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Although dilution counts have been widely used in quantitative microbiology, their interpretation has always
been widely discussed both in microbiology and in applied statistics. Maximum-likelihood (most-probable-
number) methods have generally been used to estimate densities from dilution experiments. It has not been
widely recognized that these methods are intrinsically and statistically biased at the sample sizes used in
microbiology. This paper presents an analysis of proposed method for correction of such biases, and the
method was found to be robust for moderate deviations from Poisson behavior. For analyses at greater variance
with the Poisson assumptions, the use of the Spearman-Karber method is analyzed and shown to yield an
estimate of density of lesser bias than that produced by the most-probable-number method. Revised methods
of constructing confidence limits proposed by Loyer and Hamilton (M. W. Loyer and M. A. Hamilton,
Biometrics 40:907-916, 1984) are also discussed, and charts for the three- and four- decimal dilution series with
five tubes per dilution are presented.

The use of dilution counts for the determination of micro-
bial densities has a long history in applied microbiology. In
such a technique, a number of tubes are inoculated with
various dilutions of a suspension containing microorgan-
isms. Under the assumption of random sampling of enumer-
able units, leading to a Poisson probability distribution for
the expected number of organisms inoculated in a given
volume, the density of the original suspension can be esti-
mated by using the maximum-likelihood technique (3, 10, 22,
23).

It has been known for many years, however, that the
maximum-likelihood technique leads to biased estimates for
parameters in all but the most simple cases (11, 15, 18).
Indeed, in early comparisons of the membrane filter and
most-probable-number (MPN) coliform techniques, the ten-
dency for a positive bias in the MPN method was noted (20).
Only more recently, however, has a method become avail-
able for the first-order correction of the inherent positive
bias of this technique (17). In a related area, the estimation of
confidence limits for MPN determinations has been reexam-
ined by Loyer and Hamilton (14), who present alternative
and more statistically rigorous methods for addressing this
problem than those presently used in environmental micro-
biology (22).
Any procedure for the analysis of dilution experiments

must be reasonably robust to the possible presence of
deviations from the Poisson assumption. For example, a

number of studies have indicated that replicate counts in
environmental samples might be distributed according to the
negative binomial, rather than the Poisson, distribution (2, 6,
8, 9, 16). The negative binomial distribution is an example of
a discrete distribution with variance in excess of the Pois-
son-termed an overdisperse distribution. Such variance
may be intrinsic to the enumeration methodology itself and
thus may be experimentally correctable; one example of this
type of situation is a possible variation in the efficiency of
recovery between tubes. Alternatively, the variation may be
a property of the microbial population itself. For example, if
organisms exist in clumps possessing a frequency distribu-
tion of organisms per clump, and if clumps are randomly
sampled but a dislodgement occurs during handling, the
distribution of viable units will probably be overdisperse. If
the latter type of situation forms the basis for the overdis-

persion, some method of analysis of dilution count data
robust to the overdispersion is required.

It is the objective of this paper to explore the utility of the
bias correction method and the alternative methods for
constructing confidence limits to the common dilution series
used in MPN determinations. First, the more recent tech-
niques are examined and are found to be relatively robust for
small to moderate deviations from the underlying assump-
tions of Poisson distribution of replication error. Then,
alternatives methodologies for use when the replication error
is severely different from Poisson are developed. In work
previously published, diagnostic methods for detecting de-
viations from the Poisson distribution are presented (9).

MATERIALS AND METHODS

Likelihood estimation. If dilutions 1 through r, each with nr
tubes (not necessarily equal), are inoculated with a volume
Vr of sample from a material containing an average concen-
tration of microorganisms p,, standard theory (3) shows that
the probability that a random vector (P1, P2.... Pr) of
positive tubes will be observed is given by the following
equation:

(1)L= E (ni pi)!p! !(p0,)i Pi(l _ Po0i)Pi
i~

with

pO.i e-Vi (2)
Equation 2 results from an independent Poisson distribution
at each dilution for the distribution of microorganisms in a

single volume of inoculum, and equation 1 expresses the
independence of each replication and each dilution. If pu is
known, L is the probability that a given combination of
positive tubes will be obtained. If is unknown, the maxi-
mum-likelihood estimate (MLE) of its value can be obtained
by finding the value of which, for the observed tube
scores, maximize the value of L (termed the likelihood).
Should the sample be drawn under circumstances where

the Poisson distribution does not apply, equation 1 can still
be used to compute the probability that a given set of tube
scores were obtained given the true distribution (and param-
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eters of the distribution). However, in this case, equation 2
will be replaced by an alternative relationship for the prob-
ability of having no organisms in an inoculum. For example,
if the distribution is negative binomial, the relationship will
become

Po= (1 + p.Vlk)I-k (3)
with k being the dispersion parameter of the negative bino-
mial distribution. The negative binomial distribution has
been used to describe microbial distributions in which the
variance between replicates is in excess of the Poisson
distribution (2, 6, 16). As k increases to infinity, the negative
binomial distribution approaches the Poisson distribution.

If a Poisson distribution is used to formulate the likelihood
equation for an MLE of a sample drawn from a population
which is, in fact, negative binomial, a systematic error in the
MLE will result. Wadley (21) first noted that, for a single
dilution (r = 1), the erroneous use of a Poisson assumption
negatively biases the estimate of microbial densities of
samples from negative binomially distributed populations.
Bias is defined as the expected value of p. minus its true
value. However, the robustness of the MLE (as well as to
bias-corrected MLEs) to deviations from the Poisson as-
sumption when r > 1 has not, apparently, been explored.

Bias correction methodology. Standard statistical theory
predicts that the MLE estimator of the mean of a Poisson
population should, for a sufficiently large number of samples
(large nr), approach the true mean at a rate proportional to
llnr. However, in usual practice, nr is not large, and bias in
the estimator is to be expected. Salama et al. (17) have
presented a method for correcting the bias to order llnr2.
However, these authors did not present the application of
their method to the typical five-tube decimal dilution series
used in environmental microbiology, nor did they examine
the robustness of their correction to deviations from the
Poisson assumption.
The correction derived by Salama et al. (17) is essentially

a Taylor series expansion. If ,u* is the maximum likelihood
estimator of microbiol density, a bias-corrected density
estimator (p.) is given by the following equation:

r 2R
p * (1/2) E (2 nie - *V(l -eL*Vi)

with

d2, v,2 rvEVJzjsinh(R*Vj)l
axi2 2(1 - e Vi)2D3 1[cosh(*Vj)-

(1 - e - > Vl)cosh(p.* Vi) - 1ID2

zj = n1(l - e- "*V)

r VJ2Zj
D= Ejj

i = 12[cosh(R* Vj) - 1]
Distribution-free estimation of densities. The problem of

estimating the central point (50% effective dose or 50% lethal
concentration) of a bioassay has been a longstanding one in
biology and statistics. The MPN technique can be regarded
as a bioassay with the ED50 being related to the microbial
density. In particular, one can assume an underlying toler-

ance distribution (logit or probit) and use the method of
maximum likelihood to estimate the median of this distribu-
tion (4). Alternatively, by using a variety of distribution-free
methods, one can form estimates of the median of the
empirical bioassay curve (1, 7, 12, 13). Distribution-free
methods, although frequently less precise than other meth-
ods (in the statistical sense of producing greater estimating
variance when the underlying assumptions are true), are
very often insufficiently robust (being highly sensitive to
deviations from the underlying assumptions).
One of the most widely used methods for producing a

distribution-free estimate of the 50% effective concentration
is the Spearman-Karber method (7, 12). In this work, the
Spearman-Karber method is applied to locate the volume
which is capable of infecting 50% of the dilution tubes. The
reciprocal of this volume is defined as the Spearman-Karber
(SK) estimate of microbial density. The procedure for con-
struction of this estimate, given an MPN experiment in
which sets of Ttubes are exposed to a series of volumes (Vl,
V2, ..., V, with V1 > V2, etc.) producing positives (infected
tubes) P1, ..., P, is as follows. (i) A transformed dose
parameter is computed to make the infectivity curve more
symmetrical. In bioassay work, log-transforms are common
(see, e.g., reference 12). In this work, the log-transform is
used; thus, one computes di = In (V,). Coincidentally, this
also renders the dose intervals equally spaced on an arith-
metic scale (for common dilution sequences) with a separa-
tion (di - di + 1) of A. (ii) The series is appended with two
fictitious observations designed so that the series continues
from complete infection to complete sterility. This proce-
dure has no effect if the sequence is already bracketed by 100
and 0% infection. Mathematically,

do = d1 + A, PO = T
d + = dn- A, Pn+l = 0

(iii) Frequencies of positives are computed at each dose; i.e.,
fi = P/T. (iv) The frequencies of positives are adjusted to
produce a monotonically decreasing sequence off s. For any
i, if fti > fi - 1, new frequencies (fI) are defined by

ri =ffi- = (1/2)(fi + f-1);
after replacing thef s by thefJ's, the process continues until
the entire sequence is monotonic (12). (v) The SK estimate is
then obtained by the following computation, which amounts
to an integration of the dose-response polygon:

Q = E(f3 -f + 1)(dj + dj+ 1)/2
j=o

where SK = e-Q.
Comparison of point estimators. In this study, the perfor-

mance of the MLE, the bias-corrected MLE estimator, and
the SK estimator were studied by using a four-dilution,
five-tube experiment with volumes of 10, 1, 0.1, and 0.01 ml.
The range of p. values from 0.01 to 100/ml was subdivided
into 40 intervals equally spaced on a log scale (i.e., log1o
intervals of 0.1). For each assumed true p. value, the
frequency of all possible tube scores (i.e., combinations of
positive and negative tubes) was computed from equation 1.
From the tube score, the value of each of the estimators
(standard, bias-corrected, and SK) was then computed. The
expected value of each estimator as a function of p. was then
obtained by summing the products of the value of the
estimator for a given tube score and the frequency with
which that tube score is obtained at the value of p.. Similarly,
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FIG. 1. Comparison of expected bias versus true mean for Pois-

son-distributed bacteria by using the MLE and corrected MLE
methods.

the mean square error (MSE) of each estimator as a function
of the true mean was also computed. The MSE is the average
of the sum of the squares of the differences between the true
value of microbial concentration and its estimate. For the
score (5, 5, 5, 5), the MLE and the bias-corrected MLE were
both assumed to be 10,000/ml. The MLE estimate was
computed by a Newton-Raphson iteration method.
The performance of the estimators in the presence of

overdispersion was also assessed by using the above proce-
dure, in which the negative binomial distribution with a fixed
k value was used to determine the tube score frequency via
equations 1 and 3. However, the MLE was determined by
using an assumed Poisson distribution and equations 1 and 2.

Confidence limits to the maximum likelihood estimator. The
Sterne method for computing confidence limits (interval
estimates) for the MPN estimator developed by Loyer and
Hamilton (14) computes the set of tube scores (P1, P2.9 Pr)
which lie in a confidence limit by successively, for all values
of the true density (,u), computing the most frequently
observed scores ranked by their frequency. The ot confi-
dence limit (e.g., 0.05) for a tube score combination (Pl, P2,
. Pr) is defined as the range of I. values for which that score

lies within the (1 - ot) most frequently observed combina-
tions. In this study, the confidence limits were determined
by examining the range 0.01 to 1,000/ml over 500 equally
spaced logarithmic intervals (log1o intervals of 0.01) for pL.

The Woodward method (22) by which confidence limits of
most frequent use in sanitary microbiology have been ob-
tained assumes that the MLE for the observed tube score is
the true mean. The confidence limit for the true mean
consists of the range of the MLE values for the central (1 -

a) proportion of tube scores ranked by their MLE. One of
the major criticisms of this method (14) is that it frequently
includes highly improbable tube scores in the confidence
region while rejecting more probable scores.

RESULTS

Bias reduction method. For a four-dilution experiment,
over the entire range examined, the first-order bias reduction
method produced point estimates of MPN of lower relative
bias (defined as [mean estimator - true value]/true value)
(Fig. 1) and MSE (Fig. 2) than the conventional MLE. These

10 0.100 1.000

True Meon (#/mL)
100.000

FIG. 2. Comparison of relative MSE (as a fraction of the true
mean) for Poisson-distributed bacteria by using the MLE and
corrected MLE methods.

findings are similar to those of Salama et al. (17), who
presented results for other experimental designs.

Prior workers have used a bias correction factor of 85%
for the five-tube MPN test (19). The derivation of this factor
is obscure, but probably involved an assumption about the
underlying true MPN value itself. Examination of Fig. 1
shows that this correction factor is roughly the average of
the bias over the midrange of microbial densities. It is also
clear from this figure that over a similar range the bias in the
corrected MLE is substantially less than 5%.

If the average relative bias and MSE are computed over
the midrange of values for for negative binomial distribu-
tions of various degrees of dispersion (k values), it is found
that the bias-corrected estimator is still superior to the MLE,
provided that the negative binomial k value is greater than
6.0 (Fig. 3 and 4). Since tests are available to detect
deviations from Poisson behavior which are sensitive to
negative binomial k values at this level with sample sizes of
about 1,000 (9), the correction for bias appears to be useful
in conjunction with tests of homogeneity to confirm consis-
tency with underlying Poisson statistics. This result is in
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FIG. 3. Effect of negative binomial k value on the estimation bias
by the MLE and corrected MLE methods.
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distribution with k = 6.

qualitative accord with the results of Wadley (21), who noted
that for single-dilution experiments, a negative binomially
distributed population would be underestimated if the Pois-
son assumption were used to compute an MPN value.

Similar conclusions about the effect of deviation on the
relative performance of the MLE versus the corrected
methods were obtained for a five-tube, three-decimal-di-
lution experiment (results not shown). Furthermore, the
reduction in bias and MSE was about as good in the
three-decimal-dilution protocol as in the four-decimal-di-
lution protocol.
Based on this analysis, alternative MPN tables for the

five-tube, three-decimal-dilution (10, 1, and 0.1 ml) and
four-decimal-dilution (10, 1, 0.1, and 0.01 ml) protocols were
constructed. Tables 1 and 2, respectively, present the MLE
values along with bias-corrected MLE values. Also tabu-
lated are the 5 and 1% confidence limits estimated by using
the approach of Loyer and Hamilton (14). For the three-
dilution protocol, the Woodward (22) confidence limits are
also noted. As noted by Loyer and Hamilton (14), some tube
combinations produce null confidence limits and should be
regarded as improbable. In other words, no more than 5% of
any set of samples should contain combinations with empty
confidence limits at the 5% level atid similarly for the 1%
level. This is analogous to the consistency test suggested by
Woodward (22).

Confidence limits. The sensitivity of both methods of
computing confidence limits to deviations from the Poisson
assumption was assessed. As in the comparison of bias, a
negative binomial k of 6 indicates an approximate point at
which unacceptable performance is crossed. Figures 5 and 6,
respectively, show the confidence limits (95%) plotted under
an underlying Poisson assumption (lines) versus the exact
confidence limits for the negative binomial (points). These
figures are drawn from the three-dilution protocol. In Fig. 5,
using the Woodward method (22), the ordinate represents
the true mean of the underlying population, whereas in Fig.
6, the ordinate is the bias-corrected estimate for a given tube
combination. Note that the Loyer and Hamilton method
yields more choppy confidence bands, owing to the diverse
likelihood of individual tube scores. However, the effect of
the negative binomial distribution is not different on the shift
between the lines (Poisson confidence intervals) and the
points (negative binomial intervals) for either method.

TABLE 1. Corrected estimates and confidence limits for
five-tube, three-decimal-dilution experiment

Score

000
001
010
020
100
101
110
111
120
200
201
210
211
220
InLJU

300
301
310
311
320
321
330
400
401
410
411
420
421
430
431
440
500
501
502
510
511
512
520
521
522
530
531
532
533
540
541
542
543
544
550
551
552
553
554
555

No./ml

MLE Bias

0.00 0.00
0.02 0.02
0.02 0.02
0.04 0.03
0.02 0.02
0.04 0.04
0.04 0.04
0.06 0.05
0.06 0.05
0.04 0.04
0.07 0.06
0.07 0.06
0.09 0.08
0.09 0.08
0.12 0.10
0.08 0.07
0.11 0.09
0.11 0.09
0.14 0.12
0.14 0.12
0.17 0.14
0.17 0.14
0.13 0.11
0.17 0.14
0.17 0.14
0.21 0.17
0.22 0.17
0.26 0.20
0.27 0.21
0.33 0.24
0.34 0.24
0.23 0.18
0.31 0.23
0.43 0.30
0.33 0.24
0.46 0.32
0.63 0.49
0.49 0.35
0.70 0.57
0.94 0.81
0.79 0.67
1.09 0.94
1.41 1.19
1.75 1.44
1.30 1.11
1.72 1.42
2.21 1.74
2.78 2.05
3.45 2.37
2.40 1.84
3.48 2.38
5.42 3.69
9.18 7.49
16.09 12.09

Loyer and Hamilton method Standard
methods

5% limits 1% limnits

Low High Low High

0.00 0.09 0.00 0.12
<0.01 0.05

<0.01 0.07 <0.01 0.11
0.03 0.05

<0.01 0.14 <0.01 0.18
0.02 0.10

<0.01 0.13 <0.01 0.18
0.07 0.08
0.03 0.13

<0.01 0.19 <0.01 0.25
0.06 0.10 0.02 0.18
0.02 0.20 <0.01 0.26

0.05 0.19
0.05 0.16 0.03 0.23

0.11 0.17
0.02 0.27 <0.01 0.34
0.07 0.17 0.04 0.27
0.03 0.30 0.02 0.37
0.13 0.14 0.06 0.29
0.06 0.27 0.04 0.36

0.11 0.26
0.08 0.31

0.03 0.42 0.02 0.51
0.09 0.28 0.05 0.41
0.04 0.49 0.03 0.60
0.11 0.34 0.07 0.49
0.08 0.51 0.05 0.68
0.20 0.30 0.11 0.54
0.14 0.45 0.09 0.65

0.18 0.47
0.17 0.52

0.05 0.78 0.04 1.07
0.13 0.62 0.08 0.98

0.26 0.56
0.07 1.23 0.05 1.59
0.14 1.12 0.10 1.41

0.24 1.15
0.10 1.78 0.07 2.19
0.20 1.78 0.14 2.34
0.52 1.15 0.27 2.00
0.16 2.40 0.12 3.09
0.28 2.69 0.18 3.55
0.71 2.19 0.39 3.24

1.00 2.63
0.28 3.55 0.18 4.47
0.43 4.27 0.29 5.25
0.89 4.68 0.52 6.17
1.82 3.24 1.10 5.76

3.16 3.89
0.50 6.92 0.35 9.13
0.78 10.48 0.49 14.80
1.17 16.61 0.87 22.41
1.82 25.14 1.45 33.92
3.31 45.76 2.24 61.73
7.08 oc 3.98 Xc

(5% limits)

Low High

0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.02
0.02
0.03
0.03
0.05
0.03
0.04
0.04
0.06
0.06
0.07

0.05
0.07
0.07
0.09
0.09
0.12
0.12
0.15
0.16
0.09
0.1
0.2
0.1
0.2
0.3
0.2
0.3
0.4
0.3
0.4
0.6
0.8
0.5
0.7
1
1.2
1.6
1
1
2
3
6
16

0.1
0.1
0.13
0.11
0.15
0.15
0.18
0.18
0.17
0.2
0.21
0.24
0.25
0.29
0.24
0.29
0.29
0.35
0.35
0.4

0.38
0.45
0.46
0.55
0.56
0.65
0.67
0.77
0.8
0.86
1.1
1.4
1.2
1.5
1.8
1.7
2.1
2.5
2.5
3
3.6
4.1
3.9
4.8
5.8
6.9
8.2
9.4
13
20
29
53

cc

Hence, it is concluded that at and below this level of
deviation (i.e., for k > 6), both methods provide reasonably
robust interval estimates of microbial density.
The confidence limits obtained by using the Loyer and

Hamilton approach (14) are, in general, narrower than those
assigned by Woodward (22). Additionally, fewer codes were
determined to be admissible to the 95% class than those
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TABLE 2. Corrected estimates and confidence limits for
five-tube four-decimal-dilution experiment

Loyer and Hamilton method
No./ml

Score 5% limits 1% limits

High Low

0.09 <0.01
<0.01

0.07 <0.01
0.03

0.14 <0.01
0.02

0.13 <0.01
0.06
0.02

0.20 <0.01
0.10 0.02
0.21 <0.01

0.04
0.17 0.03

0.08
0.28 <0.01

0.08
0.18 0.03
0.32 0.02
0.18 0.06
0.28 0.04

0.10
0.07

0.44 0.02
0.10

0.32 0.05
0.51 0.03

0.13
0.39 0.06
0.54 0.05

0.20
0.39 0.10
0.50 0.08

0.16
0.15

0.89 0.04
0.13

0.69 0.07
0.20

1.38 0.05
0.46 0.14
1.32 0.09

0.35
0.58 0.20
1.95 0.07
0.98 0.20
2.00 0.12

0.37
1.55 0.25

0.87
2.69 0.11
1.66 0.28
2.95 0.17
1.41 0.54
2.69 0.32

1.10
0.72

4.17 0.17
2.75 0.51
4.90 0.26
3.39 0.65
5.13 0.49
3.02 1.10
4.47 0.89

High

0.13
0.06
0.12
0.07
0.19
0.12
0.19
0.10
0.16
0.26
0.20
0.28
0.20
0.26
0.20
0.36
0.16
0.29
0.40
0.32
0.41
0.30
0.35
0.52
0.27
0.45
0.65
0.34
0.52
0.69
0.31
0.56
0.71
0.50
0.60
1.17
0.63
1.07
0.72
1.82
1.07
1.78
0.85
1.35
2.45
1.78
2.57
1.86
2.34
1.70
3.39
2.69
3.72
2.88
3.63
2.63
3.09
5.13
4.07
6.03
4.90
6.76
5.37
6.46

Continued

TABLE 2-Continued

Loyer and Hamilton method
No./ml

Score 5% limits 1% limits

MLE Bias Low High Low High

5431 3.26 2.36 1.82 4.68
5440 3.35 2.41 1.74 5.25
5500 2.31 1.82 0.47 7.76 0.30 10.72
5501 3.14 2.30 1.32 6.17 0.74 9.77
5502 4.27 2.97 2.63 5.62
5510 3.29 2.38 0.69 12.30 0.42 15.85
5511 4.56 3.19 1.45 11.22 0.98 14.13
5512 6.31 4.94 2.40 11.48
5520 4.93 3.51 1.00 17.78 0.66 21.88
5521 7.00 5.70 2.00 17.78 1.38 23.44
5522 9.44 8.13 5.25 11.48 2.69 19.95
5530 7.92 6.69 1.58 23.99 1.17 30.90
5531 10.86 9.36 2.82 26.92 1.82 35.48
5532 14.06 11.88 7.08 21.88 3.89 32.36
5533 17.50 14.37 10.00 26.30
5540 12.99 11.07 2.75 35.48 1.82 44.67
5541 17.24 14.19 4.27 42.66 2.88 52.48
5542 22.12 17.36 8.91 46.77 5.25 61.66
5543 27.81 20.50 18.20 32.36 10.96 57.54
5544 34.54 23.70 31.62 38.90
5550 23.98 18.45 5.01 69.18 3.55 91.20
5551 34.77 23.81 7.76 107.15 4.90 147.91
5552 54.23 36.88 11.75 165.96 8.71 223.87
5553 91.78 74.94 18.20 257.04 14.45 338.84
5554 160.94 120.93 33.11 457.09 22.39 616.60
5555 70.79 Xo 39.81 x

reported by Woodward (22). In view of the more rigorous
statistical validity of the Loyer and Hamilton method for
computing confidence limits and the fact that this approach
leads to narrower confidence bands, the use of Tables 1 and
2 for reporting results from MPN determinations is recom-
mended.

Estimation with gross overdispersion. Figures 7 and 8,
respectively, present the bias and MSE of the SK and MLE
bias-corrected estimators as a function of true density for
negative binomial sampling errors for k = 0.7. At high values
of the true mean, the bias and MSE for the MLE dramati-
cally increase owing to the increasing preponderance of the

t#

10.00 50.00

True Meon #/mL
FIG. 5. Confidence limits from the Woodward (22) procedure for

Poisson-distributed microorganisms (solid lines) and for negative
binomially distributed (k = 6) microorganisms (circles and triangles).

0000
0010
0100
0200
1000
1010
1100
1110
1200
2000
2010
2100
2110
2200
2300
3000
3001
3010
3100
3110
3200
3210
3300
4000
4001
4010
4100
4101
4110
4200
4201
4210
4300
4310
4400
5000
5001
5010
5020
5100
5101
5110
5111
5120
5200
5201
5210
5211
5220
5230
5300
5301
5310
5311
5320
5321
5330
5400
5401
5410
5411
5420
5421
5430

MLE Bias

0.00 0.00
0.02 0.02
0.02 0.02
0.04 0.03
0.02 0.02
0.04 0.04
0.04 0.04
0.06 0.05
0.06 0.05
0.04 0.04
0.07 0.06
0.07 0.06
0.09 0.08
0.09 0.08
0.12 0.10
0.08 0.07
0.11 0.09
0.11 0.09
0.11 0.09
0.14 0.12
0.14 0.12
0.17 0.14
0.17 0.14
0.13 0.11
0.17 0.14
0.17 0.14
0.17 0.14
0.21 0.17
0.21 0.17
0.22 0.17
0.26 0.20
0.26 0.20
0.27 0.21
0.33 0.24
0.33 0.24
0.23 0.18
0.31 0.23
0.31 0.23
0.42 0.30
0.33 0.24
0.45 0.32
0.45 0.32
0.62 0.48
0.62 0.49
0.49 0.35
0.69 0.56
0.69 0.56
0.92 0.80
0.93 0.81
1.19 1.03
0.78 0.66
1.06 0.92
1.07 0.93
1.37 1.16
1.38 1.18
1.70 1.41
1.72 1.43
1.28 1.09
1.66 1.38
1.69 1.41
2.12 1.70
2.16 1.73
2.64 2.02
2.71 2.06

Low

<0.01

<0.01

<0.01

<0.01

<0.01
0.05
0.02

0.05

0.02

0.07
0.03
0.10
0.06

0.03

0.09
0.04

0.11
0.08

0.18
0.14

0.05

0.13

0.07
0.33
0.14

0.51
0.10
0.40
0.18

0.45

0.16
0.59
0.28
1.35
0.54

0.27
0.89
0.38
1.12
0.76
2.04
1.41
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FIG. 6. Confidence limits from the Loyer and Hamilton (14)

procedure for Poisson-distributed microorganisms (solid lines) and
for negative binomially distributed (k = 6) microorganisms (circles
and triangles).

score (5, 5, 5, 5). However, the SK estimator is less sensitive
to this score (owing to the bracketing of the sequence,
effectively converting it to the sequence (5, 5, 5, 5, 5, 0)). In
the range of intermediate densities, it is clear that the SK
estimator is substantially less biased than the MLE. The
MSE is not substantially greater for the SK estimator than
for the MLE in this broad intermediate range (Table 3).
From a more global perspective, the average values of the

relative bias and the relative MSE over true densities of 0.02
to 20/ml are shown in Fig. 9 and 10. It is clear that the SK
estimator leads to a lowered MSE (Fig. 10) over the entire
range of k values studied (0.3 to 256). Furthermore, as the k
value decreases and deviations from the Poisson assumption
increase, the reduction in MSE becomes more pronounced.
With respect to bias, below a k value of approximately 1, the
absolute value of mean relative bias is less for the SK
estimator than for the MLE (and, although not shown, also
for the bias-corrected MLE).

Nonetheless, there is significant negative bias for all
estimators studied at low values of the negative binomial k
(and high degrees of excess dispersion relative to the Poisson

0.4

m 0.2 s

.-' -0.2

- -0.4 0ILE
DGil _n

0.01 0.10 1.00 10.00 100.00

True Mean ( /mL )
FIG. 7. Relative bias for various estimators with an underlying

negative binomial distribution (k = 0.7).

CfO)

1 .2

0.

0.84

0.4 . .. . ..
0.01 0.10 1.00 10.00 100.00

True eon (#/ 100 mL)
FIG. 8. Relative MSE for various estimators with an underlying

negative binomial distribution (k = 0.7).

distribution). Thus, further research is desirable to explore
means of reducing this bias at high overdispersions.
The tendency of the SK estimator to produce results in

excess of the MLE is probably a direct consequence of the
assumption that the observed sequence is bracketed by
complete infection (at the next highest volume) and complete
sterility (at the next lowest volume), thus introducing a slight
positive bias (4). The reasonable performance of the SK
estimator for assessing negative binomial means stems from
the consistency of the negative binomial distribution with the
underlying assumptions in the range 0.1 < k < 1. The
tolerance distribution can be written as follows:

P = [1 + exp(QD)/kf-k
where 1 = log p.V.

Table 4 presents the mean and median values of cP for
various values of k. The closeness of the mean and the
median down to k = 0.2 (where they are within 0.3 log unit,
or a factor of 2) indicates the existence of a reasonably
symmetric distribution. Furthermore, a k < 1, the median
value of 1) is positive; hence, by the above definition, the
true mean (p.) would be greater than that estimated by the

1 .2

0.6-
0)

CD o.o LDE C
.4r 00c

0.1 1.0 10.0
k vo ILie

FIG. 9. Average relative bias (0.02 to 20/ml true density) versus
negative binomial k value.
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FIG. 10. Average relative MSE (0.02 to 20/ml true density)

versus negative binomial k value.

reciprocal of the Spearman Karber volume for 50% infected
tubes. In other words, the tendency to a negative bias as k
decreases is a direct outcome of the tolerance distribution.
On the basis of this analysis, it is concluded that for

negative binomial deviations leading to k .1.0, the SK
estimator is a better indicator of microbial densities than is
the MLE. Although the SK estimator can readily be com-
puted by hand, for convenience, Table 3 presents values for
various tube combinations. For comparison, the MLE esti-
mator is also tabulated.

DISCUSSION

The tables presented in this paper can be used as is, as
substitutes for the usual MPN tables, in the analysis of data
from dilution count experiments. For other tube combina-
tions, the procedures discussed above can be used to con-
struct alternative tables. The use of these tables is illustrated
by an example. Assume that 10 replicate analyses, each
using a four-decimal-dilution, five-tube protocol, have been
performed on each of three different water samples. All three
water samples have a mean density of 0.15/ml. However,
one water sample has a Poisson distribution of microorgan-
isms, whereas the other two have negative binomial distri-
butions with k = 1.0 and 0.4. Table 5 indicates the tube
scores recorded from each set of samples (at volumes of 10,
1, 0.1, and 0.01 ml). Each set of tube scores was a random
sample, given the assumed distribution.
The first step is to use Table 2 (to four significant figures)

to obtain, from each tube score, the MLE and the bias-
corrected estimates, along with the 95% confidence limits
from the Sterne procedure. The SK estimates for each tube
score are obtained from Table 3. It is noted, first, that one of
the tube scores for the negative binomial (k = 0.4) case,
0200, has no confidence limits. This indicates that this tube
score is rare (not appearing in the 95% most frequent set of
scores at any value of >). With only 10 observations, little
can be done; however, if such a rate of infrequent samples
appeared consistently in a larger data set, a just reason for
rejecting the consistency with the Poisson assumption would
be provided.
When the three methods are used, the conclusions noted

above are seen. The average of the bias-corrected MPN in
the case of the true Poisson distribution is much closer to the
true value than the MLE itself. However, in the case of the

TABLE 3. SK method for estimating densities in four-dilution,
five-tube protocol

Estimated no./ml Estimated no./ml
Score Score

MLE SK MLE SK

0000
0010
0100
0200
1000
1010
1100
1110
1200
2000
2010
2100
2110
2200
2300
3000
3001
3010
3100
3110
3200
3210
3300
4000
4001
4010
4100
4101
4110
4200
4201
4210
4300
4310
4400
5000
5001
5010
5020
5100
5101
5110
5111
5120

0.0000
0.0180
0.0182
0.0367
0.0198
0.0399
0.0402
0.0606
0.0612
0.0446
0.0676
0.0683
0.0920
0.0930
0.1188
0.0777
0.1054
0.1055
0.1069
0.1363
0.1382
0.1694
0.1719
0.1273
0.1652
0.1654
0.1685
0.2107
0.2111
0.2156
0.2632
0.2638
0.2701
0.3250
0.3341
0.2303
0.3111
0.3124
0.4239
0.3274
0.4499
0.4529
0.6197
0.6249

0.0316
0.0501
0.0501
0.0794
0.0501
0.0794
0.0794
0.1259
0.1259
0.0794
0.1259
0.1259
0.1995
0.1995
0.3162
0.1259
0.1995
0.1995
0.1995
0.3162
0.3162
0.5012
0.5012
0.1995
0.3162
0.3162
0.3162
0.5012
0.5012
0.5012
0.7943
0.7943
0.7943
1.2589
1.2589
0.3162
0.5012
0.5012
0.7943
0.5012
0.7943
0.7943
1.2589
1.2589

5200
5201
5210
5211
5220
5230
5300
5301
5310
5311
5320
5321
5330
5400
5401
5410
5411
5420
5421
5430
5431
5440
5500
5501
5502
5510
5511
5512
5520
5521
5522
5530
5531
5532
5533
5540
5541
5542
5543
5544
5550
5551
5552
5553
5554

0.4890
0.6851
0.6920
0.9221
0.9322
1.1896
0.7820
1.0570
1.0709
1.3651
1.3842
1.6963
1.7216
1.2756
1.6577
1.6888
2.1161
2.1609
2.6442
2.7084
3.2597
3.3512
2.3116
3.1391
4.2665
3.2906
4.5619
6.3085
4.9322
6.9964
9.4351
7.9243
10.8645
14.0557
17.4979
12.9934
17.2382
22.1159
27.8097
34.5437
23.9790
34.7668
54.2256
91.7842
160.9442

0.7943
1.2589
1.2589
1.9953
1.9953
3.1623
1.2589
1.9953
1.9953
3.1623
3.1623
5.0119
5.0119
1.9953
3.1623
3.1623
5.0119
5.0119
7.9433
7.9433

12.5893
12.5893
3.1623
5.0119
7.9433
5.0119
7.9433

12.5893
7.9433

12.5893
19.9526
12.5893
19.9526
31.6228
50.1187
19.9526
31.6228
50.1187
79.4328
125.8925
31.6228
50.1187
79.4328
125.8925
199.5262

" The dilutions are 10, 1, 0.1, and 0.01 ml.

two negative binomial samples, the SK method gives an
result closer to the true mean. Perhaps as importantly, in all
cases (except for the one rare tube score combination), the
true mean was contained within the 95% confidence limits
obtained by using the Sterne intervals.

Conclusions. Correction for bias in the MLE for microbial
densities in dilution experiments is a sufficiently robust
procedure to small deviations from Poisson behavior to be
adopted. The Loyer and Hamilton procedure (14) for esti-
mating confidence limits leads to smaller intervals and is also
robust to small deviations from the Poisson assumption.
Alternative MPN tables for the three- and four-decimal-
dilution, five-tube series, are presented; these methods were
used to construct the tables.
As a practical manner, methods to correct for the well-

known positive bias of the MPN technique can result in
greater comparability between methods for measuring mi-

H
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TABLE 4. Mean and median of negative binomial-based
tolerance distribution as a function of k

Logl0 1
k

Median Mean

10 -0.14403 -0.22855
8 -0.14022 -0.22291
6 -0.13384 -0.21343
4 -0.12100 -0.19409
2 -0.08174 -0.13321
1 0 0.000047
0.8 0.042469 0.071473
0.7 0.073447 0.123994
0.5 0.176091 0.296226
0.4 0.270152 0.444273
0.3 0.435176 0.665360
0.2 0.792391 0.973700
0.1 2.009875 1.212624

croorganisms in water by using dilution and colony count
methods. The tables presented in this article should be used
in conjunction with statistical tests of conformity of the data
set with the underlying assumptions of Poisson replication
error.

In the face of more substantial deviations from Poisson
behavior, which may be intrinsic to the distribution of
microorganisms in an environment, a distribution-free tech-
nique to estimate microbial densities must be used.

It is clear that the SK estimator leads to lowered MSE
(Fig. 10) over the entire range of k values studied (0.3 to 256).
Furthermore, as k decreases and deviations from the Poisson
assumption increase, the reduction in MSE becomes more
pronounced. Below a k value of approximately 1, corre-
sponding to 100% overdispersion, the absolute value of
mean relative bias is less for the SK estimator than for the
MLE estimator (and, although not shown, also for the
bias-corrected MLE).
The following rules are suggested for analysis of dilution

count data. (i) If the degree of overdispersion is less than that
for a negative binomial k value of 6.0 (k > 6), the maximum
likelihood estimator with bias correction should be used. (ii)
If the degree of overdispersion is greater than that for a
negative binomial k value of 1.0 (k - 1.0), the Spearman-
Karber estimate is superior. (iii) In the intermediate case, the
ordinary maximum likelihood estimator appears to be supe-
rior to either bias correction or the Spearman-Karber esti-
mate. (iv) The conformity of the underlying microbial distri-
bution with the Poisson distribution can be tested using the
modified Stevens range statistic suggested by Haas and
Heller (9).

It should be stressed that, depending upon the cause of the
deviations from Poisson statistics, although the Spearman-
Karber method can provide a better estimate of the actual
mean, the mechanism leading to the overdispersion may
have resulted in a general reduction in microbial counts. For
example, if microbial counts are actually distributed accord-
ing to Poisson statistics, but if the dilution tube medium is
partially inhibitory (and if this inhibition is variable), a
negative binomial distribution (or similar overdisperse dis-
tributions) may be mimicked. As stressed by Eisenhart and
Wilson (5), a finding of deviations from the Poisson assump-
tion always requires a determination of the mechanism for
such deviation before the proper interpretation of microbial
enumeration data can be made.

TABLE 5. Illustration of application of bias correction, SK,
and interval estimates

Bias- Sterne confidence
anditribubson" MLE corrected limits (5%) SK
and tube score MEestimateMLE Low High

Poisson
4100 0.1680 0.1405 0.0427 0.5129 0.3162
5200 0.489 0.3492 0.0955 1.9498 0.7943
5100 0.3274 0.2379 0.0692 1.3804 0.5012
4100 0.1685 0.1405 0.0427 0.5129 0.3162
4100 0.1685 0.1405 0.0427 0.5129 0.3162
4000 0.1273 0.1095 0.0295 0.4365 0.1995
4000 0.1273 0.1095 0.0295 0.4365 0.1995
4100 0.1685 0.1405 0.0427 0.5129 0.3162
3000 0.0777 0.0688 0.0166 0.2754 0.1259
3000 0.0777 0.0688 0.0166 0.2754 0.1259
Mean 0.1900 0.15057 0.32111

NB (k = 1)
3200 0.1382 0.1179 0.0603 0.2754 0.3162
4100 0.1685 0.1405 0.0427 0.5129 0.3162
1100 0.0402 0.0363 0.0129 0.1349 0.0794
2000 0.0446 0.0402 0.01 0.1995 0.0794
4010 0.1652 0.1381 0.0891 0.3236 0.3162
4000 0.1273 0.1095 0.0295 0.4365 0.1995
3100 0.1069 0.0931 0.0339 0.3162 0.3162
2000 0.0446 0.0402 0.01 0.1995 0.0794
3000 0.0777 0.0688 0.0166 0.2754 0.1259
2100 0.0683 0.0609 0.0229 0.2138 0.1259
Mean 0.0982 0.08455 0.19543

NB (k = 0.4)
2100 0.0683 0.0609 0.0229 0.2138 0.1259
3000 0.0777 0.0688 0.0166 0.2754 0.1259
2000 0.0446 0.0402 0.01 0.1995 0.0794
4100 0.1685 0.1405 0.0427 0.5129 0.3162
0200 0.0367 0.0332 b 0.0794
2000 0.0446 0.0402 0.01 0.1995 0.0794
2100 0.0683 0.0609 0.0229 0.2138 0.1259
3000 0.0777 0.0688 0.0166 0.2754 0.1259
3110 0.1363 0.1165 0.1047 0.1778 0.3162
3100 0.1069 0.0931 0.0339 0.3162 0.1995
Mean 0.083 0.07231 0.15737

"NB, Negative binomial.
b -, Not in region.
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