Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Jul;55(7):1690–1694. doi: 10.1128/aem.55.7.1690-1694.1989

Survival of Ice Nucleation-Active and Genetically Engineered Non-Ice-Nucleating Pseudomonas syringae Strains after Freezing

Mark P Buttner 1, Penny S Amy 1,*
PMCID: PMC202936  PMID: 16347963

Abstract

The survival after freezing of ice nucleation-active (INA) and genetically engineered non-INA strains of Pseudomonas syringae was compared. Each strain was applied to oat seedlings and allowed to colonize for 3 days, and the plants were subjected to various freezing temperatures. Plant leaves were harvested before and after freezing on two consecutive days, and bacterial populations were determined. Populations of the INA wild-type strain increased 15-fold in the 18 h after the oat plants incurred frost damage at −5 and −12°C. Plants colonized by the non-INA strain were undamaged at −5°C and exhibited no changes in population size after two freeze trials. As freezing temperatures were lowered (−7, −9, and −12°C), oat plants colonized by the non-INA strain suffered increased frost damage concomitant with bacterial population increases following 18 h. At −12°C, both strains behaved identically. The data show a relationship between frost damage to plants and increased bacterial population size during the following 18 h, indicating a potential competitive advantage of INA strains of P. syringae over non-INA strains in mild freezing environments.

Full text

PDF
1690

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gross D. C., Cody Y. S., Proebsting E. L., Radamaker G. K., Spotts R. A. Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl Environ Microbiol. 1983 Dec;46(6):1370–1379. doi: 10.1128/aem.46.6.1370-1379.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hirano S. S., Baker L. S., Upper C. D. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiol. 1985 Feb;77(2):259–265. doi: 10.1104/pp.77.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hirano S. S., Nordheim E. V., Arny D. C., Upper C. D. Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Appl Environ Microbiol. 1982 Sep;44(3):695–700. doi: 10.1128/aem.44.3.695-700.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  5. Lindow S. E., Arny D. C., Upper C. D. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 1982 Oct;70(4):1084–1089. doi: 10.1104/pp.70.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lindow S. E., Arny D. C., Upper C. D. Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol. 1978 Dec;36(6):831–838. doi: 10.1128/aem.36.6.831-838.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lindow S. E. Competitive Exclusion of Epiphytic Bacteria by IcePseudomonas syringae Mutants. Appl Environ Microbiol. 1987 Oct;53(10):2520–2527. doi: 10.1128/aem.53.10.2520-2527.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindow S. E., Hirano S. S., Barchet W. R., Arny D. C., Upper C. D. Relationship between Ice Nucleation Frequency of Bacteria and Frost Injury. Plant Physiol. 1982 Oct;70(4):1090–1093. doi: 10.1104/pp.70.4.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindow S. E., Knudsen G. R., Seidler R. J., Walter M. V., Lambou V. W., Amy P. S., Schmedding D., Prince V., Hern S. Aerial Dispersal and Epiphytic Survival of Pseudomonas syringae during a Pretest for the Release of Genetically Engineered Strains into the Environment. Appl Environ Microbiol. 1988 Jun;54(6):1557–1563. doi: 10.1128/aem.54.6.1557-1563.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zagory D., Lindow S. E., Parmeter J. R. Toxicity of smoke to epiphytic ice nucleation-active bacteria. Appl Environ Microbiol. 1983 Jul;46(1):114–119. doi: 10.1128/aem.46.1.114-119.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES