Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Jun;54(6):1313–1317. doi: 10.1128/aem.54.6.1313-1317.1988

Enumeration of Free-Living Aerobic N2-Fixing H2-Oxidizing Bacteria by Using a Heterotrophic Semisolid Medium and Most-Probable-Number Technique

Wilfredo L Barraquio 1, Ann Dumont 1, Roger Knowles 1,*
PMCID: PMC202655  PMID: 16347643

Abstract

A heterotrophic semisolid medium was used with two sensitive assay methods, C2H2 reduction and O2-dependent tritium uptake, to determine nitrogenase and hydrogenase activities, respectively. Organisms known to be positive for both activities showed hydrogenase activity in both the presence and absence of 1% C2H2, and thus, it was possible to test a single culture for both activities. Hydrogen uptake activity was detected for the first time in N2-fixing strains of Pseudomonas stutzeri. The method was then applied to the most-probable-number method of counting N2-fixing and H2-oxidizing bacteria in some natural systems. The numbers of H2-oxidizing diazotrophs were considerably higher in soil surrounding nodules of white beans than they were in the other systems tested. This observation is consistent with reports that the rhizosphere may be an important ecological niche for H2 transformation.

Full text

PDF
1313

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barraquio W. L., Ladha J. K., Watanabe I. Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can J Microbiol. 1983 Aug;29(8):867–873. doi: 10.1139/m83-141. [DOI] [PubMed] [Google Scholar]
  2. Bowien B., Schlegel H. G. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol. 1981;35:405–452. doi: 10.1146/annurev.mi.35.100181.002201. [DOI] [PubMed] [Google Scholar]
  3. Chan Y. K., Nelson L. M., Knowles R. Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can J Microbiol. 1980 Sep;26(9):1126–1131. doi: 10.1139/m80-186. [DOI] [PubMed] [Google Scholar]
  4. Cunningham S. D., Kapulnik Y., Phillips D. A. Distribution of hydrogen-metabolizing bacteria in alfalfa field soil. Appl Environ Microbiol. 1986 Nov;52(5):1091–1095. doi: 10.1128/aem.52.5.1091-1095.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Bont J. A., Leijten M. W. Nitrogen fixation by hydrogen-utilizing bacteria. Arch Microbiol. 1976 Apr 1;107(3):235–240. doi: 10.1007/BF00425333. [DOI] [PubMed] [Google Scholar]
  6. Dixon R. O. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol. 1972;85(3):193–201. doi: 10.1007/BF00408844. [DOI] [PubMed] [Google Scholar]
  7. Halvorson H. O., Ziegler N. R. Application of Statistics to Problems in Bacteriology: I. A Means of Determining Bacterial Population by the Dilution Method. J Bacteriol. 1933 Feb;25(2):101–121. doi: 10.1128/jb.25.2.101-121.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. La Favre J. S., Focht D. D. Conservation in soil of h(2) liberated from n(2) fixation by hup nodules. Appl Environ Microbiol. 1983 Aug;46(2):304–311. doi: 10.1128/aem.46.2.304-311.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lifshitz R., Kloepper J. W., Scher F. M., Tipping E. M., Laliberté M. Nitrogen-fixing pseudomonads isolated from roots of plants grown in the canadian high arctic. Appl Environ Microbiol. 1986 Feb;51(2):251–255. doi: 10.1128/aem.51.2.251-255.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maier R. J., Campbell N. E., Hanus F. J., Simpson F. B., Russell S. A., Evans H. J. Expression of hydrogenase activity in free-living Rhizobium japonicum. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3258–3262. doi: 10.1073/pnas.75.7.3258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rennie R. J. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol. 1981 Jan;27(1):8–14. doi: 10.1139/m81-002. [DOI] [PubMed] [Google Scholar]
  12. Robson R. L., Postgate J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol. 1980;34:183–207. doi: 10.1146/annurev.mi.34.100180.001151. [DOI] [PubMed] [Google Scholar]
  13. Smith L. A., Hill S., Yates M. G. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature. 1976 Jul 15;262(5565):209–210. doi: 10.1038/262209a0. [DOI] [PubMed] [Google Scholar]
  14. Tibelius K. H., Knowles R. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene. J Bacteriol. 1984 Oct;160(1):103–106. doi: 10.1128/jb.160.1.103-106.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wiegel J., Schlegel H. G. Enrichment and isolation of nitrogen fixing hydrogen bacteria. Arch Microbiol. 1976 Mar 19;107(2):139–142. doi: 10.1007/BF00446833. [DOI] [PubMed] [Google Scholar]
  16. Wong T. Y., Graham L., O'hara E., Maier R. J. Enrichment for Hydrogen-Oxidizing Acinetobacter spp. in the Rhizosphere of Hydrogen-Evolving Soybean Root Nodules. Appl Environ Microbiol. 1986 Nov;52(5):1008–1013. doi: 10.1128/aem.52.5.1008-1013.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wong T. Y., Maier R. J. H2-dependent mixotrophic growth of N2-fixing Azotobacter vinelandii. J Bacteriol. 1985 Aug;163(2):528–533. doi: 10.1128/jb.163.2.528-533.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES