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ABSTRACT Fisher’s runaway process of sexual selection
is potentially an important force generating character diver-
gence between closely related populations. We investigated the
evolution of multiple female preferences by Fisher’s runaway
process. There are two outcomes of runaway. The first is the
evolution of mate preference to a stable equilibrium. This
evolution occurs if the benefits of mate choice are sufficiently
large relative to the cost of choice. Alternatively, mate pref-
erences evolve cyclically. The rate and pattern of cyclic evo-
lution depends primarily on the individual cost of choice and
epistasis in the joint cost of choice. If there are small
differences in natural selection (e.g., predation risk) between
populations, cyclic evolution quickly leads to divergence in
mate preferences and sexual ornaments and so to sexual
isolation.

Secondary sexual traits and courtship displays show a much
greater degree of diversity than do nonsexual morphological
traits over the same taxonomic range (1, 2). There are some
notorious cases of diversity in sexual traits: the cichlid species
flocks of the African Great Lakes, the highly species-rich
Hawaiian Drosophila, male insect genitalia, and the birds of
paradise (3–6). Sexual diversity also is seen between subpopu-
lations of a species. A particularly good example is the isolated
Gunnison population of American sage grouse (7). Despite
little apparent ecological or morphological change in Gunni-
son sage grouse, male birds differ markedly in their secondary
sexual characteristics. Gunnison males have whiter tail feather
plumes, a higher rate of air sac inflation, and a lower rate of
strutting. In addition, two novel elements have been added to
their display: males wag their tails from side to side and, more
dramatically, toss their neck plumes over their heads.

In a previous paper, we showed how Fisher’s runaway
process can generate continual change in a sexual ornament
(8). Two conditions must be met for runaway to cause per-
petual cyclic coevolution of female preference for a male
sexual ornament. First, the survival cost of the male trait must
be small around the natural selection optimum but must
increase dramatically once the male trait becomes extreme.
Second, female mate preference must be accompanied by a
cost. These are general and plausible assumptions. Another
possibility in finite populations is that drift could cause cyclic
change even in the absence of a cost to female mate prefer-
ence.

In this paper, we generalize our finding. The previous model
considered a single female preference for a single male trait.
For a better understanding of how diversity evolves, we need
to consider the simultaneous evolution of multiple sexual
ornaments. In many species, it is clear that females use multiple
male traits when choosing a sexual partner (9, 10). This
development will enable us to address a number of questions

about sexual traits. In particular, do all male sexually selected
traits show cyclic evolution, what forces determine the degree
of variability in male traits, and how quickly can sexual
selection generate divergence between allopatric populations?

Model and Results. We modeled the evolution of multiple
female mate preferences for multiple male traits (ornaments)
by Fisher’s runaway process by using a standard quantitative
genetic model (11–13). In this model, sexual selection on male
ornaments is generated by female mate preferences. A run-
away process then ensues because of the genetic coupling of
female preference with the male ornament (14). Both female
preferences and male ornaments can become exaggerated in a
negative (smaller than natural selection optimum) or positive
(larger than natural selection optimum) directions.

Model. For simplicity, consider the evolution of two female
preferences, p1 and p2, for two male sexual ornaments, t1 and
t2, respectively. This treatment easily can be extended to
include further preferences and ornaments. The per genera-
tion changes in the mean value of the preferences and orna-
ments are (12)
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The factor 1⁄2 denotes sex-limited expression. Both female
and male traits are assumed to have a quantitative genetic
basis, and G is a matrix of the additive genetic parameters. The
effect of selection is given by selection gradients for each trait
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Female fitness (Wf) is determined by the strength of prefer-
ence, p1 and p2. We assume that there is some slight cost for
females in choosing a mate. This cost might be caused by
predation risks, time constraints, or some other factor associ-
ated with mating behavior. Female costs are set to a minimum
when females do not discriminate between potential mates (p1
5 p2 5 0), and costs increase symmetrically at a rate b. The
choice costs for each preference can differ according to the
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Epistatic fitness interactions between the two preferences
are measured by u, the joint cost of choice (12, 13). If u 5 0.5,
then there is no interaction and the cost of each preference
combines multiplicatively. If u ' 0, the overall cost is no more
than the maximum when either preference is considered alone.
If u ' 1, costs combine in a super-multiplicative manner and
females using more than one preference face severe fitness
loss. For instance, if females already visit a lek and spend time
examining male wing plumage, then consideration of bill color
at the same time will not significantly alter choice costs (i.e.,
u 3 0). Conversely, if females are already time-limited, then
the additional time required to select males using a second
ornament will increase costs significantly (i.e., u 3 1). We
consider a range of u values because we have shown already
that epistasis in the joint cost of choice has a major influence
on the evolutionary outcome (12, 13).

Male fitness (Wm) is the product of mating success and
survivorship. Mating success is determined by female mate
preference (first term of Eq. 2b). The two ornaments are
assumed to have independent effects on mate choice. Female
preference for one male character does not extend to the other.
Mean female preference can be either for males with larger
(p#1 . 0, p#2 . 0) or smaller (p#1 , 0, p#2 , 0) than average
ornaments (15). We assume that males can mate many times
and that females have open-ended preferences (16). The
coefficients a1 and a2 define the effectiveness of the two
ornaments in causing increased mating success.

Male survivorship is maximized when the sizes of the male
ornaments are at their respective natural selection optima, set
at t1 5 0 and t2 5 0 (second term of Eq. 2b). Survival chances
decline symmetrically on either side of this value at a rate c1
and c2. One of the interesting features of our model is that male
survival is assumed to decrease with the fourth power rather
than with the quadratic as in previous models (8). This
assumption means that the cost of the ornaments is very small
around the natural selection optimum but increases very
quickly beyond a certain limit.

We assume that there is no epistatic selection on male
ornaments. Each ornament has an independent effect on mate
choice and an independent effect on survival chances. This
assumption is adopted to simplify the analysis (see Discussion).
The only fitness interaction is in the cost of female choice.

The effect of selection depends on the additive genetic
variances and covariances. The genetic variances (Gp1, Gp2,
Gt1, and Gt2) are assumed to be constants. The six genetic
covariances are allowed to evolve to their equilibrium values
(12–14). Three are created directly through selection, either
mate choice (Bt1 p1 and Bt2p2) or epistasis in the cost of female
preferences (Bp1 p2). The others (Bt1 p2, Bt2p1, and Bt1 t2) arise
indirectly (e.g., Bt1 p2 . 0 if Bt1 p1, Bp1 p2 . 0). The final genetic
terms in Eq. 1 are u1 and u2, which measure any mutation bias
acting on the male ornaments (16).

Independent Preferences. If the joint cost of choice u 5 0.5,
then there is no interaction between the two preferences,
which therefore evolve in an independent fashion. In this case,
we only need to consider the evolution of a single preference
and so drop the suffixes 1 and 2 as each trait pair evolves
autonomously. There are two outcomes (8). The first possi-
bility is that the population evolves to a stable equilibrium (Fig.
1a),
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At equilibrium, females benefit from choosing males with
exaggerated ornaments. The benefit is proportional to the
mutation bias u multiplied by the ratio of the effectiveness of
the male ornament in attracting females a and the cost of
choice b. Males with larger ornaments have higher total fitness,
causing selection in favor of greater exaggeration. This is

balanced exactly by mutation bias (u) acting against further
exaggeration.

The second possibility is cyclic evolution (Fig. 1b). This
occurs when the benefits of choice (i.e., mutation bias) fall
below a critical threshold,
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If this condition holds, the equilibrium defined in Eq. 3
becomes unstable. Cycles are more likely if the cost of choice
b and the additive genetic variance in female preference Gp are
large, relative to the degree of mutation bias u. If the equi-
librium is unstable, the population undergoes a series of rapid
runaway events interspersed with periods of semi-stable ex-
aggeration (8). Semi-stability occurs when natural selection on
the male ornament becomes severe and balances the mating
advantage of further exaggeration. But change does not stop
completely. Female preference slowly declines because of the
cost of choice. Decline continues until the system crosses a
critical value triggering a new runaway. In turn, this runaway
slows down once natural selection on the male ornament
becomes severe and a period of relative stability ensues. Again,
the strength of female preference declines until another run-
away is triggered in the opposite direction. No equilibrium is
ever reached.

Cyclic evolution has not been recognized as a regular feature
of evolution by sexual selection even though the possibility of
cycles was mentioned in previous analyses (17). For cycles to
appear, the equilibrium near the origin must be unstable and
runaway must be bounded. In our model, this behavior is
created by assuming that selection on the male ornament is a
cost function with the fourth power. This makes the cost of the
male ornament very small around the natural selection opti-
mum but very large beyond a certain range. Cyclic evolution
does not occur with a quadratic selection function; the only
possibility is a single equilibrium given that female choice is
costly (16–17).

Fisher’s runaway process occurs in such a short time as to be
instantaneous on an evolutionary time scale. So, the rate of
cyclic evolution is determined by the interval between succes-

FIG. 1. Evolution of the mean male ornament size (t#) through time
(mean female preference p# follows a similar path). The population is
plotted every 40 generations. Two conditions varying in the degree of
mutation bias are shown leading to a stable equilibrium (u 5 0.0001)
(a) and cyclic evolution (u 5 0) (b). Other parameter values are a 5
0.4, b 5 0.001, c 5 0.05, Gt 5 0.5, and Gp 5 0.5.
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sive runaways. The interval between runaways is a function of
how quickly female preference declines when there is an
approximate balance between sexual and natural selection on
the male ornament (i.e., when bt 5 0). Under this condition,
the evolution of female preference is Dp# 5 Gp(22bp# 1 ua)y2,
and the approximate time between successive runaways t }
1ybGp (assuming mutation bias is very small, u ' 0). So, the
rate of cyclic evolution is determined by the cost of choice b
and genetic variation in female preference Gp (8). If the cost
of choice is high, then the population does not stay in a
semi-stable condition for very long before another runaway is
triggered. Greater genetic variance in female preference has a
similar effect because it increases the speed of response to
selection against female preference when in a semi-stable
condition. The other selection and genetic parameters (a, c,
and Gt) do not alter the rate of cycling; they only influence the
degree of exaggeration (8).

Multiple Preferences. The evolutionary dynamics are con-
siderably more complex when the cost of each preference
interacts. Further investigation was made by simulation. To
make understanding easier, we concentrated on describing the
general phenomena observed. As with independent prefer-
ences, each preference and ornament can either reach a stable
equilibrium or cycle.

In the extreme case, neither ornament is subject to any
mutation bias (u1 5 u2 5 0; Fig. 2) and both preference and
ornament pairs show cyclic evolution. This is seen most simply
if we equalize natural selection on the two male ornaments (a1
5 a2, c1 5 c2) but assume that the first preference p1 carries a
greater cost than the second preference p2 (e.g., l1 5 1, l2 5
0.6; see Eq. 2a).

The dynamics depend heavily on u, the epistasis in the joint
cost of female choice. When the joint cost of choice (u) is very
small, the population evolves in a highly ordered fashion (u 5
0.05; Fig. 2a). Following the mean values of the two male
ornaments (t#1 and t#2) and starting in the, t#12, t#21 sector (i.e.,
t#1 , 0, t#2 . 0), there is a slow decay in both ornaments that
eventually gives way to runaway from t#12 to positive exagger-
ation t#11. Runaway is followed by slow decay and then
runaway of the second ornament from t#21 to negative exag-
geration t#22. This pattern of decay and runaway is repeated in

a regular sequence: runaway to t#11, runaway to t#22, runaway
to t#12, and runaway to t#21, returning the population to its
initial state.

This pattern is adopted quickly irrespective of starting
conditions (although the sequence of change can be reversed).
Once runaway evolution comes to a stop, female preference
always slowly decays because of the cost of choice. Eventually,
female preference falls sufficiently that it crosses a critical
value and triggers a new runaway. So the evolution of the mean
female preferences (p#1 and p#2) shows the same timing of the
switch from slow decline to runaway as seen in the male
ornaments (t#1 and t#2).

At very low values of epistasis in the joint cost of choice, both
ornaments cycle at the same rate (u 5 0.05; Fig. 2a). This at
first seems surprising because the individual choice costs for
each preference differ (l1 5 1, l2 5 0.6). But when u is very
small, the cost of choice is determined almost entirely by
whichever preference is more exaggerated, as can be seen by
setting u ' 0 in Eq. 2a. To be exact, the cost of choice for both
preferences is determined by max[l1 p#1, l2p#2] (in the example
here, max[p#1, 0.6p#2]). So if one preference is already exagger-
ated, the addition of a second preference hardly alters the
overall cost of choice. This explains why there is a stepped
trajectory (Fig. 2 a–c). The stepped period of slow decline in
p#1 (and hence t#1) occurs when 0.6p#2 . p#1 , during which
selection on p#1 is greatly reduced. A similar effect on p#2 (and
hence t#2) is seen when p#1 . 0.6p#2.

As the value of the joint cost of choice (u) increases, the two
preference and ornament pairs cycle at different rates (Fig.
3a). When u 5 0.2, the more costly preference p1 cycles three
times more quickly than the cheaper preference p2 (Fig. 2b).
However, the cycle times remain closely coupled and show
entrainment onto regular cycle periods (Fig. 3b). This is a
common phenomena in coupling of nonlinear oscillators (18–
19). For example, for u # 0.1, the ratio of cycle times is 1:1, for
0.1 , u , 0.17, the ratio is 1:2, and for 0.17 , u , 0.39, the
ratio is 1:3 (Fig. 3b). Entrainment also causes an asymmetry in
the order in which ornaments are used at very low values of u.
For example, at u 5 0.05, the population spends more time in
the t#12, t#21 and t#11, t#22 conditions than in either t#11, t#21 or
t#12, t#22 (Fig. 2a). This relationship can be reversed by using

FIG. 2. Coevolution of two preferences for separate male ornaments as a function of epistasis in the joint cost of choice u. Evolution is
represented in two ways. First as a phase-space of the mean male ornaments (t#1 and t#2) every 20 generations; second as t#1 (black) and t#2 (gray)
values through time. The mean female preferences are not shown because they follow similar evolutionary trajectories. The cost of choosing t1 is
set to be larger than the cost of choosing t2 (l1 5 1.0 and l2 5 0.6). Four values of the joint cost of choice are shown: (a) u 5 0.05, t#1 and t#2 show
equal rates of change and entrained cycles; (b) u 5 0.2, t#1 changes three times more quickly than t#2 and cycles are entrained; (c) u 5 0.8, t#1 changes
more quickly than t#2 and cycles are not entrained, the phase-space shows the first 8,000 generations; and (d) u 5 1.2, females only show preference
for t#2 and progressively ignore t#1. Parameter values are a1 5 a2 5 0.4, b 5 0.001, c1 5 c2 5 0.05, and all G 5 0.5.
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different initial conditions. Entrainment breaks down with
higher values of the joint cost of choice (e.g., u 5 0.8; Fig. 2c).
There is no clear phase-locking of the two cycles any longer,
and the periodicity of the whole system is chaotic (Fig. 3b).

As the joint cost of choice (u) rises, cycles times become even
shorter (Fig. 3a). This is because the overall selection on each
preference increases with u (see Eq. 2a), and this increase
shortens the interval between runaway events. Eventually,
when u becomes very large, females stop using both male
ornaments and concentrate on a single ornament (e.g., u 5 1.2;
Fig. 2d). The two preferences cycle together for some time, but
one eventually falls to 0. Either preference can be lost.

Multiple Preferences with Mutation Bias. Significant mu-
tation bias (u1, u2 . 0) introduces the possibility that stable
equilibria exist for one or both male ornaments. If both
ornaments have high mutation bias (u1 5 u2 5 0.001, other
parameters as in Fig. 2), then there is a single, globally stable
equilibrium. At this equilibrium, females prefer males with
large t1 and large t2. Stability also depends on a number of
other parameters, similar to those that influence stability when
preferences are independent (see Eq. 4). In contrast, if both
ornaments have small mutation bias (u1 5 u2 5 0.00001), then
neither reaches a stable equilibrium. Both ornaments cycle as
when u 5 0. If there is high mutation bias in only one
ornament, it alone is capable of reaching a stable equilibrium
(e.g., u1 5 0.001, u2 5 0). The other ornament continues to
cycle. A small degree of fluctuation is caused in the first
ornament as the second goes through each runaway, but this
f luctuation is insufficient to cause destabilization.

If both ornaments show different levels of mutation bias, the
result is more complex. Consider the case in which mutation
bias is sufficient to lead to stability in p1 but not in p2 (u1 5

0.001, u2 5 0.00001). When the joint cost of choice is small, u
, 0.5, the stable preference ‘‘captures’’ the cyclic preference
and both preferences become stably exaggerated (Table 1a). It
is simple to see why this happens. The exaggeration already
present in the first preference (p#1 . 0) reduces the cost of
choice for the second cycling preference p2 when the joint cost
of choice is small (u , 0.5). So even weak mutation bias is
sufficient to allow for stable preference for the second orna-
ment.

The alternative case to consider is that in which mutation
bias places p1 on the borders of stability while p2 cycles (u1 5
0.0001, u2 5 0.00001). If there is no interaction between the
preferences or if the joint cost is small (u # 0.5), p2 cycles do
not affect p1, which remains stable (Table 1b). But if the joint
choice cost is high (u . 0.5), the cycles in p2 break down
stability in p1, which ends up cycling as well. Again, it is simple
to see why this happens. When the joint cost is high (u . 0.5),
p2 cycles cause periodic large increases in the cost of female
choice for p1. This increase causes p1 to be pulled sufficiently
far away from equilibrium to initiate runaway evolution. So,
the first preference escapes from stability and cycles.

Allopatric Divergence. Imagine that a population has been
split into two distinct, noninterbreeding demes. Each deme will
be subject to different selection pressures arising from differ-
ent environmental conditions. For example, one environment
may have fewer predators, reducing the strength of natural
selection on exaggerated male ornaments (smaller c) or on
female preference (smaller b or l), habitat differences may
make male displays easier to detect thereby increasing their
effectiveness at attracting females (larger a), or male density
may be greater, allowing females to utilize several male
ornaments without severely increasing the joint cost of choice
(lower u).

If female preference has evolved to a stable equilibrium,
these selective differences will alter the equilibrium strength of
female preferences and the size of the male ornaments. From
Eq. 3, we can see that an increase in the cost of choice (b) and
a decrease in the effectiveness of the ornament (a) will cause
a reduction in exaggeration in both preference and ornament,
whereas an increase in the cost of the ornament (c) will only
decrease the size of the male ornament. Under equilibrium

FIG. 3. Length of an evolutionary cycle plotted against epistasis in
the joint cost of choice (u) when the individual cost of choice is higher
for p1 than for p2 (l1 5 1, l2 5 0.6). Plots are given for the number
of generations per cycle (p1 diamonds, p2 crosses) (a) and the ratio of
p1 cycle time to p2 cycle time (b). Other parameter values as in Fig. 2.

Table 1. Stability of two preferences dependent on the joint cost
of choice u

Joint cost of choice u p1 p2

(a) 0.1 stable stable
0.2 stable stable
0.3 stable stable
0.4 stable stable
0.5 stable cycles
0.6 stable cycles
0.7 stable cycles

(b) 0.1 stable cycles
0.2 stable cycles
0.3 stable cycles
0.4 stable cycles
0.5 stable cycles
0.6 cycles cycles
0.7 cycles cycles

(a) One male ornament t1 is subject to strong mutation bias u1 5
0.001 and the other t2 to weak small mutation bias u2 5 0.00001. The
cost of choice b 5 0.001. (b) Mutation bias is just sufficient for stable
evolution of p1 but causes cyclic evolution of p2 (u1 5 0.0001, u2 5
0.00001). The cost of choice was b 5 0.0023, which just satisfies Eq. 4.
Other parameter values were the same in both female and male traits
Gt 5 Gp 5 0.5, a 5 0.4, b 5 0.001, c 5 0.04, l 5 1. Simulations were
started with p1, p2, t1, and t2 at high values and ran until stability or
obvious cyclic behavior was observed ('10,000 generations).
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conditions, small environmental differences predict modest
divergence in male sexual ornaments.

Environmental differences have a much greater impact if
the preference and ornament evolve cyclically. First, change in
the selective conditions will cause the evolutionary dynamics
of the two populations to be out of phase. The most important
variables are the cost of choice (b or l) and epistasis in the joint
cost of choice (u). These three variables alter the amount of
time between runaway events (whereas to first approximation
a and c only alter the degree of exaggeration). So differences
in b, l, or u cause runaway to be triggered at different times
in the two populations, resulting in preference and ornament
divergence (Fig. 4).

In addition, changes to the joint cost of choice (u) will alter
the relative stability of preferences in the two populations and
change the sequence of character state evolution. An example
is shown (Fig. 4) in which there are two preferences and four
possible semi-stable states (t#1 , 0, t#2 , 0; t#1 . 0, t#2 , 0; t#1 .
0, t#2 . 0; and t#1 , 0, t#2 . 0). In population 1, the joint cost of
choice (u) is lower than in population 2. The higher joint cost
of choice (u) makes the preference with the higher individual
cost (p1) evolve relatively more quickly (Fig. 3b) and so alters
the order in which the ornaments evolve (Fig. 4). The female
preferences and male sexual display in the two populations
quickly become distinct.

Finally, different selective conditions can result in different
preferences being stable in each population. Let us assume, for
example, that visual predators are common in one environ-
ment, causing the cost of choice to be more severe (larger b).
This severity can destabilize preferences in this environment.
So, whereas visual ornaments remain constant through time in
the predator-scarce environment, they undergo rapid change
in the predator-common environment. Again, the result is
divergence of the sexual displays of the two populations.

DISCUSSION

Sexual traits used in courtship appear to be exceedingly diverse
across species (1, 2). In this paper, we have considered how

Fisher’s runaway process can create this diversity. Our model
shows that there are two general outcomes of the runaway
process. The first is the evolution of a stable equilibrium (see
Eq. 3). At equilibrium, the degree of exaggeration in female
preference is determined by the costs of choice (searching for
a mate, predation risks, etc.) and benefits of choice (mating
with an attractive male). The associated degree of exaggera-
tion in the male ornament is proportional to the strength of
female preference divided by the cost of male display.

The second outcome is that this equilibrium is unstable,
leading to cyclic evolution. Runaway leads to semi-stable
exaggeration of preference for a male ornament, followed by
a slow decline in preference due to the cost of choice. This
eventually initiates a further runaway to a new semi-stable
state, and this process then is repeated. Two conditions are
required for cyclic evolutionary change (8). Selection on the
male ornament must be weak about the natural selection
optimum but increase rapidly beyond a certain value, and
female choice must be costly. Cyclic evolution is promoted by
strong costs (high b and u) and weak benefits of choice (low u
and a; see Eq. 4).

In our model of cyclic evolution, preference oscillates in
evolutionary time between preference for larger than average
and preference for smaller than average values of ornamen-
tation. If the male ornament (t) were plumage color, positive
t might be red and negative t green. Both are conspicuous and
costly compared with gray or brown (t 5 0), the optimal
ornament value under natural selection. An alternative view is
to interpret t as the length of a structure, for example a tail
feather. Then, a negative exaggeration means preference for a
tail shorter than the viability optima. There are hardly any
examples of female preference for small ornaments in this
sense. One possibility is the golden-rumped cisticola (Cisticola
exilis) for which there is some evidence that females prefer
short-tailed males (20). This rarity suggests that some asym-
metry must exist that favors evolutionary exaggeration in only
one direction (we intend to examine this in a future publica-
tion).

We have extended our analysis to consider how two mate
preferences evolve for different male ornaments. Again, stable
equilibria or cyclic evolution are seen but now in multiple
dimensions. In general, preferences subject to greater individ-
ual costs (higher l) and preferences for male ornaments that
have low mutation bias (smaller u) show greater instability
through time (Fig. 2). So, these preference and ornament pairs
are more likely to differ between related species.

The evolutionary outcome depends greatly on the epistatic
interaction between the two preferences, measured by the joint
cost of choice (u). Larger values of the joint cost of choice (u)
make cyclic evolution more likely (Table 1) and increase the
rate of evolutionary change (Fig. 3). The joint cost of choice
(u) also alters the order in which traits change. When the joint
cost of choice (u) is low, the evolution of both preferences is
entrained onto regular intervals between runaway events for
both preferences (Figs. 2 and 3). Entrainment breaks down as
the joint cost of choice (u) increases. Finally, at very high values
of the joint cost of choice (u), only a single preference is used
by females. These features arise because greater epistasis in the
joint cost of choice (u) increases selection against multiple
female preferences.

We only have studied epistatic selection in the cost of choice.
Other forms of interaction are possible. For instance, it is easy
to imagine that male attraction is amplified (21) when two
modes of signaling are used (e.g., song and color), causing
epistasis in the effectiveness of male ornamentation (a). We
predict that this form of epistasis will produce similar dynam-
ical behavior. Another possible interaction is in the cost of
male ornamentation (c). This interaction has been studied in
combination with signal error by Johnstone (22), who pre-
sented an optimization analysis of equilibrium conditions.

FIG. 4. Male ornament divergence in two allopatric populations
subject to different selection pressures. Selection on female preference
is set to be 20% weaker in population 2, both for the individual cost
of choice and epistasis in the joint cost of choice (population 1 b 5 1.0,
u 5 0.6; population 2 b 5 0.8, u 5 0.48). Otherwise selection in the two
populations is identical. There are two male ornaments, so there are
four possible character states: gray, t#1 , 0, t#2 , 0; stipple, t#1 . 0, t#2 ,
0; blank, t#1 . 0, t#2 . 0; and stripe, t#1 , 0, t#2 . 0. The sequence in which
these character states evolve is shown through time. The two popu-
lations start with the same strength of preferences and ornament sizes.
Other parameter values as in Fig. 2.
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However, nonlinearity in the male cost function already is
known to cause cyclic evolution rather than a stable equilib-
rium (8). So, it is more difficult to predict how this form of
epistasis will influence the evolutionary dynamics.

These results demonstrate how continual evolutionary
change in sexual preferences and ornaments is a natural
outcome of Fisher’s runaway process. With multiple prefer-
ences and ornaments, the number of exaggerated states in-
creases greatly. So, rather than simple cycles, we find a complex
switching between different sexual phenotypes through evo-
lutionary time. The analysis shows variability in the relative
stability of different preferences. As before, lower stability and
more rapid change is associated with high costs and low
benefits of choice.

Our model allows predictions to be made about how allo-
patric populations evolve under sexual selection. If preferences
show cyclic evolution, we predict that small environmental
differences are amplified quickly into large population differ-
ences (Fig. 4). In particular, small differences in the cost of
choice (b, l, or u) alter the frequency of runaway and the
sequence of male ornament evolution. So, male sexual phe-
notypes of allopatric populations will diverge within a short
period of time. This diversity will contribute to speciation if
different preferences result in isolation between allopatric
populations that come into secondary contact.

These observations differ in emphasis from traditional views
stressing the importance of random genetic drift in triggering
runaway (17, 23). Our model does not consider drift explicitly.
But we can see already that divergence can be generated
without any significant contribution from drift. In our analysis,
the cost of choice slowly erodes any current preference,
eventually causing runaway in a new direction. In small
populations, the effect of drift may be of the same order as the
cost of choice. Drift then may significantly alter the time
between runaway events and even the direction of the ensuing
runaway. Drift is thus another potential contributor to diver-
sity.

In this paper, we have concentrated on the role of Fisher’s
runaway process as a cause of diversity. Fisherian ornaments
are attractive traits but have no other signaling function. An
alternative possibility is that male ornaments are handicaps
and act as reliable indicators of male quality (24). Handicap
ornaments also show cyclic evolution of female preferences
and male ornaments (Y.I. and A.P., unpublished work). How-
ever, runaway and cyclic evolution are phenomena that arise
because of the coevolution of preference with an attractive
ornament caused by the Fisherian process. The handicap
process is an important force leading to the stability of
preferences for ornaments that reveal male quality. So, pref-
erence for ornaments that yield strong handicap benefits for

females (either good genes or direct benefits) will tend to
remain relatively unchanged through evolutionary time. We
can therefore predict that variable sexual ornaments are likely
to have weaker associations with male quality (24).
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