Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Apr;59(4):953–959. doi: 10.1128/aem.59.4.953-959.1993

A New Way of Producing Isomalto-Oligosaccharide Syrup by Using the Transglycosylation Reaction of Neopullulanase

Takashi Kuriki 1,*, Michiyo Yanase 1, Hiroki Takata 1, Yoshiaki Takesada 2, Tadayuki Imanaka 3, Shigetaka Okada 1
PMCID: PMC202222  PMID: 16348919

Abstract

A new way of producing isomalto-oligosaccharide syrup from starch was developed. Isomalto-oligosaccharides contain one or more α-(1→6)-glucosidic linkages with or without α-(1→4)-glucosidic linkages. The isomalto-oligosaccharide syrups are receiving increased attention as food additives because it is thought that they help prevent dental caries and improve human intestinal microflora, acting as a growth factor for bifidobacteria. The new system for production of isomalto-oligosaccharide syrup is based on the strong α-(1→6)-transglycosylation reaction of neopullulanase. Bacillus subtilis saccharifying α-amylase was simultaneously used with neopullulanase to improve the yield of isomalto-oligosaccharides. The yield of isomalto-oligosaccharides was increased to more than 60%, compared with a yield of 45.0% obtained by the conventional system. To reduce the costs, the use of immobilized neopullulanase was investigated. Almost the same yield of isomalto-oligosaccharides was obtained by using immobilized neopullulanase.

Full text

PDF
955

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  2. Hamada S., Torii M. Interaction of glucosyltransferase from Streptococcus mutans with various glucans. J Gen Microbiol. 1980 Jan;116(1):51–59. doi: 10.1099/00221287-116-1-51. [DOI] [PubMed] [Google Scholar]
  3. Hyun H. H., Zeikus J. G. General Biochemical Characterization of Thermostable Pullulanase and Glucoamylase from Clostridium thermohydrosulfuricum. Appl Environ Microbiol. 1985 May;49(5):1168–1173. doi: 10.1128/aem.49.5.1168-1173.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Imanaka T., Fujii M., Aramori I., Aiba S. Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis. J Bacteriol. 1982 Mar;149(3):824–830. doi: 10.1128/jb.149.3.824-830.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Imanaka T., Kuriki T. Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan. J Bacteriol. 1989 Jan;171(1):369–374. doi: 10.1128/jb.171.1.369-374.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krasse B., Carlsson J. Various types of streptococci and experimental caries in hamsters. Arch Oral Biol. 1970 Jan;15(1):25–32. doi: 10.1016/0003-9969(70)90142-1. [DOI] [PubMed] [Google Scholar]
  7. Kuriki T., Imanaka T. Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J Gen Microbiol. 1989 Jun;135(6):1521–1528. doi: 10.1099/00221287-135-6-1521. [DOI] [PubMed] [Google Scholar]
  8. Kuriki T., Okada S., Imanaka T. New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J Bacteriol. 1988 Apr;170(4):1554–1559. doi: 10.1128/jb.170.4.1554-1559.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuriki T., Park J. H., Okada S., Imanaka T. Purification and Characterization of Thermostable Pullulanase from Bacillus stearothermophilus and Molecular Cloning and Expression of the Gene in Bacillus subtilis. Appl Environ Microbiol. 1988 Nov;54(11):2881–2883. doi: 10.1128/aem.54.11.2881-2883.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuriki T., Takata H., Okada S., Imanaka T. Analysis of the active center of Bacillus stearothermophilus neopullulanase. J Bacteriol. 1991 Oct;173(19):6147–6152. doi: 10.1128/jb.173.19.6147-6152.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ooshima T., Fujiwara T., Takei T., Izumitani A., Sobue S., Hamada S. The caries inhibitory effects of GOS-sugar in vitro and in rat experiments. Microbiol Immunol. 1988;32(11):1093–1105. doi: 10.1111/j.1348-0421.1988.tb01474.x. [DOI] [PubMed] [Google Scholar]
  12. Takata H., Kuriki T., Okada S., Takesada Y., Iizuka M., Minamiura N., Imanaka T. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at alpha-(1----4)- and alpha-(1----6)-glucosidic linkages. J Biol Chem. 1992 Sep 15;267(26):18447–18452. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES