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ABSTRACT Poisson-Boltzmann (PB) theory is among the most widely applied electrostatic theories in biological and
chemical science. Despite its reasonable success in explaining a wide variety of phenomena, it fails to incorporate two basic
physical effects, ion size and ion-ion correlations, into its theoretical treatment. Recent experimental work has shown significant
deviations from PB theory in competitive monovalent and divalent ion binding to a DNA duplex. The experimental data for
monovalent binding are consistent with a hypothesis that attributes these deviations to counterion size. To model the observed
differences, we have generalized an existing size-modified Poisson-Boltzmann (SMPB) theory and developed a new numerical
implementation that solves the generalized theory around complex, atomistic representations of biological molecules. The
results of our analysis show that good agreement to data at monovalent ion concentrations up to ;150 mM can be attained by
adjusting the ion-size parameters in the new size-modified theory. SMPB calculations employing calibrated ion-size parameters
predict experimental observations for other nucleic acid structures and salt conditions, demonstrating that the theory is
predictive. We are, however, unable to model the observed deviations in the divalent competition data with a theory that only
accounts for size but neglects ion-ion correlations, highlighting the need for theoretical descriptions that further incorporate ion-
ion correlations. The accompanying numerical solver has been released publicly, providing the general scientific community the
ability to compute SMPB solutions around a variety of different biological structures with only modest computational resources.

INTRODUCTION

The electrostatic interactions between biological macromol-

ecules such as proteins and nucleic acids and their associated

ion atmospheres play important roles in a variety of cellular

processes. Quantitative understanding of these electrostatic

effects is a necessary part of any theoretical treatment of

biological processes at the molecular level. Poisson-Boltzmann

(PB) theory has become a standard tool in biology for elu-

cidating the role of electrostatics in biomolecular interac-

tions. Its mean-field approach to electrolyte interactions and

continuum solvent model is simple and computationally

tractable.

The increasingly diverse application of PB theory is

partially the result of the growing availability of software

routines designed to solve PB for complex biological

systems (1,2). PB theory has been used, among other things,

to analyze fundamental nucleic acid processes (3,4), RNA

folding (5,6), ligand binding and protein association to

nucleic acids (7), the role of histone tails in chromatin and

nucleosomes (8,9), and other applications (10).

Despite its wide applicability, PB theory suffers from two

limitations: it does not include ion size or ion-ion correla-

tions in its treatment. In the PB framework, solvated ions are

characterized only by their valences as point charges that

interact with an averaged electrostatic potential. The sim-

plistic treatment greatly facilitates computation but precludes

an accurate treatment of ion behavior. In particular, ions of

different sizes but equal valences are treated identically in PB

theory, even though differences in diffuse ion binding to poly-

electrolytes and nucleic acids have been observed experimen-

tally (11–13).

Many efforts have been made to model size effects in

electrolyte solutions. These theories use a variety of different

strategies, including exclusion layer models (where ions are

forbidden from approaching within a certain distance),

Monte Carlo, and mean-field approaches (14–18). These

strategies suffer from several different drawbacks. Simple

exclusion layer models cannot be applied to a complex

mixture of ions with different sizes and do not account for

excluded volume effects among the ions. In principle, Monte

Carlo approaches can be very accurate, but at a high

computational cost, making the approach impractical for

high-throughput computation on ensembles of structures or

salt conditions. Other theoretical approaches require simpli-

fication of the molecular geometry or lack a general

implementation that is available to the scientific community.

In solution, ions interact via long-ranged Coulomb

interactions and a short-ranged, hard-core repulsion, char-

acterized by the size of the ions (14). To address the lack of

size in PB theory, we extend the lattice gas approach of

Borukhov et al. (16) by generalizing their result for a single

ion size to the case of two ion sizes, a necessary development

of the theory if we are to model the competition between two

ions of different size as is typically the situation in

experiments and in vivo. In our theoretical approach, the

hard-core repulsion between solvated ions is approximated
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with an excluded volume term in the free energy density of a

lattice gas model of the ionic solution. We have implemented

this size-modified Poisson-Boltzmann (SMPB) theory in a

numerical solver by modifying the widely available Adap-

tive Poisson-Boltzmann Solver (APBS) (19). This imple-

mentation has been made publicly available to the scientific

community.

In the following sections, we apply SMPB to analyze

competitive nonspecific binding of two ion species to a DNA

duplex where size effects cause significant departures from

PB theory (12) and show that it can be used to account for

differences in monovalent association for ions of different

sizes and monovalent ion concentrations #150 mM. Further-

more, we show in some relatively simple cases that SMPB

theory can be generalized to analyze other nucleic-acid struc-

tures, especially in situations where an accurate treatment of

ion size is necessary. Accurate treatment of divalent cations

remains elusive in a mean-field framework, due to the ne-

glect of ion-ion correlation, necessitating further advances in

theory.

METHODS

Derivation of the SMPB equation

Following Borukhov et al., we treat the ionic solution as a simple lattice gas

to approximate the excluded-volume effects of the ions in solution (16).

However, we extend their work by generalizing their result to treat

asymmetric ion sizes and writing a numerical implementation that deals with

arbitrary geometries. In the lattice gas formalism, the domain around the

charged biomolecule is treated as a three-dimensional lattice with N evenly

spaced points a apart. This characteristic lattice spacing a sets the volume of

the larger ions at a3 while a dimensionless parameter k sets the volume of

the smaller ions at a3/k. For concreteness, assume that ion species 1 is the

smaller ion species with volume a3/k and that ion species 2 and 3 are the

larger ion species, both with volume a3 (Fig. 1).

The size parameters a and ak�1/3 are the cell-size parameters of the larger

and smaller ion species and can be adjusted to fit experiments. The ion-size

parameters must be understood as adjustable parameters and do not

correspond to formal notions of hydrated ion structure (e.g., hydration

shells). Instead, the ion-size parameters act as effective ion sizes, reflecting

how ions behave in solution. Once calibrated against experiments, the ion-

size parameters have predictive power for monovalent ion concentrations

#150 mM, as demonstrated later in the article.

Consider a charged biomolecule in an ionic solution with three species

with valences z1, z2, and z3, and bulk concentrations c1
b; c2

b; and c3
b: The

biomolecule is described by a fixed charge density rf and a solvent

accessibility function gðr~Þ that is zero for points r~inaccessible to the solvent

and unity for solvent-accessible points.

For integral k, each lattice site can contain at most a single ion of volume

a3 or k ions of volume a3/k. Proceeding from this assumption, the grand

partition function for each lattice site (enumerating all possible occupancies

of the lattice site) is given by

Z ¼ +
k

n¼0

k

n

� �
j

n

1

� �
1 j2 1 j3 ¼ ð1 1 j1Þ

k
1 j2 1 j3; (1)

where ji¼ exp ((mi – ziec)/kBT), mi is the chemical potential of species i, e is

the fundamental charge, c is the electrostatic potential at a lattice site, kB is

Boltzmann’s constant, and T is the absolute temperature. Note that SMPB,

like PB, treats the ion-ion interaction with a mean-field approximation,

neglecting ion-ion correlations.

The relationship between the bulk concentration ci
b and the chemical

potential of each species mi is obtained by deriving the grand partition

function with respect to the chemical potential:

c
i
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kBT

Na
3
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: (2)

The chemical potentials mi as a function of the bulk concentrations ci
b can

be obtained by inverting Eq. 2. The average concentration at each lattice

site with electrostatic potential c is obtained similarly:

c
i ¼ kBT

a
3

@log Z

@mi

: (3)

The average concentration at each lattice site can then be substituted into

Poisson’s Equation:
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Combining Eqs. 2–4 and rewriting the electrostatic potential in dimension-

less units u ¼ ec/kBT yields the SMPB equation,
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where D ¼ ½1� f01ðc1
ba3=kÞe�z1u�k1ð1� c2

ba3 � c3
ba3Þk�1ðc2

ba3e�z2u1

c3
ba3e�z3uÞ and f0 ¼ ðc1

ba3=kÞ1c2
ba31c3

ba3 is the fractional occupancy of

each lattice site in the bulk. In the limit of k / 1 (equal-sized ions),

Borukhov’s result is obtained (16). Although Eq. 5 was derived for integral

k, the continuity of the grand partition function for nonintegral k allows us to

choose any real value of k and therefore any two arbitrary ion sizes. An

expression for the free energy density of the lattice gas, with an explicit

FIGURE 1 Schematic illustration of the lattice gas model. The lattice size

a sets the size of the species with valences z2 and z3 while the k parameter

(in this case, k ¼ 2) sets the relative size of the smaller ion with valence z1.
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treatment of excluded volume effects, is presented in Eq. 7 of the

Supplementary Material and can be employed to compute the free energy

due to the electrostatics of the ion atmosphere.

Numerical implementation

Several numerical solvers have been developed to solve the PB equation

(19,20). We chose to implement the SMPB equation by modifying the

Adaptive Poisson-Boltzmann Solver (APBS), an open source software

package developed by Baker et al. to solve the PB equation numerically

around complex all-atom representations of biological macromolecules (19).

An implementation of the SMPB theory is available on the APBS web site

(http://apbs.sourceforge.net/).

All simulations employed all-atom PDB models of the nucleic acid

structure with atomic partial charges and radii assigned by the CHARMM

force field (21,22) with the PDB2PQR utility (23), a standard part of the

APBS package. The 24- and 44-bp DNA duplex models were created with

the Nucleic Acid Builder software package in the standard B-form geometry

(24). The 24-bp triplex model was created by axially stacking the solution

structure of an 8-bp DNA triplex (PDB ID code 1D3X) three times using the

average rise/base and twist/base of the triplex to translate and rotate the

stacked triplexes to achieve correct alignment (25).

We solved the SMPB equation on a 192 3 192 3 225 Å grid with 128 3

128 3 225 points (1.5 Å grid spacing). Solvent points were assigned a

dielectric value of e ¼ 78.54 and e ¼ 2.00 to DNA duplex points. Boundary

condition values were determined using the Debye-Hückel approximation.

In all calculations, the box size was large enough so that charge neutrality

did not vary by .1.3%. Control calculations that varied force field (AMBER

instead of CHARMM), internal dielectric, grid spacing (0.5, 1.00, 1.50, and

2 Å), and box size (multiplying box dimensions by a factor between 0.66 and

1.3) varied the computed ions counts insignificantly. The interior of the

molecule was defined as the union of spheres centered on the atomic

positions with radii equal to the van der Waals radius of the atom, plus a

solvent probe radius of 1.4 Å. The ion accessible region was defined

similarly as the Van der Waals radius plus a Stern layer of 2.0 Å. Further

details regarding the calculation may be found in the Supplementary

Material. The modified and unmodified versions of APBS have similar

processor and memory demands, requiring ;10 min on an Intel Xeon 3.06

GHz processor to calculate the ion binding at one salt and size condition,

well within the reach of many researchers. On highly optimized systems

such as the Jacquard cluster at the National Energy Research Scientific

Computing Center, each calculation only required 3 min on a single

processor, opening the possibility of high-throughput calculation on a large

number of structures, salt, and size conditions.

Size parameter calibration

To calibrate the size parameters in SMPB, we analyzed the results of

experiments conducted by Bai et al. on the competition between two cation

species around a 24-bp DNA duplex (12). In their experiments, a positively-

charged competing counterion (CC) species was titrated against a

background counterion (BC) species held at fixed concentration. In the

experiments, both BC and CC shared the same anion. As the concentration

of CC was increased, it gradually replaced the BC in the mobile ion

atmosphere around the duplex. The number of each cation species

accumulated around each duplex was determined by atomic emission

spectroscopy and a competition constant for each CC was computed from

the results. (Note that, following the convention established in (12), we

define the competition constant as the [M]1/2 obtained from fitting the BC

titration curve to an empirical two-state model: N ¼ N11ðN0 � N1=11ð½M�=
½M�1=2Þ

kÞ; where N0 and N1 are the number of BC at start and end states.) Bai

et al. have quantitated the number of monovalent CC (5–500 mM Li1, K1,

or Rb1) titrated against a monovalent BC (50 mM of Na1). Ion counts were

also obtained for a divalent CC (0.1–50 mM of Mg21, Ca21, Sr21, or Ba21)

against monovalent BC (20 mM of Na1), as well as divalent CC (0.2–10

mM of Ca21, Sr21, or Ba21) against divalent BC (2 mM Mg21) (12).

The size parameters were calibrated by fitting the theoretical predictions

for the monovalent cation accumulation against the experimental results

with a minimum-x2 search. Size parameters for Li1, Na1, K1, and Rb1

were allowed to vary independently in 0.5 Å steps between 1 and 10 Å. The

hypothetical ion-binding curves for each combination of sizes was compared

to experiment until the global deviation from experiment—defined as the

sum of the squared differences of the number of CC and BC accumulated

between experiment and theory—was minimized. It is important to note that

no prior assumptions were made on the ordering of ion size parameters (e.g.

we did not assume that Li1 was smaller than Na1). In total, ;60,000

individual SMPB calculations were computed in the course of the study,

covering the different combinations of size, ion concentration, and structure.

The number of an ion species i associated with the DNA duplex at each

size and concentration condition was computed from SMPB theory using

the following integral over the solution domain G (numerically approximated

by a sum over grid points):

N
i

bound ¼
Z

G

ðciðr~Þ � c
i

bÞdV: (6)

In the case where the size of the CC was less (greater) than the size of the

BC, the ion counts were calculated with the CC as species 1 (2) and the BC

as species 2 (1) in Eq. 5. In all cases, the co-ion was treated as species 3.

Although the size of the co-ion in the model varies, control experiments

performed by Bai et al. show that the size of the co-ion does not significantly

affect its preferential exclusion (12).

Due to the unknown dependence of the x2 on the fitted ion size

parameters, we chose not to use the general least-squares fitting procedure to

establish confidence bands on the fitted size parameters. Instead, as a more

robust test of our confidence bands, we used a bootstrapping strategy (26).

From the original experimental monovalent dataset, we generated 2000

simulated experimental datasets by randomly selecting data points with

repeats. Subjecting these 2000 datasets to the same fitting procedure allowed

us to probe the distribution of the fitted parameters and establish confidence

bands on them, which we defined to be one standard deviation from the

average value.

RESULTS AND DISCUSSION

Analysis of monovalent competition

Fig. 2 displays experimentally observed ion binding curves

for Li1, K1, and Rb1 against a fixed background of 50 mM

Na1. In the PB treatment, all monovalent ions are treated

identically and therefore no difference in titration curves or

competition constants between different ion species is pre-

dicted; however, the experimental results (Fig. 2) display devia-

tions from this theoretical prediction. Although the deviations

are not large, they are not explained by random experimental

error and represent statistically significant departures from

idealized PB behavior. Furthermore, the order of competi-

tion constants (Li1 , K1 , Rb1) suggests a size-mediated

effect (12).

The difference in affinity between ion species (determined

by comparing competition constants) can be intuitively ex-

plained by considering a simple size-modified picture: larger

CC have a harder time packing around the DNA duplex and

neutralizing the negatively charged phosphate backbone than

smaller CC, increasing their competition constants relative to

smaller CC.
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To calibrate the SMPB size parameters, simulated titration

curves were generated for the Li1, K1, and Rb1 (competing

against fixed 50 mM Na1) monovalent datasets. The simu-

lated binding curves were then subjected to the calibration

procedure described in Methods; the best fits are plotted in

Fig. 3. Competition constants (see Size Parameter Calibra-

tion, above), derived by fitting the best-fit BC titration curve to

an empirical two-state model, are plotted in Fig. 4.

SMPB theory predicts both the total number of CC and

BC bound as well as the competition constants far better than

PB. Using reduced x2 as a statistical measure of goodness-

of-fit with n as the number of degrees of freedom, SMPB

yields significantly improved fits over PB (x2/n ¼ 1.13 for

SMPB versus x2/n ¼ 2.45 for PB). In this case, the x2

statistic reflects discrepancies arising from experimental

error and the approximations made in the theoretical model.

If P is the probability that random fluctuations explain the

observed deviations between model and experiment, from

the standard x2 distribution, this corresponds to P ¼ 0.28 for

SMPB and P ¼ 2.8 3 10�6 for PB theory.

We employed the bootstrapping analysis described in

Methods to establish confidence bands on calibrated size

parameters. The results of the bootstrapping analysis are

presented in Fig. 7 and in the Supplementary Material. The

bootstrapping analysis shows that the distribution of each

calibrated size parameter is tightly clustered around an

average size which differs from the calibrated size param-

eters by, at most, 5%. The calibrated size parameters from

fitting and confidence bands from bootstrapping are pre-

sented in Table 1.

It is important to note that these ion-size parameters do not

correspond to physical ion sizes; rather, they describe how

ions behave in solution. Therefore, direct comparisons with

published data on hydrated size cannot be made; however,

the order of fitted ion-size parameters is consistent with the

order of the radii of the first hydration shell (i.e., Li1 behaves

smaller than Rb1) (27).

We have tentatively tested SMPB’s predictive ability in

alternate nucleic acid structures and salt conditions by using

the calibrated ion-size parameters to predict ion-binding

curves for a limited set of other preliminary experimental

data. Using size parameters obtained from the training data

set (24-bp duplex in 50 mM Na1), we made predictions for

Li1 and Rb1 (competing against fixed 50 mM Na1) around

a 44-bp duplex and a 24-bp triplex to test different structures

and for Li1 and Rb1 (competing against fixed 10 mM Na1)

around a 24-bp duplex to test an alternate salt condition.

FIGURE 2 Experimental competitive ion binding curves between mon-

ovalent cations and 50 mM Na1 (12). Monovalent cations tested: Li1 (3,

dashed), K1 (1, solid), Rb1 (s, dash-dot). Plotted curves are the best-fits of

the data to an empirical two-state model. (Note that, following the

convention established in (12), we define the competition constant as the

[M]1/2 obtained from fitting the BC titration curve to an empirical two-state

model: N ¼ N11ðN0 � N1=11ð½M�=½M�1=2Þ
kÞ; where N0 and N1 are the

number of BC at start and end states.) For all curves, as the bulk

concentration of CC is increased, the CC is bound preferentially over the

BC. Therefore, all of the CC curves increase while the BC ones decrease.

The competition constants for each species are not identical for monovalent

ions, in disagreement with the PB prediction. The order of the competition

constants suggests a size-mediated effect.

FIGURE 3 Best-fit ion binding curves for BC ¼ 50 mM Na1, CC¼ Li1 (A), K1 (B), or Rb1 (C), competing around a 24 bp DNA duplex. Net charge ()),

CC (h), fixed BC (s), and co-ion (n). SMPB, computed with best-fit ion-size parameters (Table 1) is plotted with solid lines while unmodified PB theory is

plotted with dashed lines.
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Table 2 compares the reduced x2 statistic for SMPB and PB

predictions.

SMPB is able to predict the observed titration curves

obtained for different nucleic acid structures far better than

PB, judged by comparing the reduced x2 statistic and by

examining the predicted concentration dependence of bind-

ing (Fig. 5, and Fig. 8 in the Supplementary Material). At the

alternate 10 mM fixed Na1 salt condition, SMPB yields a

slightly better fit than PB (Fig. 9 in the Supplementary

Material). However, the discrepancy between PB and

experiment is not very large to begin with, probably due to

the fact that excluded volume effects become less important

at lower ion concentrations. It is important to emphasize that

the data used to calibrate the ion-size parameters and the data

for which predictions were made are entirely disjoint,

demonstrating the generality of the calibrated theory across

a limited range of different structures and salt conditions.

Future work should test the predictive power of SMPB on a

wider range of structures and monovalent salt conditions.

Examination of the radial density function (RDF) for each

ion species elucidates the effect of size on the ion distribution

around the DNA duplex. RDFs were obtained by axially and

radially averaging the concentration of each cation species

(both in competition at 50 mM concentration) in a slice 3 Å

thick at the center of the duplex to avoid end effects and to

probe the distribution over a 1-bp section of the duplex. RDFs

are plotted in Fig. 6. PB theory does not account for size, so

both ion species have the same distribution around the duplex

(dashed line). This is in contrast with SMPB, where the

inclusion of size has a marked effect on ion distribution. Fig. 6

A is the RDF computed using the best-fit size parameters for

Li1 and Na1; in this plot, the smaller Li1 ions are able to

penetrate into the minor groove of the helix, indicated by the

peak in concentration around r¼ 5 Å. As the size of the CC is

made larger (Fig. 6, B and C), we see that it is increasingly

excluded from the immediate vicinity of the duplex, in ac-

cordance with our expectation that larger CC have a harder

time approaching closely to the duplex than smaller CC.

The analysis of monovalent competition shows that

SMPB can model the departures from PB theory in a simple

mean-field framework that takes into account the excluded

volume of the diffusely bound ions. Although SMPB, as a

mean-field theory, does not take ion-ion correlations into

account, its success in interpreting nonspecific monovalent

binding is most likely due to the fact that ion-ion correlations

are not very important in solutions of low to moderate

monovalent ion concentrations (28,29).

Analysis of divalent competition

Departures from PB have also been observed in divalent

versus monovalent and divalent versus divalent competi-

tion. In particular, PB underestimates the competitive abil-

ity of divalent ions competing against a fixed concentration

of monovalent ions; additionally, PB does not predict the

observed size deviations in divalent versus divalent com-

petition (12).

Subjecting the divalent versus monovalent dataset to a

fitting routine similar to the one performed on the monova-

lent dataset yields best-fit size parameters that fit the data

better than PB (x2/n¼ 3.27 for SMPB versus x2/n¼ 7.95 for

PB); in this sense, there is statistical improvement over PB

alone (Fig. 7, and Fig. 10 in the Supplementary Material).

The fitting procedure returned results that suggested that, in

the SMPB framework, divalent metal ions have a smaller

apparent size than the background sodium ions. In future

calculations, these apparent sizes may be used to obtain

FIGURE 4 Comparison of competition-constants obtained by fitting experi-

mental data (solid) and SMPB-predictions (open) to an empirical two-state

model. The single PB prediction for the monovalent competition constant is

denoted by the dashed line.

TABLE 1 Summary of size parameters obtained from fitting

and bootstrapping for Li1, Na1, K1, and Rb1

Best-fit (Å) Bootstrap (Å)

Li1 1.00 1.00 6 0.03

Na1 7.16 7.00 6 0.36

K1 7.42 7.30 6 0.53

Rb1 9.47 9.39 6 0.22

TABLE 2 Comparison of reduced v2 values for SMPB and PB

predictions for Li1 and Rb1 titrations for different nucleic acid

structures and salt conditions

SMPB* PB

44-bp Duplex (50 mM Na1) 1.40 5.62

24-bp Triplex (50 mM Na1) 1.30 7.28

24-bp Duplex (10 mM Na1) 2.94 2.98

*Computed using calibrated size parameters obtained from fitting the 24-bp

duplex (50 mM Na1) dataset (Table 1).
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better fits than unmodified PB alone. We do not, however,

believe that SMPB was able to satisfactorily model the

enhanced accumulation of divalent CC over the tested

parameter space of ion-size parameters. Furthermore, size

parameters obtained from fitting divalent versus monovalent

datasets are not consistent with the best-fit parameters from

the divalent versus divalent datasets.

The inconsistency of best-fit size parameters between

datasets shows that a mean-field theory—even one that

accounts for ion size—cannot explain all of the observed

deviations from PB theory. Although some of these discrep-

ancies are probably attributable to the finite size of the

solution ions, ion-ion correlations presumably play a larger

role due to the higher valence of the ions (28,29). The failure

of SMPB highlights the need for an adequate theoretical

treatment for divalent ions, especially since divalent ions play

important roles in many biological processes.

Range of validity

SMPB is valid for monovalent ion concentrations up to

;150 mM; in this concentration range, SMPB gives a good

visual fit to the experimental data. Above this concentration,

the SMPB prediction for the number of bound co-ions shows

increasing deviation ($10%) from experimental observa-

tions. As the CC concentration in solution is increased,

SMPB predicts increasing depletion of co-ions in the vicinity

of the duplex, reflected in the downward slope of the co-ion

curve (Fig. 3 C, for instance). Similar depletion has also been

observed in PB calculations by Misra and Draper (30),

Ni et al. (31), and Shkel et al. (32).

The charge of the duplex is neutralized by a combination

of counterion association and co-ion exclusion; the former

becomes entropically unfavorable with increasing CC con-

centration (30). As the co-ions are depleted from the vicinity

of the duplex, the number of CC bound necessarily falls

because fewer CC are required to neutralize the charge of the

duplex. This depletion effect is not observed experimentally

at the magnitude suggested by SMPB, suggesting its

accuracy is limited at higher ionic concentrations, perhaps

due to neglect of ion-ion correlations or an inaccurate

treatment of the hard-core repulsion, both of which become

more important at higher ion concentrations. Co-ion exclu-

sion occurs more strongly and at lower concentrations for

SMPB theory than for PB due to the inclusion of the

excluded volume effects in the free energy density. This is

FIGURE 6 Radial distribution functions (RDF) for two monovalent ion species at 50 mM concentration around a DNA duplex. RDFs were averaged over

the middle 3 Å of the duplex. Dashed line denotes concentration profile obtained from PB. SMPB theory is plotted with solid lines (smaller ion) and dash-dot

lines (larger ion). Three different size combinations are plotted (representing 50 mM Li1, K1, and Rb1 in competition against 50 mM Na1): (A) 1.00 and 7.16 Å,

(B) 7.16 and 7.41 Å, and (C) 7.16 and 9.47 Å.

FIGURE 5 SMPB (solid) and PB (dashed) predic-

tion for CC ¼ Li1 (A) or Rb1 (B) competing against

BC ¼ 50 mM Na1 around a 44-bp DNA duplex. Net

charge ()), CC (h), fixed BC (s), and co-ion (n).

SMPB curves were computed using size parameters

obtained from fitting against 50 mM Na1 24-bp du-

plex competition data.
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not at all surprising; the addition of excluded-volume effects

makes the depletion of co-ion from the duplex energetically

more favorable since the finite size of the co-ions makes

them easier to exclude.

Application to modeling

Due to its mean-field treatment and continuum solvent

model, numerical implementation of SMPB theory (Eq. 5)

requires computing resources comparable to PB, well within

the reach of many researchers. This approach, while a

considerable improvement over PB, is at the cost of some

accuracy due to the limitations of the mean-field approach

and continuum solvent model (31), especially at higher ion

concentrations. As an added advantage, the electrostatic free

energy for a given salt condition is easily computed from an

SMPB calculation, extending its usefulness to energetic cal-

culations, an area of ongoing development.

Because of its improvement in predicting competitive

effects between different ions, we believe that SMPB can

play an important role in the development of continuum

models, especially in systems where steric and competitive

effects are important. Possible examples of such systems

involve binding to the minor groove of DNA (33) and

membrane channel transport (34,35). The similarities be-

tween RNA and DNA also suggest that SMPB may also be

applicable more broadly to other nucleic acid systems.

Beyond its use in biology, electrostatics and PB theory

have been used widely in colloid science and electrochem-

istry. For instance, PB theory has been used to model ion

transport across membranes (36), which has implications for

battery design and to control microfluidic flows (10).

Advancements in PB theory have the potential to advance

crucial technologies, especially in systems of high charge

density in environments with asymmetric ion size (37).

CONCLUSIONS AND IMPLICATIONS

Proper theoretical descriptions of electrostatic effects are

essential in building models of interactions between highly-

charged biological macromolecules. Traditionally, PB the-

ory has been applied to analyze these interactions. However,

its mean-field treatment of the electrostatic field and point-

charge treatment for ions limits its accuracy in systems where

ion correlations and size are important. Recent experimental

work on nonspecific ion binding has shown significant

deviations from idealized PB ion behavior; in monovalent

salts, these deviations appear to be due primarily to size,

motivating further developments in theory. In this article, we

have presented a SMPB theory which incorporates the finite-

size of the solution ions and a numerical implementation that

solves SMPB numerically around arbitrary molecular struc-

tures. Our results show that this SMPB theory accurately

describes the size-mediated departures from PB in compet-

itive monovalent ion binding for a limited range of nucleic

acid structures and salt conditions. Effective size parameters

for Li1, Na1, K1, and Rb1, which can be used in future

SMPB calculations, are obtained by fitting theory against

experimental results. The numerical implementation is avail-

able from the APBS web site (http://apbs.sourceforge.net/).

Unfortunately, despite fitting the corresponding data better

than PB, SMPB cannot model all of the deviations in the

divalent data. This result is not surprising as the effects of

ion-ion correlations cannot be ignored for divalent ions. As

divalent ions are of great importance in a variety of nucleic

acid systems, we are planning further improvements in

theory which will be needed to explain these deviations in a

satisfactory fashion.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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