Abstract
Cyclic AMP, and its derivatives N6-monobutyryl cyclic AMP and dibutyryl cyclic AMP, have been found to inhibit the proliferation of trophoblast cells of the BeWo cell line in vitro. Sodium butyrate (1 mM), a possible degradation product of the butyrate derivatives, also inhibited cell proliferation, giving similar growth rates to equimolar dibutyryl cyclic AMP. The inhibition by butyrate was however, not sufficient to account for the action of 1 mM N6-monobutyryl cycli AMP, which, like cyclic AMP, completely inhibited cell proliferation. The potency, specificity and toxicity of the substances were compared. The results suggest different modes of action for cyclic AMP and dibutyryl cyclic AMP.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Heidrick M. L., Ryan W. L. Adenosine 3',5'-cyclic monophosphate and contact inhibition. Cancer Res. 1971 Sep;31(9):1313–1315. [PubMed] [Google Scholar]
- Heidrick M. L., Ryan W. L. Metabolism of 3',5'-cyclic amp by strains L cells. Biochim Biophys Acta. 1971 May 18;237(2):301–309. doi: 10.1016/0304-4165(71)90322-9. [DOI] [PubMed] [Google Scholar]
- Hilz H., Kaukel E. Divergent action mechanism of cAMP and dibutyryl cAMP on cell proliferation and macromolecular synthesis in HeLa S3 cultures. Mol Cell Biochem. 1973 Jun 27;1(2):229–239. doi: 10.1007/BF01659332. [DOI] [PubMed] [Google Scholar]
- Hsle A. W., Kawashima K., O'Neill J. P., Schröder C. H. Possible role of adenosine cyclic 3':5'-monophosphate phosphodiesterase in the morphological transformation of Chinese hamster ovary cells mediated by N6,O2-dibutyryl adenosine cyclic 3':5"-monophosphate. J Biol Chem. 1975 Feb 10;250(3):984–989. [PubMed] [Google Scholar]
- Hussa R. O., Story M. T., Pattillo R. A. Regulation of human chorionic gonadotropin (hCG) secretion by serum and dibutyryl cyclic AMP in malignant trophoblast cells in vitro. J Clin Endocrinol Metab. 1975 Mar;40(3):401–405. doi: 10.1210/jcem-40-3-401. [DOI] [PubMed] [Google Scholar]
- Kaukel E., Hilz H. Permeation of dibutyryl cAMP into HeLa cells and its convesion to monobutyryl cAMP. Biochem Biophys Res Commun. 1972 Jan 31;46(2):1011–1018. doi: 10.1016/s0006-291x(72)80242-0. [DOI] [PubMed] [Google Scholar]
- Kaukel E., Mundhenk K., Hilz H. N 6 -monobutyryladenosine 3':5'-mono phosphate as the biologically active derivative of dibutyryladenosine 3':5'-monophosphate in HeLa S3 cells. Eur J Biochem. 1972 May;27(1):197–200. doi: 10.1111/j.1432-1033.1972.tb01826.x. [DOI] [PubMed] [Google Scholar]
- Kram R., Mamont P., Tomkins G. M. Pleiotypic control by adenosine 3':5'-cyclic monophosphate: a model for growth control in animal cells. Proc Natl Acad Sci U S A. 1973 May;70(5):1432–1436. doi: 10.1073/pnas.70.5.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill J. P., Schröder C. H., Hsle A. W. Hudrolysis of butyryl derivatives of adenosine cyclic 3':5'-monophosphate by Chinese hamster ovary cell extracts and characterization fo the products. J Biol Chem. 1975 Feb 10;250(3):990–995. [PubMed] [Google Scholar]
- Prasad K. N., Mandal B. Catechol-o-methyl-transferase activity in dibutyryl cyclic AMP, prostaglandin and x-ray -induced differentiated neuroblastoma cell culture. Exp Cell Res. 1972 Oct;74(2):532–534. doi: 10.1016/0014-4827(72)90412-0. [DOI] [PubMed] [Google Scholar]
- Ryan W. L., Heidrick M. L. Role of cyclic nucleotides in cancer. Adv Cyclic Nucleotide Res. 1974;4(0):81–116. [PubMed] [Google Scholar]
- Sheppard J. R. Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1316–1320. doi: 10.1073/pnas.68.6.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Story M. T., Hussa R. O., Pattillo R. A. Independent dibutyryl cyclic adenosine monophosphate stimulation of human chorionic gonadotropin and estrogen secretion by malignant trophoblast cells in vitro. J Clin Endocrinol Metab. 1974 Nov;39(5):877–881. doi: 10.1210/jcem-39-5-877. [DOI] [PubMed] [Google Scholar]
- Szabo M., Burke G. Uptake and metabolism of 3',5' -cyclic adenosine monophosphate and N 6 ,O 2' -dibutyryl 3',5' -cyclic adenosine monophosphate in isolated bovine thyroid cells. Biochim Biophys Acta. 1972 Apr 21;264(2):289–299. doi: 10.1016/0304-4165(72)90293-0. [DOI] [PubMed] [Google Scholar]
- Teel R. W., Hall R. G. Effect of dibutyryl cyclic AMP on the restoration of contact inhibition in tumor cells and its relationship to cell density and the cell cycle. Exp Cell Res. 1973 Feb;76(2):390–394. doi: 10.1016/0014-4827(73)90391-1. [DOI] [PubMed] [Google Scholar]
- Waymire J. C., Weiner N., Prasad K. N. Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: elevation induced by analogs of adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2241–2245. doi: 10.1073/pnas.69.8.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. A. Morphology and growth rate changes in Chinese hamster cells cultured in presence of sodium butyrate. Exp Cell Res. 1973 Apr;78(2):456–460. doi: 10.1016/0014-4827(73)90091-8. [DOI] [PubMed] [Google Scholar]
