different gradient strengths. However,
low signal-to-noise ratio (SNR), long acquisition time, and hardware limitations restrict the
data acquisition at high gradient strengths. As a result, FBP imaging is degraded by the
unobservable projections - a problem typically referred to as \missing angle tomography". The
common solution is a projection-reprojection approach [16–18], in which missing data are
synthesized at each iteration by computing projections through a FBP image or algebraic
reconstruction image after smoothing the spectral dimension by curve fitting to an assumed
lineshape function. The FBP or algebraic image reconstruction at each iteration requires a
magnetic field sweep width that is several times the maximum linewidth to avoid error in
truncating lineshape tails; a factor of 5 to 20 is typically adopted [19].

Thus, existing spectral-spatial imaging techniques are hampered by long collection times due
to large sweep widths, large number of projections and by missing projection angles. In this
work, we explicitly use prior knowledge of the lineshape functional form, such as Lorentzian,
to address these deficiencies. Spectral-spatial EPR measurements are modeled as a function of
spin density and lineshape parameters at each spatial location. Object properties are inferred
from the data by maximum a posteriori probability (MAP) estimation. With no reliance on
backprojection for inversion, the approach suffers no artifacts from missing projection angles,
arbitrarily spaced sampling of gradient strength or spectral truncation. The estimation
framework directly accounts for the decrease in SNR versus gradient strength, provides a
principled means of selecting gradient strengths for acquisition, and reports noise sensitivity
of estimated parameters. Simulation and experimental results demonstrate that reliable
reconstruction is possible from two projections and a spectral window that is only equal to the
maximum spectral linewidth. Additional projections or increased sweep width provide
increased robustness to measurement noise. The proposed technique is described for two-
dimensional spectral-spatial imaging and can be extended to higher dimensions.

2 Data Model
In this section, a mathematical model is formulated to describe the spectral-spatial EPR
measurements in terms of the unknown spin density and spectral profile. For clarity and
simplicity of presentation, one spatial dimension is considered here.

2.1 Parametric Object Model
Let the spatial dimension be denoted by y. The field of view (FOV) L is discretely approximated
as K uniformly spaced piece-wise constant intervals numbered by k from −K/2 to K/2 −1. For
interval k, the lower and upper endpoints yl,k and yu,k are given by

yl,k = k L
K and yu,k = (k + 1) L

K (1)
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On each interval, the spectral dimension, denoted by h, is assumed to have a Lorentzian
lineshape. The spin density and Lorentzian half-linewidth (i.e., half width at half maximum)
in the kth interval are denoted by dk and τk, respectively. The center of the Lorentzian is assumed
to be known, constant, and equal to h0 for every interval. Thus, the spectral-spatial object model
is given by

S(y, h ) =
dkτk

(h − h0)2 + τk
2 , yl,k ≤ y < yu,k (2)

Let d and τ denote the lists of K spin densities and K half-linewidths specifying the object
model, and define ξ = [dτ]Τ to be the column vector of the 2K parameters.

2.2 Parametric Projection Model
The geometry of a 2D spectral-spatial projection is depicted in Fig. 1. A static gradient field

is used to create a pseudo angle α, where 2ΔH
cos α  is the sweep-width and ΔH is the spectral

window; the maximum pseudo angle αmax relates to the physical maximum gradient Gmax by
L = tan(αmax)ΔH=Gmax [20].

The normal distance of the line of integration from the origin of the pseudo object is denoted
by s. The line of projection (AB) is given by

h = y ΔH
L tan α + s

cos α (3)

and intersects the lower and upper edges of the kth segment at positions yl;k and yu,k,
respectively. The corresponding h co-ordinates are

hl,k(s, α) = yl,k
ΔH
L tan α + s

cos α (4)

hu,k(s, α) = yu,k
ΔH
L tan α + s

cos α (5)

The projection P(s, α, ξ) is given by the line integral

P(s, α; ξ
_
) = c

sin α ∑
k=−K

2

K
2−1

∫
hl,k(s,α)

hu,k(s,α)
dkτk

(h − h0)2 + τk
2 dh (6)

where c is a calibration constant. Note that the projection lines are not truncated by any spectral
window; therefore, the model does not suffer the approximation error introduced in inverse
Radon transform reconstruction by neglecting contribution from area under the tails of the
spectral lineshape outside the spectral window.

If the modulation amplitude and frequency are small, then the measured data f(s, α; ξ) due to
Zeeman modulation are proportional to the the first derivative of P(s, α; ξ) with respect to s
and are scaled by a factor of cos2α [19].
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f (s, α; ξ
_
) = c∼(cos2 α) ∂∂s P(s, α; ξ

_
) = c∼ ∑

k=−K
2

K
2−1 dkτk

tan α

× ( 1
(hu,k(s, α) − h0)2 + τk

2 − 1
(hl,k(s, α) − h0)2 + τk

2 ) (7)

where c ̃is the revised calibration constant.

If N samples are taken at every angle, then s may be replaced by sample number n in Eq. [7]
using

s = 2ΔHn
N , n = − N / 2, … , N / 2 − 1 (8)

Substitution of eqns. (1) and (8) into eqns. (7), (4) and (5) yields

f (n, α; ξ
_
) = c∼

tan α ∑
k=−K

2

K
2−1

dkτk

× ( 1
(hu,k(n, α) − h0)2 + τk

2 − 1
(hl,k(n, α) − h0)2 + τk

2 )
hl,k(n, α) = k ΔH

K tan α + 2ΔHn
N cos α

hu,k(n, α) = (k + 1)ΔH
K tan α + 2ΔHn

N cos α

(9)

Note that by application of L'Hôpital's rule to Eq. [9], the zero gradient projection case, i.e.,α
= 0, gives

f (n, 0; ξ
_
) = 2c∼ΔH

K ∑
k=−K

2

K
2−1 dkτk(h0 −

2ΔHn
N )

(( 2ΔHn
N − h0)2 + τk

2)2 (10)

2.3 Noise Model
Measurement noise is modeled as additive, zero mean, Gaussian, and uncorrelated with
variance σ2. Let Y denote the measurements, with samples from all angles concatenated. Thus,
Y is a multi-variate Gaussian random vector with mean f and diagonal covariance matrix σ2I.

Given this parametric model, spectral-spatial imaging is the task of inferring parameters d and
τ from the noisy observations, Y.

3 Parameter Estimation
A Bayesian approach is adopted for parameter estimation and yields a regularized least-squares
inversion. A confidence measure for estimated parameters is determined using the Cramμer-
Rao lower bound.

3.1 Maximum A Posteriori Probability (MAP) Estimate
The parameter vector ξ is estimated by maximizing the posterior probability of ξ given the
noisy measurements, Y [23]. Invoking Bayes' formula,
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ξ̂
_

= arg max
ξ
_

p(ξ
_
∣ Y

_
) = arg max

ξ
_

p(Y
_
∣ ξ)p(ξ

_
)

p(Y
_
)

= arg min
ξ
_

− { log p(Y
_
∣ ξ

_
) + log p(ξ

_
)}

= arg min
ξ
_

1
2σ2 ∑n,α (Y (n, α) − f (n, α; ξ

_
))2 + g(ξ

_
)

(11)

The prior probability density p(ξ) ∝ exp{−g(ξ)} is used to encode prior knowledge of the
spectral-spatial object. We adopt

g(ξ
_
) = ∑

k=−K/2

K/2−2
λd(dk+1 − dk)2 + λτ(τk+1 − τk)2 (12)

to express the belief that smooth distributions of spin density and half-linewidth are likely.

For decreasing (λd, λτ) and fixed measurement noise power σ2, the MAP estimate allows less
smoothness and enforces greater fidelity to the noisy measurements. Here, we adopt 2σ2λτ =
2σ2λd = λ, assuming the dynamic range of numerical magnitudes of dk and τk to be of the same
order; this can be achieved either by choosing appropriate units of dk and τk or by scaling dk
and absorbing the scaling factor into c.̃ Multiplying the cost function of Eq. [11] by 2σ2 yields

ξ̂
_

= arg min
ξ
_

∑
n,α (Y (n, α) − f (n, α; ξ

_
))2

+λ ∑
k=−K/2

K/2−2
(dk+1 − dk)2 + (τk+1 − τk)2

(13)

The function g(ξ) alternatively may be viewed as a regularization term added to the least-
squares cost. Roughness penalties are commonly adopted for image reconstruction and
restoration to combat oscillation in least-squares solutions: see, e.g., [21,22] and references
therein.

3.2 Numerical optimization
The optimization task in Eq. [13] may be solved by many numerical methods; we use the
interior-reflective Newton method implemented in the Matlab 1 7.1 routine lsqnonlin. Note
that the cost function is quadratic in d but non-convex in τ. Further, the gradient of the cost
function is easily computed. The iterative optimization algorithm is initialized at dk = 0 and
τk = τmin for each k, where τmin > 0 is a minimum physically meaningful half-linewidth. In
addition, the spin density is constrained by dk ≥ 0 and half-linewidth by τmin ≤ τk ≤ τmax.

3.3 Cramér-Rao Bound on Error Variance
The Cramér-Rao bound (CRB) gives a lower bound on the parameter estimation error variance
for any unbiased estimator [23]. We use the CRB to calculate the posterior confidence interval
for estimated parameters. The bound is obtained by inverting the Fisher information matrix,
IF

1Matlab is a registered trademark of The Mathworks, Inc., Natick, MA, USA
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E (ξ̂
_
− ξ

_
)(ξ̂

_
− ξ

_
)T ≥ IF−1 (14)

where E denotes expectation, the left-hand side is the 2K-by-2K error covariance matrix, and
the inequality A ≥ B denotes that the matrix difference A – B is non-negative definite.

In the Bayesian estimation framework, the Fisher information matrix IF is the sum of two
terms: IM due to measurements and IP from the prior information [23], where the (i; j)th

elements of IM and IP are given by

IMij = − E
∂2 ln p(Y

_
∣ ξ

_
)

∂ξi∂ξ j
(15)

and

IPij = − E
∂2 ln p(ξ

_
)

∂ξi∂ξ j
(16)

Fisher information describes the local curvature of the log-likelihood function and admits an
intutive interpretation. At parameter values for which the log-likelihood has low curvature
(i.e., is relatively flat), the cost function in Eq. [13] is not sensitive to small changes in the
estimated parameters; hence, the estimation error variance due to measurement noise is
relatively large. In contrast, where the log-likelihood function has high curvature, the cost is
sensitive to small changes in the estimated parameters, resulting in low variance parameter
estimates.

In section 5, the proposed imaging procedure is applied to measured data collected from
nitroxide solutions using an L-band spectrometer. As prelude, section 4 explores two questions
via computer simulation. First, what is the sensitivity of parameters to perturbations in
measured data? Second, which projection angles are most informative?

4 Simulation Results
The data model postulated in section 2 and inversion procedure described in section 3 are
examined via numerical simulations. Synthetic experiments are used to evaluate sensitivity to
local minima, to quantify sensitivity to additive measurement noise, to study polynomial
correction of baseline drift, to explore selection of projection angles, and to evaluate selection
of regularization constant.

Simulation results are reported for the piece-wise constant phantom shown in Fig. 2. The
Lorentzian peak location is h0 = 1 G. For sections 4.1 and 4.2, the simulation parameters are:
spectral window ΔH = 3 G, K = 32 spatial segments, N = 256 samples per projection angle and
two projections at α = −83.1 ° and −69.2 °.

One goal in simulation is to evaluate the relative information content of different projection
angles. Therefore, λ is set to zero to avoid any confounding influence from the smoothness
prior, p(ξ).

4.1 Convexity and Initialization
Numerical experience suggests that local minima do not pose a hazard to the nonconvex
optimization in Eq. [13]. To test sensitivity to initialization, the optimization routine was
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executed for 100 random initializations, dk uniform on [0, 1] and τk uniform on [0:05, 0:9], k
= −16,…, 15. Fig. 2 shows the superimposed estimated dk and τk for 100 random initializations.
The signal-to-noise ratio (SNR) was set at 30 dB, where SNR is defined as the ratio of signal
power to noise power. The maximum, across all k and all trials, of observed variance of spin
density (dk) estimates is 3.3 × 10−7 and that of half-linewidth (τk) estimates is 8.5 × 10−7. The
maximum, across k, of absolute deviation from the mean estimate for dk is 0:0027 and for τk
is 0:0044.

4.2 Bias and Variance
The spin density and half-linewidth were estimated from 500 different noise realizations. The
mean estimation error for dk has a maximum absolute value of 2.6 × 10−3 across k and the
same for τk is 2.8 × 10−3 at 30 dB SNR. Thus, the mean estimation errors are negligible.

Fig. 3 displays simulated error standard deviation of half-linewidth (τk) from 500 different
noise realizations, along with the corresponding Cramér-Rao bound. The figure illustrates the
efficacy of the theoretical bound to characterize noise sensitivity. Two themes are seen which
are likewise observed for other synthetic phantoms: uncertainty in lineshape increases for lower
spin density, and uncertainty decreases away from the center of the FOV.

4.3 Angle Selection
The Cramer-Rao bound can also inform selection of projection angles. Fig. 4 shows the CRB
for error standard deviation of the d2 and τ2 parameters versus angle of projection for the object
shown in Fig. 2. The graphs illustrate the two opposing effects of higher gradient strengths.
On one hand, higher gradient, hence higher projection angle, yields more informative
projections. On the other hand, the higher gradient yields lower SNR. The two effects combine
in Fig. 4 to give minimum parameter error at a high angle near 80 degrees. To explore a
combination of projection angles, Fig. 5 displays the CRB for various pairs of angles and shows
that (80, 60) is preferred over the nearly complementary angle pair (85, 5). This CRB sensitivity
analysis can only be computed for a known object; nonetheless, it was observed that the error
bounds for many objects show the same trends as found in Fig. 4 and Fig. 5. Thus studying the
CRB for simulated objects can guide the selection of projection angles to be collected in
practice.

4.4 Selection of Regularization Constant
To explore dependence of reconstruction error on the parameter λ, simulations were run at
SNR values from 15 dB to 35 dB in 5 dB steps. Reconstructions were computed for λ in the
set {0, 0.001, 0.001, 0.01, 0.1, 1}. The root mean square error (RMSE) was averaged from 50
trials at each combination of SNR and λ. Over the range of SNR values considered, selection
of λ from the three orders of magnitude {0.001, 0.01, 0.1} yields similar RMSE; no more than
3.6% difference was observed. Thus a wide range of λ values is found to give similar
reconstruction results.

With decreasing SNR, the RMSE increases; and the value of λ, yielding lowest RMSE is SNR
dependent. The choice λ = 0.1 yielded lowest RMSE for SNR values of 20, 25 and 30 dB.
Expectedly, at lower SNR, λ should be increased to reflect the reduced fidelity of the measured
data.

4.5 Baseline Drift Correction
Since the sweep-width is of the order of linewidth of the Lorentzian, the standard baseline drift
correction method on the measured data after integration cannot be applied directly in the
proposed approach. Instead a polynomial model of the baseline is added to the forward
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projection model and the parameters of the polynomial at each projection angle are estimated
from the measured data. Simulation showed that if a baseline drift of 20% of the output signal
peak per Gauss is introduced, then the average RMSE of τ from 50 trials is 43% at 30 dB SNR
when baseline drift in not included in the model. But if a baseline drift model is used, then the
the average RMSE drops to 5%. Fig. 6 shows a typical reconstruction result from projections
with baseline drift.

5 Experimental Results
An experiment was performed to validate the proposed technique and its performance.
Lineshape is characterized, spin density and half-linewidth are estimated from measured data,
the residual between measured data and model fit is analysed, and Cramér-Rao bounds are
reported.

The phantom shown in Fig. 7 was constructed from three tubes with inner diameter of 2.75
mm each and outer diameter of 4.0 mm. Tubes were filled with three different concentrations
(1.0, 0.8, and 0.5 mM from left to right) of 15 N-PDT (4-Oxo-2,2,6,6-tetramethyl-piperidine-
d16-15N-oxy) radical dissolved in distilled water. Chromium oxalate (CrOx) in distilled water
was used as a broadening agent. The concentrations of CrOx in the three solutions were 0, 2.33
and 0.65 mM respectively. A detailed discussion on CrOx induced linebroadening is given
elsewhere [24].

5.1 Lineshape Characterization
To charcterize the lineshape function, the absorption signal from each tube was measured
separately using an L-band (1.2 GHz) EPR spectrometer. The Lorentzian curve-fit for the 0.5
mM solution is shown in Fig. 8. The results of curve-fit for all three solutions are summarized
in Table 1. The fit error is defined as the ratio of the norm of residual to the norm of measured
lineshape.

5.2 Spectral-spatial Imaging
Imaging was carried out with a reentrant resonator of diameter of 12.6 mm and a useable height
of 12 mm. Results are reported in sections 5.3, 5.4 and 5.5 for the following spectrometer
settings: incident power 4 mW; spectral window ΔH = 1.4 G; spatial field of view L = 14.14
mm; modulation amplitude 0.2 G; modulation frequency 100 kHz. Various spectrometer
settings gave consistent reconstruction results. A total of 13 projections were acquired. Each
acquired projection had 4096 data points which were downsampled to 256 points. No
corrections for baseline or B1 field inhomogeneities [25] were applied.

5.3 Parameter Estimation
Spin density and half-linewidth are estimated using Eq. [13], and the reconstructed object is
shown in Fig. 9, the estimated spin density and estimated half-linewidth are shown in the Fig.
10. Two angles of projection, −83.1 ° (8.3 G/cm) and −69.2 ° (2.6 G/cm), are used, and the
proportionality constant c ̃is chosen so that the spin densities dk have approximately the same
range of values as the half-linewidths τk. The modulation gave a measured PSNR of 14.4 in
the −83.1 ° projection and 63.6 for the −69.2 ° projection, where PSNR is the ratio of the peak
signal to the peak noise. The total acquisition time for these two projection angles is 59.3 s. In
the numerical optimization, λ = 0.01, τmin = 0.3 G and τmax = 0:9 G. The computation time is
4.14 s 4.46 s on a Pentium® D 2.6 GHz processor with 2 GB RAM.
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5.4 Residual Analysis
The noise assumptions are examined by analysis of the residual. The residual, Y (n, α) – f(n, α
ξ), is the fit error between the measured data and the estimated parametric model in Eq. [9].
Fig. 11 shows the measured projection and the fit error. The observed signal-to-noise ratio is
32.5 dB. A Lilliefors test, with 0.05 level of significance, accepts the hypothesized Gaussian
distribution, p = 0.15.

5.5 Cramér-Rao Bound
Cramér-Rao bounds for estimation error standard deviations of dk and τk are computed using
ξ ̲̂ and σ ̂2, where ξ ̲̂ is the estimated parameter vector and σ ̂2 is the measured variance of the
residual. The bounds are shown in Fig. 10. The standard deviation of τk estimation error is high
between the tubes where there is no spin density. If the error standard deviation is less than 10
times the minimum of CRB across all k, then the estimated values are accepted and are
otherwise discarded. Note that this reliability analysis shows only the effect of additive
measurement noise and does not take into account the effects of magnetic field inhomogeneity
or error introduced by deviation of lineshapes from the functional form in Eq. [2].

6 Comparison with Projection-reprojection Method
Performance of a projection-reprojection method [16] was analysed using a simulated tube
phantom similar to the one used for the experiment. The use of simulation was necessitated by
the inability of our spectrometer to measure the wide sweep width required to follow the
published guidelines suggested for projection-reprojection. Fig. 12 shows the reconstruction
results from the projection-reprojection and parametric approaches. For the parametric method
the spectral window and projection angles reported in section 5 were again used. With
simulated noise of 30 dB SNR the reconstruction error for τ was 5.4% using the two projection
angles and λ = 0. The corresponding data acquisition time is 59.3 s, assuming a sweep rate of
0.19 G/s and a main field recovery time of 1 sec.

For the projection-reprojection method, the data acquisition and algorithm parameters were
varied in an attempt to obtain the lowest reconstruction error with the least acquisition time.
The spectral window was 14.1 times the maximum linewidth present; 15 projection angles
were used, uniformly spaced from −81 ° to 81 °. An additional 16 angles were used for
reprojection, 14 of which were selected at the mid-points between the measured angles, and
−85.5 ° and 85.5 ° angles were selected at the high gradient region. The PSNR for the zero
gradient projection was equivalent for the two methods. The reconstruction error for τ after six
iterations was 18.6%. The corresponding data acquisition time for the reprojection imaging is
37.83 min.

Thus, for this phantom the parametric approach required 38 times less data acquisition time
compared to the projection-reprojection method and yielded lower reconstruction error.

7 Discussion
The proposed parametric estimation approach offers significant reduction in data acquisition
time for spectral-spatial EPR imaging. The savings come from both a small spectral window
and a low number of projections. In comparison to tomographic reprojection methods for the
examples considered, the reduced sweep width and reduced number of projections combine to
yield 30 : 1 to 40 : 1 reduction in data acquisition time for equal or lower reconstruction error.

The maximum a posteriori probability estimation approach adopted in Eq. [13] reduces to
maximum likelihood (ML) estimation for regularization parameter λ = 0. For Gaussian noise,
the ML estimate is the nonlinear least squares curve fit. A nonzero λ reduces the oscillatory

Som et al. Page 9

J Magn Reson. Author manuscript; available in PMC 2007 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



artifacts seen in a least squares solution. The estimation procedure is not sensitive to the choice
of λ; for the experimental data in Section 5, values of λ across three orders of magnitude, 0.01
≤ λ ≤ 1, give similar reconstruction results.

Higher error at the center of the FOV is observed in both simulation and measurement.
Physically, consider the line integrals through the pseudo-object that yield the samples near
either end of a projection. These line integrals depend on only a few spatial locations, and
therefore have contribution from only a few unknown values of spin density and line width.
Consequently, parameters at the ends of the 1D spatial object are less sensitive to estimation
error.

The proposed imaging approach is a direct inversion of the measured data using a regularized
nonlinear regression. Unlike tomographic approaches, no approximation error is introduced
by truncation of the lineshape by the spectral window. The estimation procedure is applicable
for any set of arbitrarily spaced projection angles and is not handicapped by the missing angle
artifact introduced by tomographic inversion. Additionally, the estimation approach directly
and explicitly incorporates into the inversion the noise properties of the spectral-spatial
measurements. In contrast, in tomographic processing with magnetic field modulation,
numerical integration to obtain projection data introduces strong noise correlation, and
backprojection disregards the high variability in PSNR that is due to the cos2α scaling shown
in Eq. [7].

The model-based inversion exploits prior knowledge that the spectral line-shapes are from a
parametric family of functions. Using the model in Eq. [2], the number of unknowns in a K ×
K image is reduced from K2 to 2K. Moreover, as illustrated in Fig. 1, every sample from each
projection angle contains information from every spatial location, thereby permitting recovery
of the spin density and linewidth from a single projection in the noiseless case. Additional
projections provide increased robustness to measurement noise and modeling imperfections.

The proposed imaging procedure given by Eq. [13] may be readily extended in two ways. First,
extension to three spatial dimensions requires no new assumptions and entails only
modification of Eq. [6] to compute a definite integral over the surface of a planar slice through
a voxel. Second, the lineshape model in Eq. [2] may be extended from Lorentzian to any
parametric function, such as a mixture of Lorentzians with unknown central locations, or the
convolution of a Gaussian with a Lorentzian.

A strength of the proposed processing procedure is the explicit identification of the physical
assumptions adopted in its derivation. This transparency allows informed judgment concerning
the suitability of the technique for any candidate application.

8 Conclusion
We have presented a parameter estimation framework for spectral-spatial EPR imaging. The
approach provides reliable reconstruction of spin density and spectral linewidth with an order
of magnitude reduction in data acquisition time, compared to tomographic inversion. The
proposed technique is suitable for any application in which spectral lineshapes under study can
be accurately approximated as members of a parametric family of functions. The imaging
procedure was demonstrated using computer simulation and measurements on an experimental
phantom.
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Fig 1.
In spectral-spatial imaging, line integrals are measured through a pseudo object by first
applying a static magnetic field gradient, then sweeping the main (uniform) magnetic field to
excite electron magnetic moments. Here, the vertical axis is the spatial axis and the horizontal
axis is the spectral axis. The spatial axis is normalized to make the FOV same as the spectral
window ΔH; γ = ΔH/L is the normalizing constant.
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Fig 2.
1D spatial phantom with K = 32 and piece-wise constant spin density and half-linewidth
(dashed lines). Estimated dk and τk (solid lines) from 100 random initializations and for a fixed
noise realization at 30 dB (σ = 0.0051). The 100 estimated profiles are superimposed.
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Fig 3.
Theoretical bound and simulated (from 500 trials) error standard deviations for half-linewidths
τk.
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Fig 4.
Cramér-Rao bound of the spin density d2 and half-linewidth τ2 versus angle of projection α.
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Fig 5.
Cramér-Rao bound for the spin density dk and half-linewidth τk for various combinations of
angles of projection α.
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Fig 6.
Projections with and without baseline drift and true and estimated parameters. The data with
baseline drift were used for parameter estimation. A linear baseline correction model on the
unmodulated projection was assumed and the same correction model gives a constant drift
correction in the modulated projection model. At the −83.1 ° projection the drift is positive and
at −69.2 ° projection the drift is negative. The SNR value is 25 dB and the regularization
constant λ = 0.1.
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Fig 7.
The phantom used for experiment. Top-left: Photograph of the phantom; the three tubes are
glued together and filled with nitroxide solutions with three different concentrations mixed
with different amounts of the broadening agent. Bottom-left: Schematic of the cross-section
of the inner perimeters of the tubes. The magnetic field gradient is along the horizontal axis.
Top-right: Spin density profile. Bottom-right: Half-linewidth profile.
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Fig 8.
Measured zero gradient projection of the 0.5 mM solution and the best-fit Lorentzian. The fit
error is 5.2%.
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Fig 9.
Reconstructed spectral-spatial object from experimental data. Two angles of projections at
−83.1 ° and −69.2 °, with 256 samples at each angle, are used. The regularization coefficient
is λ = 0.01. The spectral window, ΔH, is 1.4 G, and the maximum linewidth of the Lorentzian
present is 1.4 G.
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Fig 10.
Top-left: Reconstructed spin density (dk) values from experimental data. Bottom-left:
Reconstructed half-linewidth (τk) values. Top-right: Cramér-Rao bounds for estimation error
standard deviations of dk. Bottom-right: Cramér-Rao bounds for estimation error standard
deviations of τk. The dk and τk estimates are accepted if the CRB is less than 10 times the
minimum of CRB across all k, otherwise they are discarded and not shown in the left column
dk and τk plots.
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Fig 11.
Measured data and residual fit error. Top-left: The measured data at −83.1 °. Top-right:
Measured data at −69.2 °. Bottom-left: 10 times the residual fit error at −83.1 °. Bottom-right:
10 times the residual fit error at −69.2 °. The vertical axis is in arbitraty unit and the horizontal
axis denotes sample number.
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Fig 12.
Reconstructed spin density and half-linewidth by projection-reprojection and parametric
methods.
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Table 1
Characterization results of solutions used in the phantom. The spin densities in the three tubes are proportional
to the solution strengths. The half-linewidths are obtained from Lorentzian curve-fit to the zero gradient
projections obtained for the three solutions.

Concentrations % fit err fit err (dB) τ (Gauss)
1.0 mM 5.2% −25.7 dB 0.35
0.8 mM 4.7% −26.5 dB 0.71
0.5 mM 5.2% −25.7 dB 0.45
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