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ABSTRACT Endothelial cells are simultaneously exposed to the mechanical forces of fluid wall shear stress (WSS) imposed by
blood flow and solid circumferential stress (CS) induced by the blood vessel’s elastic response to the pressure pulse. Experiments
have demonstrated that these combined forces induce unique endothelial biomolecular responses that are not characteristic of
either driving force alone and that the temporal phase angle between WSS and CS, referred to as the stress phase angle,
modulates endothelial responses. In this article, we provide the first theoretical model to examine the combined forces of WSS and
CS on a model of the endothelial cell plasma membrane. We focus on the strain energy density of the membrane that modulates the
opening of ion channels that can mediate signal transduction. The model shows a significant influence of the stress phase angle on
the strain energy density at the upstream and downstream ends of the cell where mechanotransduction is most likely to occur.

INTRODUCTION

The wall shear stress (WSS) of flowing blood and the

circumferential strain (CS) induced by hoop stresses that

balance blood pressure are imposed on endothelial cells (EC)

that line arterial walls. These mechanical forces are known to

influence gene expression and protein and metabolite secre-

tion of EC and are believed to play a role in the localization

of atherosclerosis in regions of curvature and branching in

arteries (1). In previous studies we have provided evidence

that the temporal phase angle between WSS and CS, a

quantity that we have referred to as the stress phase angle

(SPA), is most negative (mechanical forces are most out-of-

phase) in precisely those regions where atherosclerotic plaques

are localized (2–4). In vitro studies demonstrated that for

identical WSS and CS waveforms, EC production of the

vasoactive agents NO, PGI2, and ET-1 were dramatically

affected by the SPA. More negative SPA (�100� compared to

�15�) suppressed NO and PGI2 and induced ET-1 production

(5). This work was reinforced by a study that showed eNOS,

COX-2, and ET-1 gene expression are similarly affected by

changes in SPA between 0� and �180� (6). These studies

suggested that SPA can influence EC phenotype and this

could predispose regions of the circulation to atherosclerotic

susceptibility. In support of this, we recently compared gene

expression patterns in the left coronary arteries and the aorta

of rabbits and observed that eNOS mRNA levels were

significantly lower and ET-1 mRNA levels were significantly

higher in the coronaries than the aorta (7). Recent observa-

tions such as Joshi et al. (8) who found that intimal thickness

was not associated with wall shear stress patterns in the right

coronary artery, and Steinman et al. (9) who also found no

association between wall shear patterns and intimal thickness

in the carotid bifurcation, suggest the importance of other

factors besides shear stress. It should be noted that these are

both regions where WSS and CS are expected to be highly

out-of-phase (3,4).

While the above observations are intriguing and point to

the importance of interaction between the mechanical forces

associated with solid strain (CS) and fluid shear (WSS), there

has been no theoretical assessment of the manner by which

these forces might interact or the suggestion of a mechanism

whereby the phase angle between them (SPA) could be

influential. This leads to a consideration of mechanotrans-

duction mechanisms for CS and WSS on endothelial cells.

As several review articles have emphasized, the plasma

membrane and its associated glycocalyx, the intercellular

junctions (adherens junctions), the basal adhesion plaques,

and the cytoskeleton are structures that can mediate mechano-

transduction (10–13). In this article, we provide an initial

attempt to model interaction between CS and WSS by

focusing on the plasma membrane only. We build upon an

earlier theoretical analysis by Fung and Liu (14), extended by

Wiesner et al. (15), that considered how WSS on the plasma

membrane could alter the strain energy density (SED) of the

membrane and in turn the opening of ion channels mediating

signal transduction. These previous studies were based on

steady-state (time-averaged) equations for the membrane and

assumed that the circumferential tension was zero every-

where. Here we allow for non-zero circumferential tension

(CS) and consider the time-dependent equations for the

membrane so that the SPA can be introduced and analyzed.

The cyclic circumferential strain on endothelial cells that

we model derives from numerous measurements of the

diameter variation (outside diameter, D) of arteries over

the cardiac pulse showing DD/D of 5–10% (16). Because the

wall is approximately incompressible, and there is little

doi: 10.1529/biophysj.106.100685

Submitted November 13, 2006, and accepted for publication June 29, 2007.

Address reprint requests to John M. Tarbell, Tel.: 212-650-6841; E-mail:

tarbell@ccny.cuny.edu.

Editor: Kevin D. Costa.

� 2007 by the Biophysical Society

0006-3495/07/11/3026/08 $2.00

3026 Biophysical Journal Volume 93 November 2007 3026–3033



variation in vessel length over a cardiac pulse due to vessel

tethering, the variation in the inside diameter is nearly the

same as the outside diameter when the wall thickness is

much less than the diameter, as it is in arteries. Since

endothelial cells line the inner surface, their circumferential

strain is nearly the same as the measured DD/D. However,

part of this apparent strain could be taken up by separation of

endothelial cells at their intercellular junctions. To estimate

this effect, we consider that adjacent cells could unfold at

most down to their tight junctions. Since the distance from

the endothelial cell surface to the tight junction has been

estimated to be on the order of 25 nm (17), the maximum

apparent strain would be twice this distance (50 nm) divided

by the width of a cell (order 10 mm). Thus the maximum

apparent strain is ;0.50%, which is much less than the ob-

served circumferential strains. This implies that most of the

strain is taken up by the cell membrane.

MODEL DEVELOPMENT

Following Fung and Liu (14), the endothelial cell is modeled

as a body that consists of a thin elastic membrane filled with

a solidlike interior. Both the WSS and CS cyclically load the

endothelial cell layer, and as we show later, the membrane

SED can be described as a function of the CS and WSS and

the phase angle between them (SPA).

Consider an element of the plane thin membrane of the

cell surface with initial lengths dx1 and dx2 parallel to the x1

and x2 axes (dashed lines in Fig.1). The element is small

enough to ignore the effect of the curvature of the vessel wall

but large enough to assume the material is homogeneous.

The unstrained membrane element is expected to be in

mechanical equilibrium. When the tensions T1 and T2 are

applied in the x1 and x2 directions, respectively, the mem-

brane deforms to new lengths dy1 and dy2 in the x1 and x2

directions (Fig. 1). Further assumptions that simplify the

mathematical formulation are the following:

1. The form of the SED function for a red blood cell

membrane (18,19) is applied because the mechanical

characteristics of the endothelial cell membrane are simi-

lar to those of the red blood cell (15).

2. The endothelial cell layer is modeled as a thin elastic

membrane with a thick viscoelastic cell body (Fig. 2).

The presence of a membrane on the basal side of the cell

in Fig. 2 is ignored because its contribution to the vari-

ation of the SED is expected to be minor.

3. The cell membrane is assumed to be an elastic material

that can expand/compress when WSS and CS are ap-

plied, and the up- and downstream ends are fixed to the

cell body. The cell body is assumed to be viscoelastic,

allowed to deform when subjected to WSS, but not

expandable (length L ¼ const.) (Fig. 2).

4. The strain in the x2 direction associated with vessel ex-

pansion/contraction (circumferential strain) is assumed to

be uniform, but the width of the cell can change.

Governing equations for the membrane tension

To begin the analysis, relationships for elastic deformation

based on large deformation theory are introduced. The stretch

ratios, l1 and l2, are defined as ratios of final to initial lengths:

l1 ¼
@y1

@x1

; l2 ¼
@y2

@x2

: (1)

The Green’s strain tensor for large deformations is defined

by (19,20)

e11 ¼
1

2
ðl2

1 � 1Þ; e22 ¼
1

2
ðl2

2 � 1Þ: (2)

A form of the SED per unit of initial volume (area), W, is

W ¼ A

2
ðI2

1 � 2I2Þ1
B

2
ðI1 1 2I2Þ2; (3)

where A and B are material constants (18) and I1 and I2 are

the strain invariants. In particular,

A ¼ G1 3 h; (4)

where G1 is the shear modulus of the membrane, one-third

the Young’s modulus when the material is incompressible

(Poisson’s ratio ¼ 0.5), and h is the thickness of the

membrane of ;10 nm for endothelial cells (14). The lipid

bilayer thickness is only 3–5 nm, but h accounts for other

structures in the membrane including transmembrane pro-

teins that integrate the membrane with its underlying cortex.

Furthermore, h is assumed constant since the strain levels in

the membrane are expected to induce very small changes in

thickness.

The strain invariants are defined by

I1 ¼ e11 1 e22; I2 ¼ e11 3 e22: (5)

The tension in the membrane referred to the initial coordi-

nates, Sij (Piola-Kirchoff tension), which has the following

relationship with the SED:FIGURE 1 Schematic illustration of membrane deformation (top view).
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Sij ¼
@W

@eij

: (6)

Here, the tension Sij is related to the stress sij as

Sij ¼ hsij: (7)

Expressions for S11 and S22 are derived by substituting

Eqs. 3 and 5 into Eq. 6 to find

S11 ¼
@W

@e11

¼ Ae11 1 Bð2e11e22 1 e11 1 e22Þð2e22 1 1Þ; (8)

S22 ¼
@W

@e22

¼ Ae22 1 Bð2e11e22 1 e11 1 e22Þð2e11 1 1Þ: (9)

Alternative forms can be expressed in terms of the stretch

ratios with the help of Eq. 2,

S11 ¼
A

2
ðl2

1 � 1Þ1 B

2
l

2

2ðl
2

1l
2

2 � 1Þ; (10)

S22 ¼
A

2
ðl2

2 � 1Þ1 B

2
l

2

1ðl
2

1l
2

2 � 1Þ: (11)

In the tension field theory, tensions per unit length in

the final position, T1 (¼ T11), T2 (¼ T22) are related to the

Piola-Kirchoff tensions S11, and S22 (20) by

Tij ¼
1

J
Skl

@yi

@xk

@yj

@xl

; (12)

where yi is the final coordinate, xk is the initial coordinate,

and J ¼ l1 3 l2. However, for small tensions, T1 and T2 are

equal to S11 and S22, respectively. Therefore, the final forms

of the tensions are

T1 ffi S11; T2 ffi S22: (13)

Governing equations for the membrane stretch

The steady-state displacement of the endothelial cell (d in

Fig. 2) obtained from the equation of mechanical equilib-

rium is

d ¼ H

G2

etS; (14)

where G2 is the shear modulus of the cell content, H (H� h)

is the height of the endothelial cell, and following Fung and

Liu (14), etS is the fraction of the fluid wall shear stress, tS,

that is imposed on the surface of the endothelial cell content.

The equations of mechanical equilibrium for the cell

membrane are
@sij

@xj

¼ 0: (15)

Integrating Eq. 15 for index i ¼ 1 with respect to x3 over

the membrane thickness, we obtain

@T1

@x1

1 ð1� eÞtS ¼ 0; (16)

where tensions T1 and (1�e)tS are defined as

T1 ¼
Z h

0

s11dx3; ð1� eÞtS ¼
Z h

0

@s13

@x3

dx3: (17)

On the other hand, integrating Eq. 15 for index i ¼ 2 with

respect to x3 over the membrane thickness, we obtain

T2 ¼ const: (18)

The cell and membrane deformation

In this section, the relationship between the cell membrane

stretch ratio in the flow direction and the WSS induced on the

surface of the cell is developed. We start with Eqs. 8 and 16.

Equation 8 can be rewritten as

T1¼ A
@u

@x1

1B 2
@u

@x1

@v

@x2

1
@u

@x1

1
@v

@x2

� �
2
@v

@x2

11

� �
; (19)

where u is the component of displacement referred to axis x1

in the undeformed body, v is the component of displacement

referred to axis x2 in the undeformed body. In this analysis,

we assume u is unknown but v is assumed to be a known func-

tion of time (t) only (circumferential strain) that is spatially

uniform (Eq. 18).

Differentiating both sides of Eq. 19 with respect to x1 and

incorporating Eq. 16 yields a second order differential equa-

tion for u,

FIGURE 2 Endothelial cell layer model (side view).
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A 1 B 2
@v

@x2

1 1

� �2
" #

@
2
u

@x
2

1

1 ð1� eÞtS ¼ 0: (20)

The boundary conditions for the above equation are

ujx1¼d
¼ 0 ðx3 ¼ HÞ; (21)

ujx1¼d1L ¼ 0 ðx3 ¼ HÞ: (22)

Solving Eq. 20 subject to Eqs. 21 and 22 we find

u ¼ � ð1� eÞtS

2 A 1 B 2
@v

@x2

1 1

� �2
" #ðx1 � d� LÞðx1 � dÞ: (23)

The strain component (dv/dx2) in Eq. 23 is calculated using

Eq. 2,

@v

@x2

¼ 1

2
ðl2

2 � 1Þ; (24)

and the stretch ratio in the flow direction is given by Eq. 2 as

well:

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
@u

@x1

1 1

r
: (25)

The cell body has a viscoelastic characteristic that can be

described by a Voigt model,

d ¼ H

G2

etS � a
dd

dt
; (26)

where a is the viscoelastic time constant. When the wall

shear stress (WSS), tS, varies with time in a sinusoidal fash-

ion as in the experiments (3,6),

tSðtÞ ¼ tm 1 ttsinðvt � uÞ; (27)

and where u is the stress phase angle (SPA) between WSS

and CS (defined in Eq. 30), the solution is of the form

d¼ Hett

G2ð11a
2
v

2Þ
sinðvt�uÞ� Havett

G2ð11a
2
v

2Þ
cosðvt�uÞ

1
H

G2

etm: (28)

The alternative form of the SED function expressed in

terms of the stretch ratios is

W1 ¼
A

8
½l4

1 1 l
4

2 � 2ðl2

1 1 l
2

2Þ1 2�1 B

8
ðl2

1l
2

2 � 1Þ2: (29)

The transverse stretch ratio (l2; x2-direction) corresponding

to the circumferential strain, CS, is defined as

l2 ¼ 1:025 1 0:025 sin v t: (30)

This particular case (that will be considered exclusively in

the numerical examples) specifies that the diameter of the

artery varies sinusoidally by 5%—from the no-stress state to

the 5% dilated state.

The cell sidewall is assumed to be stretched without

bending. The sidewall of height H is elongated at the stretch

ratio (Fig. 2)

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

2
1 d

2
p

=H: (31)

The SED of the sidewall is readily obtained as

W2 ¼
A

8
½l4

1 l
4

2 � 2ðl2
1 l

2

2Þ1 2�1 B

8
ðl2

l
2

2 � 1Þ2: (32)

Taken together, the total SED of the cell membrane per unit

volume is described as

W ¼ W1

H
1

2W2

L

� �
h: (33)

However, because H � L, Eq. 33 becomes

W ffi h

H
W1: (34)

The exact value of e (the fraction of the WSS that is

imposed on the top of the cell content) in Eq. 14 is not

known; therefore a value of e ¼ 0.90 was chosen (14). The

value of the stiffness of the membrane (B) was assumed to

have the same order of magnitude as the shear modulus of

the membrane (A). The other physiological parameters used

in the calculations are listed in Table 1.

RESULTS AND DISCUSSION

The contours of the SED function (Eq. 29) in the l1-l2 plane

are shown in Fig. 3. The line labeled l1l2 ¼ 1 represents

states of constant area. The line l1 ¼ l2 represents states of

isotropic tension. The strain energy changes gradually along

the line of constant area, implying small stresses are induced.

However, any departure from the constant area line induces a

sharp increase in the value of SED, therefore large stresses.

These are typical characteristics of a cell membrane (18).

Fig. 4 shows the time variation of the cell deformation (d)

responding to sinusoidal shear stress (in Eq. 28; tm¼ tt¼ 10

dyne/cm2) for various values of the time constant a. In the

figure, a ¼ 0 corresponds to a purely elastic cell; there is no

delay in the cell deformation response relative to the time-

varying shear stress. A delayed and attenuated response of d

relative to shear stress becomes obvious as the value of the

TABLE 1 Physiological parameters

Parameter Value Refs.

Shear modulus of the membrane (G1) 1.0 3 104 dyne/cm2 (21)

Shear modulus of the cell body (G2) 1.0 3 102 dyne/cm2 (26)

Membrane thickness (h) 10 nm (14)

Endothelial cell thickness (H) 5 mm (24)

Cardiac cycle frequency 1 Hz

Cell length (L) 50 mm (15)

Time constant (a) 60 s (25)

Circumferential stretch ratio (l2) 1.025 6 0.025 (3)

Mean shear stress (tm) 10 dyne/cm2 (3)

Shear stress amplitude (tt) 0–40 dyne/cm2
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time constant increases. For a ¼ 10, the cell shows a strong

viscoelastic attenuation of the response. The previously ob-

served value of a varies widely (22,23). In this analysis, a¼
60 [s] was taken as the characteristic time constant (24,25).

Helmke and co-worker (26) investigated the displacement of

endothelial cells exposed to a unidirectional shear stress of

12 dyne/cm2 and found that the order of magnitude of the

steady-state cell deformation was 1 mm. The time-averaged

value of d in response to tm ¼10dyne/cm2 in this study is

;0.5 mm (Fig. 4) based on an endothelial thickness of 5 mm

as observed (24,27). Using a viscoelastic time constant of

a ¼ 60 [s], we observed the amplitude of the cyclic dis-

placement of the cell body to be of ;100 nm, which is

consistent with experiments of cyclic stretch of cells

performed by Peeters et al. (22).

Time variations of the mean (averaged over the membrane

surface area) SED, �W; for three different values of the SPA

are displayed in Fig. 5. The waveform of �W varies signif-

icantly with the SPA. The peak value of �W gradually

decreases as the SPA takes a larger negative value, whereas

the minimum value of the �W gradually increases as the SPA

takes a larger negative value. Consequently, the time-

average value of �W depends only weakly on the SPA (see

Fig. 7). Time variations of the local SED, W, at three

representative sites are shown in Fig. 6. In the figure,

Upstream, Middle, and Downstream correspond to the up-

stream end, midpoint, and downstream end of the membrane,

respectively. As can be seen by comparing Figs. 5 and 6, the

value of W at the upstream end dominates the waveform of
�W when WSS and CS are in-phase (u ¼ 0�), while

contributions to �W from W at the downstream end become

major as the SPA takes a larger negative value. The

waveform of �W for u ¼ �180� has two peaks within a

single cycle since the WSS and CS take on maximum values

alternately.

Fig. 7 shows the relationship between the time average of
�W and the SPA for five different values of the oscillatory

shear amplitude, tt. The time average of �W is maximum at

u ¼ �180�, and the difference between the maximum and

the minimum (appears at u ¼ 0) increases with the value

of the shear amplitude, but is not great. The shear amplitude

effect is much greater than the SPA effect on the time-

averaged �W:
Fig. 8 shows the relationship between the time average of

W and the SPA for two different models. In the rigid model,

the circumferential stretch ratio, l2, was set to a fixed value

l2 ¼ 1.0; corresponding to the situation where the vessel

diameter is held constant throughout the cardiac cycle. Note

that plots of Upstream and Downstream for the rigid model

are identical, and the plot of Middle for the rigid model takes

on W ¼ 0 for all values of u, because l1(¼ l2) ¼ 1.0 in the

middle of the cell membrane. It is very interesting to note

that the time-average value of W at both the up- and down-

stream ends of the membrane for the deformable model

FIGURE 3 Contours plot of the SED function in the l1-l2 plane.

FIGURE 4 Time variation of the d responding to pulsatile WSS for

various values of the viscoelastic time constant a.

FIGURE 5 Time variations of the mean (averaged over the cell area) SED

(per unit cell area) for three different values of the SPA, u.
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approaches the value for the rigid model as the SPA takes on

highly negative values. Related to this observation, it is

important to realize that Qiu and Tarbell (5) investigated the

interaction of sinusoidal WSS (tm ¼ tt ¼ 10 dyne/cm2) and

CS on endothelial production of PGI2, NO, and ET-1 using

rigid (CS ¼ 0%) and compliant (CS ¼ 64%) straight tubes.

Bovine aortic endothelial cell production of PGI2, NO, and

ET-1 for the compliant tube with a highly negative SPA

(�110�) showed very similar trends to those of a rigid

tube—reduced PGI2 and NO and elevated ET-1, atherogenic

characteristics. This suggests that the variations of the SED

of the cell membrane near the up and downstream ends of the

cell play a role in mechanochemical signal transduction.

Related to this, a recent study comparing pulsatile flow

effects on BAECs plated on rigid or compliant tubes showed

that rigid tubes suppressed Akt-dependent anti-apoptosis

signaling (proatherogenic) compared with compliant tubes

where stretch and shear were approximately in phase (29).

Another study reported that membrane fluidity of sheared

endothelial cells that is known to influence signal transduc-

tion, varied substantially between the upstream and down-

stream ends of the cell (30).

A quantitative relationship between SED and membrane

ion channel activation was discussed by Sachs (28) and

employed by Wiesner et al. (15) to model shear effects on

endothelial mechanotransduction. According to this model,

the fraction of open channels in the membrane (f0) has a

Boltzmann dependence upon the level of strain energy (W) in

the membrane expressed as

f0 ¼
1

1 1 a expð�bW=kTNÞ; (35)

where a and b are constants, k is the Boltzmann constant, T is

the absolute temperature, and N is the area channel density.

We evaluated the range of f0 predicted by this model for the

range of W predicted by our deformable model (0.2–1.8 3

10�6 erg/cm3 in Fig. 8), initially using the constants

employed by Wiesner et al. (15) (a ¼ 3.0, T ¼ 310 K, and

b/N ¼ 0.01). The result was f0 in the narrow range 0.97–1.0.

However, by reducing b/N to 0.001, which is equivalent to

increasing the channel density or reducing the fraction of

strain energy that is available to gate channels, the range of f0
widened to 0.35–0.95. This is clearly a range that could

affect signal transduction. Based on the distribution of W
shown in Fig. 8, it is apparent that f0 could depend on the cell

location (upstream or downstream) as well as the SPA.

FIGURE 7 Relationship between the time-average of the mean (averaged

over the cell area) SED and the SPA, u, for five different values of the

oscillatory shear amplitude, tt.

FIGURE 8 Relationship between the value of the time-average of the

local SED and SPA for two different models. In the rigid model, cir-

cumferential stretch ratio, l2, was set to a constant value l2 ¼ 1.0.

FIGURE 6 Time variations of the local SED at three representative sites

of the membrane for u ¼ 0, �180�.
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Additional experimental comparisons can be made with

the work of Helmke and co-workers (24), who investigated

the magnitude of the principal stretch ratio l1 of a single cell

during a 3-min interval immediately after the onset of 12

dyne/cm2 steady shear stress. In their observations, estimated

values of the principal stretch ratio l1 at the up and down-

stream ends of the cell were 1.0–1.05—very close to values

predicted by this model: 0.95–1.05 (Fig. 9).

CONCLUDING REMARKS

In this article, we presented the first model, to our knowl-

edge, that incorporates the influences of both solid circum-

ferential strain (CS) and fluid wall shear stress (WSS) on the

mechanics of endothelial cells, including the dynamic

relationship between CS and WSS as characterized by the

stress phase angle (SPA) that has been shown to be so

influential on EC biomolecular behavior (3,6,7). The sim-

plified model only accounts for the plasma membrane as a

mechanotransduction element, but does show how the CS

and WSS can interact to influence the strain energy density

(SED) of the plasma membrane that affects ion channel

fluxes and other properties relevant to signal transduction

(e.g., membrane fluidity). Comparisons of the trends pre-

dicted by the model with experimental results on biomolec-

ular response suggest that the upstream and downstream

ends of the cell are the regions where mechanotransduction is

most likely to occur. Further elaborations of this model

incorporating additional cellular structures (cytoplasm, basal

adhesion plaques, and intercellular junctions) should prove

useful in understanding mechanotransduction driven by CS

and WSS over a physiological range of SPA.
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