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ABSTRACT The existence of lipid rafts in live cells remains a topic of lively debate. Although large, micrometer-sized rafts are
readily observed in artificial membranes, attempts to observe analogous domains in live cells place an upper limit of ;5 nm on their
size. We suggest that integral membrane proteins attached to the cytoskeleton act as obstacles that limit the size of lipid domains.
Computer simulations of a binary lipid mixture show that the presence of protein obstacles at only 5–10% by area dramatically
reduces the tendency of the lipids to phase separate. These calculations emphasize the importance of spatial heterogeneity in cell
membranes, which limits the transferability of conclusions drawn from artificial membranes to live cells.

INTRODUCTION

Lipid rafts are segregated cholesterol-rich membrane do-

mains whose distinct physical and chemical properties are

believed to confer biological function (1–4). Lipid rafts have

been postulated to be important in many diverse cellular

processes, including bacterial and viral targeting of cells (5),

insulin-stimulated glucose transport (6), T-cell receptor sig-

naling (7), stabilization of microtubules (8), axon growth and

guidance (9), cell apoptosis (10), and amyloid-b oligomer-

ization (11). The very existence of rafts in live cells, how-

ever, is hotly debated, and direct evidence of rafts in vivo is

sparse. Although large, micrometer-sized rafts are readily

observed in artificial membranes (12), attempts to observe

analogous domains in live cells place an upper limit of ;5

nm on their size (13).

Here we propose a new idea for why micrometer-sized

rafts might not be present in cells: integral membrane pro-

teins attached to the cytoskeleton act as immobile obstacles

that limit the size of lipid domains. Using computer simu-

lations of a lattice model of the membrane, we show that the

presence of protein obstacles at only 5–10% by area drama-

tically reduces the tendency of the lipids to phase separate

and suggest that immobile proteins might be important in the

biophysics of membranes.

The existence of rafts was initially inferred from biochem-

ical studies that consistently found a ‘‘detergent-resistant

membrane fraction’’ rich in cholesterol (Chol) and glyco-

sphingolipids as well as the glycosyl-phosphatidylinositol

anchored proteins (GPI-APs) that play an important role in

cell signaling (14,15). The ‘‘raft hypothesis’’ suggests that

large domains, enriched in Chol, are formed, and these pro-

vide a mechanism for the concentration of GPI-APs, which is

important for the amplification of signaling. There is no di-

rect evidence for rafts, however, and it is common for pro-

cesses that depend on Chol concentration to be declared to be

raft-driven.

In an incisive recent experiment, Sharma et al. (13) carried

out fluorescence resonant energy transfer measurements on

labeled GPI-APs in live cells. Careful analysis showed that

most of the GPI-APs exist as monomers, with a smaller frac-

tion, ;20–40%, in small clusters of at most four proteins.

Lipid rafts, if they exist at all, would contain only ;40 lipid

molecules and may be highly transitory; perhaps they are

better described as ‘‘membrane nanodomains’’ (2). These

conclusions are consistent with most other recent experi-

ments on live cells (4,16,17). Meanwhile, large, micrometer-

diameter, phase-separated lipid domains are readily observed

in artificial, protein-free lipid bilayers of composition similar

to the detergent-resistant membrane fractions (18,19). This

striking difference in phase behavior between biological

membranes and synthetic membranes demands a physical

explanation.

In this article we suggest a simple but powerful effect that

might prevent formation of micrometer-sized rafts in live

cells. We consider a lattice model with two lipid compo-

nents, A and B, that tend to phase separate because of fa-

vorable A–A and B–B energetic interactions and calculate

the phase diagram as a function of the area fraction of protein

obstacles. We find that inert, immobile obstacles intended to

model integral membrane proteins bound to the underlying

cytoskeleton suppress the temperature at which phase sep-

aration occurs by a significant amount. These protein obstacles

do not hinder the formation of smaller nanometer-sized lipid

domains. These effects of protein obstacles are robust and

must certainly be accounted for in any comprehensive physical

model of lipid domain formation in biological membranes.

The next section describes the model and simulation method,

and this is followed by a description and discussion of results.

The final section summarizes our main conclusions.

Model and simulation method

We model the binary lipid mixture using an Ising model on

a square lattice (Fig. 1), with nearest-neighbor attractive
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energy of �e between like pairs A–A and B–B and repulsive

energy 1e between unlike pairs A–B, i.e., eAA ¼ eBB ¼ �e,
and eAB ¼ 1e. The Hamiltonian for the system is

H ¼ e +
Æijæ

sisj; (1)

where i and j denote lattice sites, the sum is over nearest

neighbors, and si ¼ 0 if lattice site i belongs to an obstacle,

si ¼ 1 for species A, and si ¼ �1 for species B. We choose e
so that the transition temperature from two separate liquid

phases to a single, mixed phase mimics that of a canonical

raft-forming lipid mixture in vitro. Experimentally, a 1:1:1

mixture of palmitoyl-sphingomyelin, dioleoylphosphatidyl-

choline, and Chol in giant unilamellar vesicles displays a

liquid-liquid demixing phase transition at ;40�C (19). In the

model, this temperature fixes e ¼ 0.27 kcal/mol, the only

parameter characterizing the lipid mixture. The protein

‘‘obstacles’’ are modeled as noninteracting crosses that oc-

cupy five neighboring lattice sites (diamonds in Fig. 1). The

simulation system consists of a square lattice of L2 sites, with

L in the range 20–150, with periodic boundary conditions in

all directions. For L ¼ 50, and assuming a single lipid di-

ameter of ;0.7 nm, the lattice occupies only 35 nm 3 35

nm; it is much smaller than a micrometer-sized raft. A fixed

fraction f of these sites is occupied by the protein obstacles,

which are held static in space for each realization of the

model.

One could incorporate an interaction between the obsta-

cles and the lipid components, but as long as this interaction

is the same for both components, it does not affect the phase

diagram. This is because the primary move in the simulation

is ‘‘flipping a spin’’ from 11 to �1 (or vice versa), with the

move accepted according to the Metropolis criterion (20),

i.e., with probability proportional to exp(�bDH) where b ¼

1/kT, where k is Boltzmann’s constant, T is the temperature,

and DH is the change in energy caused by the move. If the

lipid-obstacle interaction is the same for both components, it

makes no contribution to DH and therefore does not affect

the configurations sampled and hence the phase diagram.

The nature of the lattice is not expected to affect the results

in a significant fashion. The qualitative features of phase

diagrams are similar for lattice and off-lattice models (21),

and the type of lattice, e.g., hexagonal or square, is not

expected to be important. A hexagonal lattice has a higher

coordination number than a square lattice and, for a given

value of e, will result in a higher critical temperature. Be-

cause we fit e to experiment, in the absence of obstacles, the

type of lattice will merely alter the value (in kcal/mol) of e
rather than the phase behavior itself. The nature of the lattice

does, of course, influence the nature of the obstacles that can

be incorporated.

The simulations proceed via a straightforward implemen-

tation of the Wolff cluster algorithm (22). This is a rejection-

free algorithm where a cluster of molecules (‘‘spins’’) is first

determined as follows. Consider two lattice sites i and j such

that the energy of interaction between them is eij. If eij , 0,

the two sites belong to the same cluster with probability

1 � exp(�2 eij/kT). The clusters are identified using the

Hoshen-Kopelman algorithm (23). Once a cluster has been

found, the identity of all the molecules in the cluster is

changed. It has been shown that this algorithm samples the

correct ensemble and is very efficient because all moves are

accepted. On the order of 106 such moves are carried out

for each temperature and f, and the required properties are

averaged over the configurations generated. For a given

temperature the simulation method samples all lipid compo-

sitions with appropriate statistical weight. The phase diagram

is then obtained from the probability distribution function of

the compositions, as described below.

In the binary mixture a phase separation (into coexisting

A-rich and B-rich phases) occurs as the temperature is de-

creased. The goal of this work was to determine the two-

phase coexistence boundary and critical temperature, Tc, as a

function of the area fraction of the protein obstacles. We do

this by calculating the probability distribution function,

P(xA), of the mole fraction for various temperatures. At

temperatures above the critical temperature, P(xA) peaks at

xA ¼ 1 � xB ¼ 0.5 because, by symmetry, the chemical

potentials of the two components are equal. For finite

systems P(xA) is a broad bell-shaped curve, and as the system

size is increased, P(xA) becomes sharper and is a d function

for infinite systems. For temperatures below the critical

temperature, P(xA) shows two peaks. The behavior of P(xA)

for a pure lipid mixture (no obstacles) is shown in Fig. 2 for

various temperatures. At high temperature, the mixing en-

tropy dominates the lipid-lipid attractive energy, the system

becomes more randomly mixed, and the distribution nar-

rows. As the temperature is lowered toward Tc, the peak in

P(xA) gradually broadens. For temperatures below Tc, P(xA)

FIGURE 1 Picture of Ising model where diamonds represent membrane

protein obstacles and blue and red squares the two lipid components A and B.
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displays two symmetric peaks, indicative of the coexistence

of two phases. The apparent critical temperature for L¼ 50 is

50�C.

The critical temperature is known to be a strong function

of the system size, but the true (infinite system) critical

temperature can be obtained from finite size scaling (24). The

critical temperature of a finite system is always higher than

that of the infinite system. One way to estimate the true

critical temperature is to calculate the critical temperature for

a number of system sizes and then extrapolate (using the

finite size scaling ansatz) to the infinite system. This method

is not convenient because for each system size one has to

obtain (from simulations) the coexistence curve and then use

a scaling analysis to obtain the critical temperature. A further

analysis of the dependence of this critical temperature as a

function of system size gives the true (infinite system) critical

temperature.

A more convenient method for obtaining the true critical

temperature is to use the fact (24) that the Binder ratio

B ¼ Æm2æ=Æjmj2æ is independent of system size at the true

critical temperature, where m ¼ 2xA � 1 is the order pa-

rameter, and ÆAæ and jAj denote, respectively, the ensemble

average and absolute value of the quantity A. Fig. 3 depicts B
as a function of e/kT for three different system sizes (L ¼ 20,

40, and 80) in the absence of obstacles. B is a sigmoidal

curve and becomes steeper as the system size is increased.

The critical temperature is the temperature at which the

curves intersect. In the absence of obstacles, our result agrees

with the exact result for the two-dimensional Ising model, as

it should. When static obstacles are present, we calculate B

for each configuration of the obstacle proteins and then

average over many (10–20) such realizations. In all cases, we

plot B as a function of temperature for three different system

sizes (L ¼ 20, 40, and 80) and determine the critical tem-

perature from the temperature at which the curves intersect.

RESULTS AND DISCUSSION

The presence of static obstacles dramatically reduces the

critical temperature. Fig. 4 depicts P(xA) for a lipid mixture

in the presence of immobile obstacles at f ¼ 0.1 for a

number of temperatures. The apparent critical temperature

can be estimated from the temperature at which the distri-

bution becomes very flat (it becomes bimodal below the

apparent critical temperature). For f ¼ 0.10 the apparent

critical temperature is 26�C, which can be compared to the

apparent critical temperature of 51�C in the absence of ob-

stacles (Fig. 2) for the same system size. The true (infinite

system) values of Tc are 40�C and 5�C, respectively; the

obstacle-induced depression of Tc is 35�C.

Fig. 5 depicts the critical temperature of the infinite system

as a function of area fraction of proteins. The critical tem-

perature is a strong function of the area fraction of the ob-

stacle proteins, decreasing in a roughly linear fashion from

40�C to 5�C as f increases from 0 to 0.1. In fact, for f . 0.1,

the obstacles decrease Tc below the freezing point of water.

The coexistence curve is the boundary between combina-

tions of T and xA for which a single liquid phase exists, and

combinations for which two liquid phases of different com-

position coexist. At each temperature below Tc, the simu-

lation yields two symmetric points on the coexistence curve

FIGURE 2 Lipid composition probability distribution functions P(xA) for

L ¼ 50 at the temperatures shown for a pure lipid mixture (no obstacles).

Above the critical temperature, P(xA) has one peak, and below the critical

temperature it has two peaks, which are located at the concentrations of the

coexisting phases. At the critical temperature for this system size (dashed

curve), P(xA) is very flat. The apparent critical temperature for this system

size is Tc ¼ 51�C. From finite size scaling, we determine that the true

(infinite system) critical temperature is Tc ¼ 40�C.

FIGURE 3 Determination of the critical temperature of the infinite sys-

tems from simulations of finite systems. The Binder ratio is plotted as a

function of temperature for various system sizes. The true critical tempera-

ture is the temperature at which the Binder ratio is independent of system

size, i.e., the three curves cross.
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from the values of xA at the maxima in P(xA). Fig. 6 depicts

the coexistence curves with no obstacles and with obstacles

at f ¼ 0.10 area coverage. The obstacles shift the coexis-

tence curve downward in temperature and narrow it as well.

The formation of micrometer-sized lipid domains implies

phase separation of the lipid mixture. Therefore, lipid rafts are

possible only for T , Tc. In other words, our model system

studied as a pure lipid mixture at 37�C would phase separate

(form large, coexisting liquid domains). The same system stud-

ied in the presence of immobile obstacles at only 10% area

coverage at the same temperature would not phase separate

but would exhibit nanometer-scale clusters of A and of B.

This is highly reminiscent of the experimental results (13,19).

The phase transition observed for lipid mixtures in vitro is

the demixing of two liquid phases. Our model is the simplest

that exhibits such a transition. This new physical effect in

two dimensions is reminiscent of the well-known effect of

confinement (between two flat plates) on the phase behavior

of a three-dimensional binary liquid (25). Such confinement

also suppresses phase separation, independent of the details

of the fluid-surface interactions. This can be viewed as pri-

marily a geometric effect; confinement prevents the growth

of correlations in one dimension, thereby effectively de-

creasing the dimensionality of space.

The effect of obstacles is very strong, and because it af-

fects behavior on long length scales, it is likely to be inde-

pendent of details of the molecular model. In fact, simple

mean-field theory for the suppression of the critical temper-

ature is consistent with the simulation results. A mean-field

theory estimate for the free energy of mixing, Fmix, for a

binary mixture on a lattice is

Fmix

kT
¼ xA ln xA 1 xB ln xB 1

2z

kT
exAxB; (2)

where z is the coordination number of the lattice. In the

above, the first two terms come from the entropy of mixing,

and the last term is the interaction energy of mixing and is

derived by assuming that the probability of finding a lipid

molecule in the lattice site next to another lipid molecule is

independent of position of either molecule and only a func-

tion of the mean composition of species and coordination

number of the lattice (mean-field approximation). The criti-

cal temperature is obtained by setting ð@2FmixÞ=ð@x2
AÞ ¼ 0;

which gives Tc ¼ ðezÞ=k: In a crude approximation, we

assume that the only effect of the obstacles is to reduce the

number of possible neighbors for each lipid molecule in an

average fashion, i.e., we replace z by z(1 � f) in Eq. 2.

FIGURE 4 Lipid composition probability distribution functions P(xA) for

L ¼ 50 at the temperatures shown for a lipid mixture in the presence of

obstacles at 10% by area. P(xA) at the apparent critical temperature (for this

system size) is given by the dashed curve, which is for Tc ¼ 26�C. The true

critical temperature, obtained by finite size scaling, is Tc ¼ 5�C.

FIGURE 5 Variation of the true critical temperature with the area frac-

tion of protein obstacles. The dashed line is the prediction of the mean-field

theory described in the text.

FIGURE 6 Coexistence curve of the lipid mixture for L ¼ 50. Lines are

meant to guide the eye.
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Because the probability of finding a site without an obstacle

is 1 � f, and z ¼ 4, the mean-field estimate for the critical

temperature is

Tc ¼
4e
k
ð1� fÞ ¼ ð1� fÞTcðf ¼ 0Þ; (3)

where Tc(f ¼ 0) is the critical temperature in the absence of

obstacles. The dashed line in Fig. 5 represents the mean-field

theory prediction, i.e., Tc ¼ (1 � f) Tc(f ¼ 0), and shows

that the theory is in good agreement with simulations for the

obstacle-induced depression of the critical point, at least for

low values of f.

The mean-field theory does not, however, predict the

narrowing of the phase boundary seen in Fig. 2 because the

presence of obstacles merely serves to change the effective

temperature scale. This is important because it emphasizes

the fact that there is a physical feature of the presence of

obstacles that is not captured in a mean-field treatment of the

problem.

The model can be readily generalized to include a ternary

mixture whose energetics mimic those of Chol/sphingomye-

lin/PC mixtures (18,26), to include attractive or repulsive inter-

actions between obstacles and lipid components, and to include

mobile proteins in addition to the immobile obstacles. It

would also be interesting to run time-evolved simulations to

measure the size and lifetimes of the transient nanodomains.

Individual snapshots of small-scale simulations differ in

ways that can be quite misleading. P(xA) is broad (Fig. 2) in

part because of the finite size of the system. In this situation,

there may be no such thing as a ‘‘representative’’ snapshot.

Nevertheless, examination of dozens of snapshots suggests

that the obstacles tend to lie on boundaries between A-rich

and B-rich nanodomains (Fig. 7). This propensity could be

the result of the energetic ‘‘neutrality’’ of the obstacles. It is

more favorable for A-rich or B-rich domains to terminate at

an obstacle or line of obstacles than at an A-B contact be-

cause there is no associated energy penalty. In this way, the

mean spacing between obstacles may influence the size dis-

tribution of A-rich or B-rich lipid ‘‘nanodomains’’. In a real

biological membrane, one can imagine neutral obstacle-lipid

interactions, attractive obstacle-A interactions, or attractive

obstacle-B interactions. We have little quantitative informa-

tion about protein-lipid interaction energies to guide model

building. In addition to obstacle spacing, attractive interac-

tions between specific lipids (or Chol) and protein obstacles

(or mobile membrane proteins) could also be important for

regulating the size and lifetime of A-rich or B-rich nano-

domains. Such attractions might also induce formation of

long-lived protein-lipid domains, as has been previously

suggested (27).

CONCLUSIONS AND OUTLOOK

We present a simple model to investigate raft formation in

the plasma membrane (PM). Our main conclusion is that

rafts in biological membranes could be nanoscopic rather

than macroscopic. The difference between the PM and arti-

ficial membranes composed of lipid mixtures arises from the

presence of proteins anchored to the cytoskeleton. These

proteins act as obstacles to the lipids and suppress macro-

scopic phase separation. These predictions could be tested

experimentally in vitro by preparing artificial membranes

composed of raft-forming lipid mixtures on surfaces that

contain nanometer-scale obstacles. Preliminary results with

obstacles of different shapes and sizes show a suppression of

the critical temperature similar to that seen in this work, and

the degree of suppression is almost identical for mobile

and immobile obstacles (H. Duwe III, J. C. Weisshaar, and

A. Yethiraj, article in preparation).

What might be the nature of the obstacles in vivo? The

observation of ‘‘hop diffusion’’ of G-protein-coupled recep-

tors in the single-molecule tracking experiments of Kusumi

and co-workers (29) provides experimental evidence for the

existence of obstacles. They hypothesize that the PM con-

sists of corrals bounded by spectrin filaments connected to

junctional complexes that bind the filaments to the mem-

brane. These complexes could play the role of the obstacles

in our simple model. The corrals are typically ;30–40 nm in

one dimension. A 30-nm square lattice of junctional com-

plexes would require only 45 nm2 of obstacle area per corral

to reach f ¼ 0.05 and significantly depress Tc. In addition to

the junctional complexes themselves, very large integral mem-

brane proteins that diffuse slowly compared with lipids could

also contribute. The formation of crystalline regions induced

by Chol depletion is another possible source of obstacles (30).

The present model is in qualitative accord with a wide

variety of experimental data. As already noted, recent attempts

FIGURE 7 Snapshot of a simulation with L ¼ 50 and f ¼ 0.1 for T ¼
37�C, which is below Tc.
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to observe clustering of GPI-APs in the PM indicate that

rafts, if they exist, are nanometer-sized and transient (13).

Our model is consistent with nanometer-sized rafts, although

it does not address the issue of their transience. It has

recently been demonstrated that PM material from rat

basophilic leukemia cells can indeed phase separate into

two liquid domains. The two phases were observed by lipid

staining of chemically induced blebs and of giant unilamellar

vesicles made from harvested bleb material (31). Phase sep-

aration was sensitive to temperature. Our interpretation is

that blebs lack cytoskeletal elements that can anchor protein

obstacles, which enables formation of micrometer-sized

domains.

Our model does not address alternative explanations for

the absence of micrometer-sized lipid rafts. Sharma et al.

(13) and Plowman et al. (32) observe nanometer-sized clus-

ters of GPI anchored proteins, but the ratio of monomers to

clusters was constant for a large range of protein expression

levels. They argue that this feature implies an active regu-

lation of the clusters of proteins. Because this effect is not

incorporated into our model for the membrane, we cannot

say anything definitive about this issue.

We certainly do not rule out the possibility of special

situations in which lipid domain formation is permitted by a

paucity of protein obstacles or driven by attractive protein-

lipid interactions. For example, micrometer-sized, long-lived

domains in which the dye Laurdan exhibits an emission

spectrum indicating a liquid-ordered (Lo) phase were ob-

served in living RAW macrophages at 22�C (33). These

domains were concentrated on filopodia, adhesion points,

and cell-cell contact areas. Interestingly, the area covered by

the Lo phase was temperature sensitive, decreasing from

44% at 22�C to 25% at 37�C. In the same work, fibroblasts

showed no evidence of an Lo phase under the same con-

ditions. Our conclusions are consistent with these experi-

ments, although not enough is known about obstacles or

interactions to quantitatively model them.
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