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Abstract
Stressful events before or just after parturition alter the subsequent phenotypical response to stress
in a general process termed programming. Hypoxia during the period before and during parturition,
and in the postnatal period is one of the most common causes of perinatal distress, morbidity, and
mortality. We have found that perinatal hypoxia (E19 to PD14) augmented the corticosterone
response to stress and increased basal corticotrophin-releasing hormone mRNA levels in the
parvocellular portion of the paraventricular nucleus (PVN) in 6-month old rats. There was no effect
on the levels of hypothalamic parvocellular PVN vasopressin mRNA, anterior pituitary POMC or
CRHR1 mRNA, or hippocampus GR mRNA. We conclude that hypoxia spanning the period just
before and for several weeks after parturition programs the hypothalamic-pituitary-adrenal axis to
hyper-respond to acute stress in adulthood probably from drive from the parvocellular CRH neurons.
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Introduction
Hypoxia during the period before and during parturition, and in the postnatal period is one of
the most common causes of perinatal distress, morbidity, and mortality (1–4). We have
extensively characterized the short-term metabolic, endocrine, and growth effects of hypoxia
in the pre- and neonatal period of the rat (5–13). It has been increasingly clear that perinatal
events have significant and sometimes dramatic effects on the physiological phenotype of the
adult, a phenomenon termed fetal or neonatal “programming” (14–23).

There have been a few studies demonstrating long-lasting effects of pre- and post-natal hypoxia
on cerebral function (24), pulmonary hemodynamics (25), behavior responses to stress (26,
27), chemoreflexes (38), and sympathoadrenal function (29). Some components of the adult
hypothalamic-pituitary-adrenal (HPA) axis are also affected by prolonged fetal or acute post-
natal hypoxia, although the previous studies are not consistent in that some show augmentation
and some inhibition of the response to stress depending on when during development, for how
long, and to what degree the hypoxia was applied (30–32). Furthermore, these studies have not
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evaluated the central neural mechanisms of long-term effects of perinatal hypoxia on the HPA
axis of the adult. Complicating matters is that perinatal hypoxia decreases food intake and
growth and increases endogenous corticosterone and insulin levels (5–7), which may also
independently program subsequent changes in the adult phenotype (17,21,33).

The purpose of the present study was to evaluate the effect of pre- and post-natal (i.e. perinatal)
hypoxia on the corticosterone responses to stress and correlate them with central and pituitary
indices of HPA axis control in adult rats. This report will focus on the effect of perinatal hypoxia
on the subsequent levels of hypothalamic paraventricular parvocellular corticotrophin-
releasing hormone (CRH) and vasopressin mRNA, hippocampal glucocorticoid receptor
mRNA, anterior pituitary POMC and CRH receptor-1 (CRHR1) mRNA, and on the adrenal
corticosterone response to acute stress in adult rats.

Materials and Methods
All animal procedures were approved by the Aurora Health Care Institutional Animal Care
and Use Committee. Animals were housed with a 6AM on – 6PM off light cycle. Thirty-three
6 month-old male rats from 13 litters were studied. (2–3 males per litter were studied.) Pregnant
dams were obtained at 14 days gestation. Perinatal hypoxia was induced by placing pregnant
dams in an environmental chamber vented with 12% O2 at E19, allowing parturition to occur
in the hypoxic environment, and then keeping the pups and dams in the hypoxia chamber until
14 days of age (post-natal day (PD) 14)(34). This level of inspired oxygen results in an arterial
PO2 in adults of about 50–55 mmHg (35-37). Normoxic controls were exposed to room air
(21% O2) from E19 through PD14.

Weaning was at PD21, at which time male and female offspring were separated. Only male
rats were studied as adults. A subset of rats was weighed at PD14, 20, 28, 33, and then not
again until 5 and 6 months of age.

At 6 months of age, rats previously exposed to perinatal normoxia (controls; N=15 from 6
litters) or hypoxia (N=18 from 7 litters) were accustomed to handling for one week before
being studied, as described previously (38). Restraint stress was applied for 60 min, with
repeated blood for corticosterone obtained from each rat by repeated tail-nick before (0 min),
at 30 and 60 min of restraint, and at 90, and 150 min after the start of restraint stress (30 and
90 min after return to home cages) as described previously (38). At least one week later, a
subset of adult rats (from 7 litters) exposed to perinatal hypoxia (N = 5) and normoxic controls
(N= 6) were decapitated between 8–10 am without restraint stress. Anterior pituitaries and
brains were dissected and frozen for subsequent analysis as described previously (8). Another
subset of adult rats (N=13 [7 normoxic/6 hypoxic] from 6 litters) was sampled by repeated tail-
nicks at 8 AM and 5 PM for the assessment of the diurnal rhythm in corticosterone.

Plasma corticosterone was measured by radioimmunoassay (9,10). In situ hybridization
histochemistry (ISHH) was used to assess hypothalamic paraventricular (PVN) CRH and AVP
mRNA expression (8) and hippocampal glucocorticoid receptor mRNA (36). All ISHH data
were analyzed by digitizing the X-ray images, with optical densities calculated using NIH
Image software (courtesy W. Rasband, NIH) with a program that analyzed only signals
exceeding 3.5x background. Data were expressed as mean gray values. (We did not have
sufficient brain sections to analyze hippocampal mineralocorticoid receptor mRNA). Ectopic
AVP-expressing magnocellular neurons in the parvocellular division of the PVN were
eliminated from analyses using a thresholding technique. This was done in NIH image software
using an additional program that eliminated any signal above 5x the mean intensity signal from
the selected area (represented by ectopic magnocellular neurons).
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Anterior pituitary POMC mRNA expression was assessed by Northern analysis as described
previously (8). Anterior pituitary CRHR1 mRNA levels were assessed by similar Northern
blotting techniques using probes transcribed from a 461 bp rat CRHR1 cDNA clone kindly
provided by Neurocrine Biosciences (San Diego, CA). Data from Northern analyses were
normalized to 28S mRNA levels.

Data were analyzed by t-test or 2-factor analysis of variance repeated on one factor (time of
restraint stress), followed by Newman-Keuls multiple range test (Sigmastat 2.03). The
integrated corticosterone response to stress was calculated as the area under the curve above
baseline by the trapezoidal rule. Data are presented as mean ± standard error, with P<0.05
considered significant.

Results
Rats exposed to perinatal (E19-PD14) hypoxia had decreased body weight gain (Figure 1).
Although their weights were still lower at 5 months of age, adult male rats exposed to perinatal
hypoxia gained weight from 5 to 6 months of age in parallel with normoxic controls. Adrenal
mass normalized to body weight (gm/gm) in adults exposed to perinatal hypoxia (0.17±0.02)
was not statistically different from normoxic controls (0.14±0.01). A significant diurnal
variation in plasma corticosterone was present in adult rats exposed to perinatal normoxia, with
morning (24±14 ng/ml; N=6) being lower than evening levels (125±32 ng/ml; N=7; P<0.001).
In adult rats exposed to perinatal hypoxia, the morning (30±9 ng/ml; N=6) and evening (114
±21 ng/ml; N=6) unstressed plasma corticosterone levels were not different from normoxic
controls.

Figure 2 shows the corticosterone response to restraint in adult rats exposed to perinatal
normoxia (controls; N=15) or hypoxia (from E19 to PD14; N=18). Basal corticosterone levels
were not different between groups (Figure 2 left panel). However, plasma corticosterone was
significantly higher at all times measured during and after restraint in rats exposed to perinatal
hypoxia. This enhanced corticosterone response to restraint was further demonstrated by the
augmented integrated corticosterone response to restraint shown on the right panel of Figure
2.

Figure 3 shows the analysis of basal CRH mRNA levels in the parvocellular paraventricular
nucleus (PVN) of the hypothalamus in adult rats exposed to perinatal normoxia (N=6) or
hypoxia (N=5). There was a significant increase in parvocellular CRH mRNA in adult rats
exposed to perinatal hypoxia compared to normoxic controls. There was no effect on
parvocellular AVP levels in the PVN in adult rats exposed to perinatal normoxia vs. hypoxia
(48.9±1.1 vs. 51.5±2.7 mean gray area; N=5–6 per mean). There was also no difference
between adult rats exposed to perinatal normoxia vs. hypoxia in POMC mRNA levels (1.1±0.2
vs. 1.2±0.3 normalized to 28S; N=4–6 per mean) or CRHR1 mRNA levels (8.0±0.6 vs. 10.8
±1.7 normalized to 28S; N=6–8 per mean) in the anterior pituitary of adult rats. Finally, there
were no differences in hippocampal glucocorticoid receptor mRNA levels (N=4–6 per mean)
in adult rats exposed to perinatal normoxia vs.hypoxia in the CA1 (24±3 vs. 26±3 mean gray
area), CA3 (9.6±2.4 vs. 10.8±1.3 mean gray area), or dentate gyrus (27.6±1.2 vs. 27.8±2.4
mean gray area).

Discussion
This study demonstrated that exposure to perinatal hypoxia from the last two days of gestation
to 14 days after parturition resulted in an augmented corticosterone response to restraint in
adult rats compared to those exposed to a control, normoxic environment in the perinatal period.
The enhanced corticosterone response to an acute stressor occurred even though basal
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corticosterone levels were not elevated in rats exposed to perinatal hypoxia. CRH mRNA levels
in the parvocellular paraventricular nucleus of the hypothalamus were increased in adult rats
exposed to perinatal hypoxia compared to normoxic controls. There was no effect of perinatal
hypoxia on anterior pituitary POMC or CRHR1, parvocellular hypothalamic PVN AVP, or
hippocampal glucocorticoid mRNA levels.

Hypoxia is one of the more common neonatal stressors and is known to have dramatic acute
effects on virtually every organ and physiological function studied (1–13). Exposure to prenatal
hypoxia for most of gestation (E5 to E20) has also been shown to result in an augmented
corticosterone to stress in the adult, whereas brief exposures to post-natal hypoxia have not
shown a similar effect (26,31,32). This is consistent with the current study, which found an
effect of prolonged hypoxia extending from the 2 days just before parturition to 14 days of age.
It may be, then, that the programming of the adult HPA axis by hypoxia in the perinatal period
requires a relatively long exposure to low oxygen.

This is the first study we are aware of that suggests a possible mechanism for the programming
of adult HPA axis function by hypoxia in the perinatal period. The data suggest that augmented
hypothalamic parvocellular CRH levels may be the cause of enhanced adult corticosterone
responses to stress after perinatal hypoxia. The data analysis using digitized x-ray films does
not permit the determination of an effect due to increased number of CRH-expressing cells.
The lack of an effect of perinatal hypoxia on subsequent adult levels of anterior pituitary POMC
or CRHR1 mRNA, or of hippocampal GR, suggests that the augmentation of the corticosterone
response to restraint stress is probably caused by drive from the parvocellular CRH neurons
rather than by a change in feedback sensitivity or corticotroph responsiveness.

There are other factors that may influence the interpretation of the data. We have previously
demonstrated (and confirmed in this study) that post-natal exposure to hypoxia results in a
decrease in pup weight gain (40). Although weight gain does recover, the current study
demonstrated that there is no catch-up growth. Despite parallel rates of weight gain in
adulthood, actual weight remains lower in rats previously exposed to hypoxia. This effect does
not seem to be mediated by changes in thyroid hormone, growth hormone, insulin-like growth
factor 1, or parathyroid hormone (5–7,9,12). Since early-life undernutrition has been shown to
program the subsequent HPA axis phenotype (41), it is possible that lower body weight gain
in the rat pups exposed to hypoxia was a significant factor in the augmentation of the
corticosterone response to restraint that we observed. Finally, it is possible that changes in
maternal factors caused by hypoxia such as changes in food intake or behavior, may have
contributed to the effect observed in the offspring (18,21,22,41). It is also important not to
over-interpret the mRNA data, since it is always possible that they do not accurately reflect
CRH protein synthesis or secretion.

We have also previously demonstrated an increase in basal corticosterone during neonatal
hypoxia (10,13). It is important to note that this is quite a different phenomenon than what we
have discovered in the present study. The acute, neonatal increase in basal corticosterone
during hypoxia is (a) not mediated by the hypothalamus, (b) normalized by chemical
sympathectomy, and (c) not sustained, in that the increase in corticosterone normalizes soon
after return of the neonate to normoxia (8–10). In fact, the response to stress or CRH is
attenuated during neonatal hypoxia due to glucocorticoid negative feedback (8,13). However,
although driven by a different mechanism, it is possible that the increase corticosterone during
neonatal hypoxia could have “programmed” the brain to alter the regulation of hypothalamic
CRH mRNA and adrenocortical responses to stress in the adult. This does not appear to be a
likely mechanism since increases in neonatal glucocorticoid exposure appears to attenuate
subsequent HPA axis response to stress (42–45) despite a downregulation of central
glucocorticoid receptor expression (46).
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Finally, increases in insulin, probably due to corticosterone-mediated decreases in insulin
sensitivity during neonatal hypoxia (6), may have also contributed to changes in the adult HPA
axis phenotype, as has been demonstrated for metabolic and cardiovascular control (47).
Therefore, it is possible that the “programming” induced by hypoxia may have been modified
by decreases in food intake and weight gain, and changes in maternal behavior, corticosterone
and/or insulin levels.

What might be the mechanism by which the exposure to hypoxia in the perinatal period leads
to an increase in CRH mRNA levels and augmented corticosterone responses to stress months
after the exposure, despite normal basal corticosterone levels in the morning and evening? It
is possible that the control of the CRH gene promoter is altered by epigenetic phenomena such
as changes in DNA methylation, histone function, or some other mechanism (48). Even though
CRH gene expression is increased, CRH release from the parvocellular paraventricular neurons
might be relatively normal under basal conditions but could be augmented when stimulated by
stress, leading ultimately to greater stress-induced corticosterone secretion.

The possibility of a dissociation between gene expression and subsequent physiological effects
has been suggested previously (15,17,22,49,50). There are two quite pertinent examples in
adult rats of increased CRH mRNA expression and increased HPA axis responsiveness to stress
despite completely normal basal, unstressed plasma ACTH and corticosterone. Of particular
interest is that neonatal maternal separation results in subsequent increases in PVN CRH
mRNA, and ACTH and corticosterone responses to airpuff startle, but normal basal plasma
ACTH and corticosterone (51). This raises the possibility mentioned earlier that hypoxia-
induced changes in maternal behavior could have been a component of the response we report
here. A difference is that neonatal maternal separation altered central GR mRNA (51), whereas
we did not find such an effect. Repeated stress applied to adult rats also results in increased
CRH mRNA levels in the PVN, augmented HPA axis responses to a novel stressor, and normal,
basal plasma ACTH and corticosterone (52,53). In this case, as opposed to our study, there is
decreased GR expression in the hippocampus suggesting a negative feedback mechanism.
Therefore, the phenomenon of the association of increased central drive from the CRH neuron
with increased stress-induced, but not basal ACTH and corticosterone, is well described. Some
of the putative mechanisms of this phenomenon suggest that perinatal hypoxia may have some
unique characteristics not necessarily attributable to changes in maternal care and/or the stress
itself. It is also possible that the observed effects are a reflection of hypoxia-induced
programming within regulatory afferents of the stress-integrative CRH neurons, which may
undergo a shift toward enhanced excitation with exposure to acute stressful stimuli in the adult.

Perinatal hypoxia is a common, complex early-life stress. This raises the possibility that
subsequent HPA function and, in particular, the response to acute stressors, could be altered
in adolescents and adults and may require lifelong vigilance in following patients who
experience a prolonged hypoxic episode in the perinatal period (54,55).
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Figure 1.
Body weight at post-natal day (PD) 14–33, and at 5 and 6 months of age in rats exposed to
perinatal normoxia vs. hypoxia from E19 (in utero) to PD14. N=7–8 per treatment group from
4 litters per treatment group. SEMs are smaller than the symbol size. Perinatal hypoxia body
weights were significantly less than normoxic controls at each time point (P<0.001).
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Figure 2.
Left: Corticosterone response to restraint applied from 0–60 min in rats at 5–6 months of age.
Rats were exposed to perinatal hypoxia (E19-PD14; N=18 from 7 litters) or normoxia (controls;
N=15 from 6 litters). *different from 0 min; +different from normoxic control. Right: Integrated
(area under curve minus baseline corticosterone) corticosterone response to restraint. *different
from normoxia. (P<0.001)
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Figure 3.
Parvocellular CRH in the paraventricular nucleus of adult rats exposed to normoxia or perinatal
hypoxia (E19-PD14) by in situ hybridization histochemistry (top). The image above is an
example of a CRH mRNA histochemistry image from digitized images from x-ray films. N=5–
6 brains per mean/ from 4 litters per mean. *different from normoxia (P<0.001).
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