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Abstract
While randomization is the established method for obtaining scientifically valid treatment
comparisons in clinical trials, it sometimes is at odds with what physicians feel is good medical
practice. If a physician favors one treatment over another based on personal experience or published
data, it may be more appropriate ethically for that physician to use the favored treatment, rather than
enrolling patients on a randomized trial. Still, the randomized trial may later show the physician's
favored treatment to be inferior. This paper reviews a statistical method, Bayesian adaptive
randomization, that provides a practical compromise between the scientific ideal of conventional
randomization and choosing each patient's treatment based on a personal preference that may prove
to be incorrect. The method will first be illustrated by a simple hypothetical example, then by a recent
trial in which patients with unresectable soft tissue sarcoma were adaptively randomized between
two chemotherapy regimens.

Keywords
Adaptive design; Bayesian design; Clinical trials; Medical ethics; Randomization

1. Introduction
Randomization is the established method for obtaining scientifically valid comparisons of
competing treatments in clinical trials and other experiments.1,2 When treatment comparison
is the scientific goal, randomizing subjects between treatments is the statistically correct thing
to do. If the subjects are mice, conducting a randomized study does not present much difficulty,
either technically or ethically. When comparing treatment effects on human beings in a clinical
trial, however, many physicians are hesitant or unwilling to enroll their patients in a randomized
study. If a physician prefers one treatment over the other based on personal experience or
previous data, this violates the ethical requirement of equipoise for randomizing humans. The
ethics of randomization in clinical trials is a complex issue that has been discussed extensively.
3–7 Even with equipoise, many physicians find it undesirable to admit complete uncertainty
with regard to comparative treatment efficacy when discussing therapeutic options with a
patient. To properly inform a patient, a physician must provide an explanation similar to the
following:

“Mm. Fornier, I have two possible treatments for your cancer, A and B, but I do not know
which is better. So I would like to enroll you in a clinical trial aimed at comparing these
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treatments to each other. If you agree to enter the trial, your treatment will be chosen by flipping
a coin."

This statement reflects the physician's equipoise, but it also reflects the fact that, outside the
scientific community, randomization is a rather strange idea. Patients entrust physicians with
their well-being, and sometimes their lives, based on the assumption that physicians are highly
knowledgeable and have their patients' best interests foremost in mind when choosing treatment
regimens. Many physicians feel that admitting complete uncertainty, as illustrated above, may
damage the bond of trust underlying the physician-patient relationship.

The purpose of this paper is to explain an alternative statistical method for comparing
treatments that provides a practical compromise between the scientific ideal of conventional
randomization, which essentially bases treatment selection on a coin flip, and choosing the
patient's treatment based on a personal preference that may turn out to be wrong. This
alternative method is called Bayesian adaptive randomization (BAR).

2. Why Randomize?
Before explaining how BAR works, it is useful to review the rationale for conventional
randomization. First, suppose that one wishes to evaluate a particular treatment in a single-arm
trial where it is known that AGE and disease severity (SEV = 1 if advanced, 0 if moderate)
both affect clinical outcome. The effects of covariates and treatment can be estimated routinely
using statistical regression, such as the Cox model8 for survival times or a logistic model for
the probability of tumor response. We will denote the covariate effects by the symbol θCOVS
= β1*AGE + β2*SEV, where β1 and β2 are model parameters, and the treatment effect by
θTRT, so that the combined effects of the covariates and treatment are θCOVS + θTRT. The
problem that motivates randomization is that the observed outcomes in an experiment are due
to the effects of not only known covariates and treatment, but also unknown “latent" variables,
which we denote by X:

θCOVS + θTRT + θX = (known covariate effects) + (treatment effect) + (latent variable effects)

Latent variables may arise from patient selection (e.g. performance status), supportive care,
patients' geographical location or socio-economic status, or sources that are completely
unknown. Data from a single-arm study can be used to estimate θCOVS and θTRT + θX, but
cannot provide an estimator of θTRT, since the treatment effect is confounded with the unknown
variable effects.

Now suppose one wishes to compare treatments A and B, that is, evaluate the A-versus-B
effect, θA−θB. To see what goes wrong if patients are not randomized, suppose that treatment
A is studied in trial 1 and B is studied in a separate trial 2, possibly at different institutions or
over different time periods. The latent variables X1 acting in trial 1 are usually quite different
from the latent variables X2 acting in trial 2. One can estimate θCOVS + θA + θX1 from the trial
1 data and θCOVS + θB + θX2 from the trial 2 data. The difference between these estimators has
average value

(θCOVS + θA + θX1) − (θCOVS + θB + θX2) = (θA − θB) + (θX1 − θX2)

= (between treatment effect) + (between trial effect).

Between-trial effects can be substantial, and in many cases they are larger than the treatment
effects.9,10 A common example is center-to-center variability in a multi-center trial.11 Thus,
conducting separate trials of A and B confounds the between-treatment effect with the between-
trial effect, even if one adjusts for known covariates using statistical regression. Despite the
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fact that avoiding confounding is a fundamental requirement of good statistical practice, the
medical literature contains numerous comparisons that suffer from treatment-trial
confounding. For such confounded data, an apparent between-treatment effect may be nothing
more than the effects of latent variables.9

In contrast, if patients are randomized between A and B then the average value of the statistical
estimator is

(θCOVS + θA + θX) − (θCOVS + θB + θX) = θA − θB,

the A-versus-B effect of interest. Randomization ensures that, whatever the unknown latent
variables may be, on average their effects will be the same in the two treatment arms. The
statistical estimator is not guaranteed to equal the true difference, but for larger sample sizes
the bell-shaped curve describing the estimator's distribution is more concentrated around θA −
θB. This is the rationale for randomization, and also for having a sample size large enough to
ensure that the estimator, or the corresponding test of whether θA − θB =0, is reasonably reliable.
There are many useful elaborations of conventional “coin flip" randomization, including
methods for balancing on patient covariates, randomizing within subgroups, dealing with
patient dropouts, etc.12 – 14

3. Bayesian Statistics
A likelihood function lik(data | θ), read “the likelihood of the data given θ," describes the
probability distribution of the observable data given the parameter θ. Some common
likelihoods are the normal or “bell shaped" curve, the binomial distribution for binary variables,
and the Weibull distribution for event times. The parameter may include probabilities, covariate
effects, median survival times, or any other unknown quantities that characterize aspects of
the phenomenon giving rise to the data. While classical “frequentist" statistics treats parameters
as fixed but unknown quantities, in the Bayesian paradigm parameters are considered to be
random. Thus, a Bayesian model also includes a prior probability distribution, prior(θ), for the
parameter, to describe what one knows about θ before observing the data. Bayesian statistical
methods use the observed data to learn about the distribution of θ by applying Bayes' Theorem,
which combines the prior and the likelihood by computing the posterior distribution

posterior(θ ∣ data) = lik(data ∣ θ) × prior(θ)
prob(data).

The term prob(data) is the average over θ of lik(data| θ) × prior(θ), and it ensures that the
posterior is a proper probability distribution. Bayes' Law incorporates the information in the
data by turning one's prior into a posterior, which is used to make statistical inferences.15 Due
to advances in computational methods16,17 there has been a great increase in the development
and application of Bayesian methods in recent years. This has been especially true in
biostatistics18 and clinical trials.19,20 Because Bayes' Law may be applied repeatedly, by
using the posterior obtained after a given stage as the prior for the next stage, the Bayesian
paradigm provides a natural framework for making decisions based on accumulating data
during a clinical trial, as is done with adaptive randomization.

As an illustration, suppose that θ is the probability of response in a clinical trial. Figure 1a
shows some possible beta distributions that might represent prior(θ) for three different
individuals. The beta(.3, .7) prior has mean .3/(.3 + .7) = .3, equivalently an average response
rate of 30%, but it has effective sample size (ESS) .3+.7 = 1, which reflects great uncertainty.
The beta(3, .7) prior also has mean 3/(3 + 7) = .3 but ESS = 10, the information from 10 patients,
so it reflects less prior uncertainty. The beta(16,4) prior has mean 16/(16+4) = .80 and ESS =
20, so it reflects greater prior optimism in terms of its much higher mean and larger ESS. Figure
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1b shows three possible posteriors (solid lines) that may be obtained from a sample of n = 20
patients starting with a beta(.3, .7) prior (dashed line), depending on whether R = 4, 8 or 14
responses are observed. Figure 1c gives posteriors for samples of size n = 20, 40 or 100 all
having sample mean 40%. For the three samples, the posterior probability Pr(.30 < θ | data)
that the response rate is larger than the prior mean is .81, .90, or .98, represented for each by
the area under the posterior curve to the right of the vertical dotted line at .3. This illustrates
how a larger sample provides stronger evidence. Figure 1d gives the two posteriors that would
be obtained from a randomized trial comparing the response rates θA and θB of treatments A
and B if the data RA/nA = 5/20 and RB/nB = 10/20 were observed. For these data values, the
posterior probability that B has a higher response rate than A is pA < B(data) = Pr(θA < θB|data)
= .95. Equivalently, the posterior odds are 19-to-1 that B has a higher response rate than A.
This raises the questions of whether the trial should be stopped and B declared superior to A
and, if the trial is not stopped, whether it is appropriate to continue using conventional
randomization.

4. Bayesian Adaptive Randomization
There is a large literature on adaptive randomization methods, both frequentist21–23 and
Bayesian.24,25 Actual application of these methods to conduct clinical trials has been quite
limited, however.26–28 In this paper, we will focus on some BAR methods that we have found
to work well in practice. The basic idea underlying BAR was first proposed by Thompson29,
who showed how to compute pA < B(data) numerically from data of the form described above
using paper-and-pencil methods. While pA < B(data) is an intuitively appealing quantity to use
as a BAR criterion, if one randomizes patients adaptively to B with probability pA < B(data)
and to A with probability pA > B(data) = 1− pA < B(data), this leads to a procedure with some
very undesirable properties. The problem is that pA < B(data) is so variable that it produces a
substantial risk of unbalancing the samples in favor of the inferior treatment, the opposite of
what BAR aims to do, and it also gives a very low probability of selecting a superior treatment
(power). These problems may be fixed by a simple modification that stabilizes the
randomization probabilities, specifically, randomizing the patient to B with probability

rB(data) =
{pA<B(data)}c

{pA<B(data)}c + {pA>B(data)}c

and to A with probability rA(data) = 1 − rB(data), where c is a positive tuning parameter. We
call this BAR(c). The value c = 0 gives conventional randomization, and c = 1 gives rB(data)
= pA < B(data), so a value of c between 0 and 1 should be used in practice. While we have found
that c = 1/2 works well in many applications, a relatively new BAR procedure with very
desirable properties is obtained by setting c = n/2N, where n is the current sample size when
a new patient is enrolled and N is the trial's maximum sample size. This method, BAR(n/2N),
begins with c = 0 at the start of the trial and ends up with c = 1/2. BAR(n/2N) has the advantages
that it preserves power while avoiding the variability of BAR(1).

As a first illustration, we describe a hypothetical trial to compare the response probabilities
θA and θB of treatments A and B. Up to N = 200 patients are randomized, with the trial stopped
early and A selected as better than B if pB < A(data) > .99, or B selected if pA < B(data) > .99.
Table 1 summarizes computer simulation results for the trial conducted using CR =
conventional randomization, BAR(1) and BAR(n/2N). For the BAR methods, beta(.5,.5) priors
were assumed for θA and θB. Binary responses were simulated assuming that θA = .25, with
θB = .30, .35, .40 or .45. Each case was simulated 10,000 times. Table 1 shows that the sample
size imbalance in favor of the superior treatment, NB − NA, has much larger mean values for
BAR(1) than for BAR(n/2N). Thus, it appears that BAR(1) is greatly superior to BAR(n/2N).
Looking at the mean values alone is very misleading, however. The 2.5th and 97.5 th percentiles
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of the distributions of NB − NA show that BAR(1) is much more variable than BAR(n/2N).
This results in a much higher risk with BAR(1) that the sample imbalance will be in the
wrong direction, in favor of the inferior treatment. This is shown by the values of Pr(NA >
NB + 20), the probability that the number of patients randomized to the inferior arm will be
more than 20 larger than the number receiving the superior treatment. Moreover, while the
correct selection probabilities (power figures) and mean overall sample sizes for BAR(n/2N)
are nearly identical to those obtained with CR, BAR(1) has a much lower power and a much
larger overall sample size. In summary, we recommend using BAR(n/2N) because it is likely
to provide a substantial sample size imbalance in favor of the superior treatment, has a
negligible risk of unbalancing the samples in the wrong direction, and maintains virtually the
same power and mean overall sample size as CR.

Figures 2 and 3 illustrate how a single trial might proceed in a case where B is superior to A.
Figure 2 shows the raw data, the posteriors of θA and θB, and pA < B(data) after n = 50, 100,
150 and 200 patients have been enrolled. In this example, the sample size imbalance in favor
of B becomes substantial by n = 150, where the response rates are 41% for B versus 25% for
A, and NB − NA = 87 − 63 = 24. By n = 200, the imbalance becomes NB − NA = 126 − 74 =
52, with 63% of the 200 patients randomized to B. Figure 3 shows the sample path of the
adaptive randomization probability values rB(data) over the course of the trial, as well as the
point at n = 145 patients where the trial would have been stopped early with B declared superior.
Thus, the trial would have ended with empirical response rates 26% for A and 43% for B, and
with NB − NA = 83 − 62 = 21 more patients randomized to B.

5. An Adaptively Randomized Sarcoma Trial
BAR was used to conduct a recently completed multi-center trial of gemcitabine + docetaxel
(G+D) versus gemcitabine alone (G) for patients with advanced/metastatic unresectable soft
tissue sarcoma.28,30 Initially, a single-arm trial of G+D was planned with the aim to compare
the results to historical data on G to assess the G+D-versus-G (docetaxel) effect. When we
proposed a randomized trial of G+D versus G to avoid between-trial effects, this created ethical
concerns among some investigators who believed G+D likely to be superior. As a compromise,
we then proposed a design using BAR, and after resolution of various technical details the
design was accepted and implemented.

Each patient received up to four 6-week stages of chemotherapy. In each stage, the patient's
outcome was categorized as R = response, defined as a 30% or greater decrease in tumor mass
compared to baseline, S = stable disease, or treatment failure F = progressive disease or death.
At each of the first three evaluations, the patient's treatment was continued if S was observed,
and terminated if either R or F occurred. Overall treatment success could occur with a response
at stages 1, 2, 3 or 4 as (R), (S,R), (S,S,R) or (S,S,S,R), and similarly the four cases for overall
treatment failure were (F), (S,F), (S,S,F) or (S,S,S,F). Two covariates were considered
important: whether the patient had received prior pelvic radiation (PPR), and whether the
patient's disease was leiomyosarcoma (LMS) or another type of sarcoma. This produced four
subgroups: (LMS, PPR), (Not LMS, PPR), (LMS, No PPR), (Not LMS, No PPR). The trial
thus included the complications that each patient's overall outcome could occur in 1, 2, 3 or 4
stages, the outcome in each stage was trinary, {R,S,F}, patients were heterogeneous, and it
was thought that the treatment effects might differ across subgroups. To account for all of these
factors, we formulated a Bayesian generalized logistic regression model for the probabilities
of overall treatment success, πR, and overall failure, πF, including effects of treatment, stage,
covariates, and treatment-covariate interactions.28 In particular, the model borrows strength
across subgroups, in contrast with the simpler but much less reliable approach of conducting
four separate trials, one within each subgroup.
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To reflect the investigators' subjective opinion that decreasing πF was 30% more important
than increasing πR, a form of BAR(1/2) was used based on the weighted average θ = πR + 1.3
(1 − πF). Denoting subgroup by Z, and writing the weighted average as θG(Z) for a patient in
subgroup Z treated with G and θG+D(Z) for a patient in subgroup Z treated with G+D to reflect
the patient's subgroup and assigned treatment, the BAR criterion probability was pG+D(Z, data)
= Pr{θG(Z) < θG+D(Z) | data}, generalizing the formula pA < B(data) given in section 4. A
patient in subgroup Z was randomized to G+D with probability

rG+D(data) =
{pG+D(Z, data)}1/2

{pG+D(Z, data)}1/2 + {1 − pG+D(Z, data)}1/2

and to G with probability 1 − rG+D(data). In particular, the adaptive randomization probabilities
were allowed to differ among the four subgroups determined by PPR and LMS. The trial was
designed to accrue up to 120 patients, with accrual suspended in subgroup Z if pG+D(Z, data)
≥ .99 or ≤ .01, allowing the possibility of re-starting accrual in that subgroup if pG+D(Z, data)
later moved back into the interval (.01, .99) based on subsequent data. Numerical results of an
extensive computer simulation study28 showed that this design reliably accounts for treatment-
covariate interactions, is likely to provide desirable imbalances in favor of the superior
treatment within each subgroup, and has high correct selection probabilities under a wide range
of different possible cases.

The trial's sample sizes and posterior probabilities for treatment comparison are summarized
in Table 2. After the trial was completed, final data review showed that the covariates of some
patients had been entered into the website database incorrectly. Although the covariate data
entry errors did not have a severe adverse effect on the trial's outcome, the BAR method did
not function as well as it would have had all covariates been entered correctly. While G+D
showed superiority over G to some degree in all subgroups, the advantage with G+D was largest
in patients with PPR. Avoiding this sort of data entry error is particularly important in trials,
such as those using BAR, conducted using adaptive decision rules based on interim data. A
lesson here is that an extra level of quality control, to rapidly validate the accuracy of newly
entered data, is needed when implementing adaptive methods.

6. Discussion and Practicalities
Since BAR uses the current data to compute the randomization probability for each patient at
the time of enrollment, modern computing facilities and efficient data capture are required for
practical implementation. In general three computer programs are required: a database, a
program to carry out the statistical computations underlying the adaptive decision rules, and a
user interface. The interface provides a user-friendly environment for enrolling patients and
entering data, and communicates with the database and the program that performs the statistical
computations. Essentially, the interface acts as an interactive patient log that asks for specific
data and tells the user what actions to take. In multi-institution trials, the interface is best
implemented via a secure internet website. Developing this structure requires close interactions
among physicians, research nurses, statisticians and programmers.

Before conducting a trial using BAR, or more generally any outcome-adaptive statistical
design, it is essential to first establish the design's average properties by simulating the trial
many times on the computer under each of set of meaningful possible cases. It also is very
useful to examine the design's patient-by-patient behavior in a few simulated individual trials.
Based on such preliminary simulations, one may modify the design's parameters, and repeat
this procedure until a design with good properties is obtained.

Thall and Wathen Page 6

Eur J Cancer. Author manuscript; available in PMC 2008 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A number of scientific issues arise with the use of adaptive randomization. Since the variability
associated with a statistical estimator of a comparative treatment effect θA − θB is smallest
when the sample is allocated equally to A and B, the goal of BAR is at odds with the goal of
optimizing precision. Thus, a less precise estimator is a trade-off for the greater ethical
desirability of BAR. In this regard, it must be kept in mind that a randomized trial never
conducted due to ethical concerns provides no data at all and hence no estimator of θA − θB.
Another concern is that the characteristics of patients enrolled in the trial may change
systematically over time, a phenomenon known as “drift," and this may cause an adaptive
randomization procedure to function poorly. While the use of a model accounting for
covariates, such as that used in the sarcoma trial, reduces the likelihood of this problem, drift
due to latent variable effects is an important concern. Methods to deal with drift have been
proposed,22 and as new adaptive randomization methods are developed and put into practice
it will be important that they correct for the possibility of drift.

A controversial issue in Bayesian clinical trial design is specification of a prior. In Bayesian
data analysis it is routine to use several priors, each reflecting a different degree of prior
optimism or uncertainty, to assess the sensitivity of posterior inferences to the prior. While this
can and should be done when developing a Bayesian clinical trial design, only one prior may
be used for trial conduct. Consequently, it is essential this the prior not contain information
that may be considered inappropriate. However, the final data may be analyzed using an array
of priors, as described above, and not only the prior used for trial conduct.

Our aim has been to convince some readers that BAR may be a desirable alternative to
conventional randomization. Certainly, this methodology is complicated and requires a much
greater effort in both design and trial conduct. It does, however, utilize the accruing data in a
“learn-as-you-go" fashion that arguably makes more sense than ignoring the trial's data until
it is completed. Technicalities aside, if a trial is conducted using adaptive randomization, the
physician may inform the patient in the following somewhat more reasonable way:

“Mm. Fornier, I have two possible treatments for your cancer, A and B, but I do not know
which is better. So I would like to enroll you in a clinical trial aimed at comparing these
treatments to each other. If you agree to enter the trial, your treatment will be chosen randomly
by a computer, based on the data that we have so far on how well these two treatments have
done with previous patients in the trial.
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Fig 1.
Illustrations of Bayesian priors and posteriors using beta distributions.
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Fig 2.
Illustration of the priors and posteriors of response probabilities θA and θB after 50, 100, 150
and 200 patients for a hypothetical trial conducted using BAR(n/2N).
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Fig 3.
Illustration of the adaptive randomization probabilities over the course of a hypothetical trial
conducted using BAR(n/2N).
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Table 1
Operating characteristics of a trial with maximum sample size N = 200 patients and early stopping with selection
of the superior treatment if either Pr(θA < θB | data) > .99 or < .01, using Bayesian adaptive randomization, BAR,
with tuning parameter c = 1 or c = n/2N, or conventional randomization, CR. NA and NB denote the numbers of
patients randomized to A and B. In all cases, θA = .25. Each case was simulated 10,000 times.

θB Randomization Method Mean (2.5th, 97.5th) of NB −
NA

Pr(NA>NB+20) % Select B (A) Mean Sample SIze

.30 CR 0 (−26, 26) .050 25 (6.5) 154
BAR(1) 39 (−178, 188) .258 19 (5.0) 173

BAR(n/2N) 13 (−44, 68) .090 24 (6.7) 154
.35 CR 0 (−24, 24) .045 45 (3.5) 136

BAR(1) 66 (−166, 188) .140 30 (2.8) 164
BAR(n/2N) 20 (−24, 72) .030 44 (3.8) 135

.40 CR 0 (−23, 23) .034 68 (2.5) 108
BAR(1) 78 (−128, 186) .078 44 (1.8) 146

BAR(n/2N) 20 (−8, 74) .005 65 (2.5) 112
.45 CR 0 (−20, 20) .024 85 (1.4) 84

BAR(1) 81 (−62, 186) .048 58 (0.9) 130
BAR(n/2N) 15, (−8, 70) .001 84 (1.4) 86
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Table 2
Sample sizes by subgroups for the adaptively randomized trial of gemcitabine + docetaxel (G+D) versus
gemcitabine (G). “Website" refers to the data that included some incorrect covariates, while “Actual" refers to
the corrected data.

Subgroup Data Source Number of Patients Pr{θG(Z) < θG+D(Z) | data}
LMS, PPR G+D G

Yes, No Website 24 12 .96
Actual 19 6 .52

Yes, Yes Website 10 6 .90
Actual 10 3 .91

No, No Website 29 24 .71
Actual 36 32 .79

No, Yes Website 10 7 .66
Actual 8 8 .97

Total 73 49
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