
Vol. 55, No. 11

Evaluation of Automated Threshold Selection Methods for
Accurately Sizing Microscopic Fluorescent Cells by Image Analysist

MICHAEL E. SIERACKI,1* STEPHEN E. REICHENBACH,' AND KENNETH L. WEBB'

College of William and Mary School of Marine Science and Virginia Institute of Marine Science, Gloucester Point,
Virginia 23062,' and Computer Science Department, College of William and Mary, Williamsburg, Virginia 231852

Received 6 March 1989/Accepted 14 August 1989

The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their
population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the
method of choice. The tedium of making such measurements visually on the large numbers of cells required has
prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis
require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing
cells from a dark background. This is commonly done by visually choosing a threshold intensity value which
most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method
based on the cell image characteristics should be used. Since the optical nature of edges in images of
light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or

reflected light, it seemed that automatic segmentation of such images may require special considerations. We
tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and
fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and
ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile
(first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image
histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by
first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size.
The method based on the minimum of the second derivative of the profile yielded the most accurate area

estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model
of the optical properties of fluorescing objects and the video acquisition system is described which explains how
the second derivative best approximates the position of the edge.

Epifluorescence microscopy is currently the best method
for detecting natural populations of bacteria and protists in
aquatic systems and estimating their biomass. Biomass is
usually determined by extrapolating linear measurements to
estimates of three-dimensional biovolume, which is then
converted to biomass units. Linear measurements (e.g.,
length and width) of individual cells are made visually, either
with an ocular micrometer or with a ruler on photomicro-
graphs. Both methods are tedious and time consuming. The
introduction of computerized image analysis to this field is
automating cell size measurements (3, 23). Image analyzers
can easily extract two-dimensional characteristics of cells,
such as area and the perimeter array, which can be better
used to estimate biovolume. An important ability of these
instruments is to provide rapid estimates of the cell size
spectra of populations in natural samples. The ability to
define the edges of the bright fluorescing cells against a dark
background is fundamental to accurately measuring cells.

Segmentation is the process of dividing a digital image into
distinct regions by classifying each individual picture ele-
ment (pixel). Several surveys and textbooks describe meth-
ods for segmenting images (2, 8, 17, 22). Thresholding is one
of the most popular techniques for segmenting images con-

sisting of an object on a background. A threshold value
divides pixels into two groups-those with gray levels
greater than or equal to the threshold and those with gray

levels less than the threshold. If the threshold is too high or
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too low, the area measurement of the object will be under-
estimated or exaggerated, respectively.

If the gray levels of the object and background are not
uniform, but probabilistic models for the distributions of the
gray levels are known, a Bayes minimum error threshold can

be used to locate the best threshold. That is, there is a

threshold, t, such that

ftx,y) - t > P(object J(x,y) 2 P(background ftx,y)))
flx,y) < t #' P(background ftx,y) > P(object f(x,y))) (1)

where P(class f(x,y)) is the a posteriori probability that the
pixel at (x,y) is in the class given the gray levelftx,y). Many
researchers assume normally distributed populations with
distinct means and standard deviations for the background
and object pixels (5, 14). In this case, the image histogram
would be the bimodal sum of the two distributions (Fig. 1).
Duda and Hart (6) provide a useful reference for statistical
decision theory.

This classification approach relies on the statistics of two
distinct regions separated by a discontinuity. Sharp edges in
a scene may be blurred by the optics or obscured by noise
during image acquisition. Further, not all boundaries are

step or discontinuous edges. Boundary-placement segmen-
tation techniques attempt to locate the edges of objects even
if they are vague or partially obscured. Most of these edge
detectors use measures of the gradient or first derivative (13,
16, 21). Huekel (9, 10) suggested an operator that can be
generalized to patterns other than step edges.

In previous investigations, epifluorescence microscopy
images have been segmented by simple visual thresholding
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FIG. 1. Histograms of a model image containing normally distributed populations of background (A), object of interest (B), and the whole
image (C).

(23) or by computationally intensive methods involving
significant preprocessing which were then tested with stan-
dard fluorescent microspheres (3). Visual thresholding re-
quires time-consuming human intervention, even if it is
performed globally (i.e., one threshold for an entire image).
Local thresholds (i.e., separate thresholds for each object)
permit more accurate measures but would be prohibitively
time consuming. We are troubled by possible measurement
bias and inconsistency due to the subjective nature of visual
thresholding. There is clearly some variability among sepa-
rate examinations of a single image by a single human
operator as well as among separate examinations of a single
image by different operators. Automated thresholding tech-
niques for segmenting microscopic fluorescent objects could
relieve the operator of a tedious, time-consuming task and
reduce bias and inconsistency. Bjirnsen (3) described such a
procedure which uses a number of preprocessing steps
which are computationally intensive. This procedure esti-
mated bacterial biovolumes which correlated well with bac-
terial carbon measurements, but the protocol appeared
somewhat ad hoc. The large number of image point opera-
tions used in the image averaging and convolutions would be
too time consuming to be efficient on small computer sys-
tems. We evaluated nine automatic threshold selection
methods derived from the image analysis literature for their
ability to yield accurate size estimations of standard fluores-
cent microspheres and fluorescently stained cells represent-
ing types commonly found in aquatic plankton samples. The
results yielded not only a preferred method of thresholding
but also some insights into the optical properties of micro-
fluorescing objects and their detection by video image anal-
ysis.

MATERIALS AND METHODS

System hardware. The microscope-image analysis system
consisted of a Zeiss Universal microscope, a Hitachi DK-
5053 color RGB video microscope camera, a Digital Graph-
ics Systems 1633 image analyzer and a Dual Systems Corp.
83/20 host computer. The microscope is equipped with a
50-W mercury lamp for epifluorescence illumination. The
color video camera, equipped with three 17-mm (2/3-in.)
CdSe vidicon tubes, detects the image and a camera control
unit provides gain controls and manual or automatic black-
level and color balance adjustments. Separate red, green,
and blue video signals are simultaneously digitized at frame
rates (1/30 s) and stored in three image memory planes of the
computer. For the analyses described here, only a single
image plane (i.e., color) was used. The resolution of the
digitizer is 512 x 484 picture elements (pixels) with 8 bits of
memory available for each of the three colors. This is
equivalent to 256 possible gray levels for each pixel in each

color, although in practice the maximum gray level achieved
by the system is about 180. The system yields a high-
resolution digitized color image on a 48-cm (19-in.) monitor
(Ikegami Corp.) which is visually indistinguishable from a
direct video image. The image can then be analyzed either by
the dedicated 8086 processor with an on-board library of
graphics and imaging commands or directly by the 68,000-
computer-processing-unit (cpu)-based (8-MHz clock speed)
host computer for greater speed. The host computer controls
the motorized microscope stage, image and data storage, and
trackball interactions for image editing. The system has
proved capable of detecting the natural autofluorescence of
photosynthetic pigments and commonly used fluorochromes
for bacteria and protists (23).

Fluorescent microsphere images. Fluorescently stained la-
tex microspheres (Polysciences, Inc., Warrington, Pa.) of a
variety of sizes and dye intensities were used. The intensity
set of spheres were all 6.1 ,um in diameter (nominal size,
c3% coefficient of variation) and were stained with 1, 2, 5,
10, 20, and 100% dye concentration. The size set consisted
of spheres 0.51, 0.94, and 3.1 ,um in diameter (nominal size,
c3% coefficient of variation) as well as the 6.1-,um spheres
and were stained with 100% dye concentration. The spheres
have a refractive index (nD20) of 1.600 and are stained with
the fluorochrome coumarin, which has an excitation wave-
length maximum of 458 nm and an emission maximum at 540
nm.
Microscope slides were prepared by filtering a diluted

portion of the sphere suspension onto a black-stained 0.2-
p.m-pore-size filter (Nuclepore Corp., Pleasanton, Calif.),
placing the filter on a microscope slide, and adding a drop of
immersion oil (Resolve, nD23 = 1.515; Stephens Scientific,
Kinneton, N.J.) and then a cover slip. Slides prepared this
way were used within 2 days since the dye was observed to
condense into the center of the spheres after several weeks
at room temperature. Images of the spheres were obtained
by using the blue excitation filter set of the microscope
(Zeiss 487709) consisting of a 450- to 490-nm band-pass
excitation filter, a 510-nm dichroic mirror, and a 520-nm
long-pass emission filter. For the intensity set of spheres, a
40x oil-immersion objective was used with a 1.25x magni-
fier. A camera gain of +9 dB gave the best detection over the
range of sphere intensities. Black level was manually ad-
justed to just above the level at which the image started to
break up, and color balance was done automatically with a
white, transmitted-light image. Images of spheres of each
intensity were taken with three and four neutral density
(ND) filters (50% transmittance) placed in the emission light
path to reduce the sphere brightnesses to approximately that
of fluorochrome-stained cells. For the different-size spheres,
a 100x Planachromat objective, 2.Ox magnifier, no ND
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filters, and camera gain settings of 0, +9, and + 18 dB for the
3.1-, 0.94-, and 0.51-,um spheres, respectively, were used.
Averages of two sequential green image frames were used to
improve the signal-to-noise ratio. Subimages of individual
spheres were selected from full images for analysis.

Cell cultures. Images of cells from five cultures were tested
by the same methods described below. The cultures were (i)
the cyanobacteria Synechococcus sp. (clone M9, obtained
from J. Sieburth), (ii) the cryptophyte Chroomonas salina
(clone 3C; Culture Collection of Marine Phytoplankton,
Bigelow Laboratory for Ocean Sciences, W. Boothbay Har-
bor, Maine), (iii) an unidentified heterotrophic flagellate
(probably a chrysophyte, 4- to 5.5-pum diameter), and (iv)
two heterotrophic ciliates isolated from coastal marine wa-
ters. Samples from all cultures were fixed with 0.3% glu-
taraldehyde and stained with proflavine (7) (except for
Synechococcus sp., for which the autofluorescence of phy-
coerythrin was used), and slides were prepared by standard
methods for epifluorescence microscopy (22). Subimages of
50 to 60 individual cells were obtained with the blue or green
(for Synechococcus sp., Zeiss 487714) excitation filter set.
the 1.25 x magnifier, and either a 63 x Plan-Neofluar objec-
tive (for clone 3C and Synechococcus sp.) or a 40x Neofluar
oil-immersion objective (for the two ciliates and the hetero-
trophic flagellate). Camera black-level and color balance
were set as above, and the gain was + 18 dB. Again, averages
of two sequential green (or red for Synechococcus sp.)
frames were used.
To obtain an independent measure to compare with the

automated methods, we visually measured each cell after
video image acquisition. We switched to the 100 x-objective,
increased the magnifier to 2x, and measured the length and
width of each cell visually with an ocular micrometer. These
measurements were then converted to area by using the
formula for either a rectangle with semicircular ends (Syn-
echococcus sp.) or an ellipse (flagellates and ciliates).

Profile generation. The profile of a bright spot on a dark
background is the brightness value, or intensity, as a func-
tion of distance from the center of the spot. Castleman (4)
suggested a method for calculating a profile from the image
histogram, assuming the object image is circular, concentric,
and has a strictly monotonically decreasing intensity away
from the center. These are fairly accurate assumptions for
images of fluorescent microspheres and many small fluo-
rescing cells. Castleman (4) computes the profile I(r) (inten-
sity as a function of radius) by first calculating the inverse
function R(i) (radius as a function of intensity). Because the
profile is monotonically decreasing, this inverse function
exists. For a digital (discrete) image with a gray scale of 0 to
255, the radius function is:

R(i) = I-A(i)=- H(i) (2)

where A is the area of the object brighter than the given
intensity i and H is the gray level frequency function or
histogram. The profile I(r) is just the inverse of the radius
function R(i) computed in equation 2.
For any intensity i, the first derivative of the profile can be

calculated as:

(ii (i+ 1) 2

R(i-1)-R(i + 1) R(i-1)-R(i + 1) (3)

Similarly, the second derivative (used in one of the algo-
rithms described below) is defined as:

F'(R(i)) =
I'(R(i - 1)) - I'(R(i + 1))

(4)

For any histogram of a real image, these calculations will
probably yield a profile that is somewhat rough. Even a small
degree of roughness can interfere with determining the
maximum first derivative or other measures. Therefore, we
smoothed the profile array with a spatial mean filter with an
extent of three samples. That is, successively smoother
versions of the profile are calculated by:

Rk + () =
Rk(i- 1) + Rk(i) + (Rk(i + 1)

(5)
3

where RO(i) is defined by equation 2.
The profile was smoothed until all the first- and second:

derivative values were smaller in magnitude than the differ-
ence between the maximum and minimum gray levels that
occur in the image. The sharpest edge possible in a digital
image is a change in gray level equal to this difference over
a distance of 1 pixel. The result of the discrete calculation of
the second derivative should likewise be less than this
difference because the magnitude of the first derivative is
restricted and the sign of the first derivative of a monotoni-
cally decreasing profile changes only at the center of the
object.
A smoothed version of the histogram can be calculated

from the smoothed profile as done by Wall et al. (25). Given
the smoothed profile and the assumption of a concentric,
circular, monotonically decreasing gray level object,

As(i) = iTR (i)2 (6)
and

_ As(i) -AS(i- 1) if i >0
l As(O) if i =0 (7)

The raw and smoothed profiles and their first and second
derivatives are shown in Fig. 2 for an example sphere image.
There are several peaks in the first derivative and corre-

sponding zero-crossings in the second derivative (Fig. 2A
and B). To identify a single peak in the first derivative, the
array of first derivative values was additionally smoothed (as
described above) until there was a single zero-crossing in the
second derivative. The resulting very smooth first and sec-
ond derivatives are shown in Fig. 2C. The effect of these two
degrees of smoothing on the image histogram is shown in
Fig. 3.

Threshold selection algorithms. (i) Visual (VIS). We visu-
ally determined a threshold for each sphere image for the
purpose of comparison with other methods and with the
known sphere dimensions. Each individual sphere image
was displayed alone on the monitor, and thresholds were
determined interactively by using the trackball. Moving the
trackball increased or decreased the threshold below which
the display look-up-table was set to zero. Thresholds were
chosen which most closely matched the perceived edges of
the sphere. Four determinations were made for each sphere,
and the average was used as the visual threshold. Visual
thresholds of all sphere images were determined by the same
person.

(ii) Middle gray level (MID). MID selects as the threshold
the gray level midway between the maximum and minimum
gray levels in the image. That is:

(imax + Imin)
t2= (8)
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FIG. 2. Effects of smoothing on the histogram-derived profiles and the first and second derivatives for raw (A), smoothed (B), and very
smoothed (C) profile data. Data from a single 10% dye intensity sphere with three ND filters.

where Imax is the largest gray level in the image and .. n is
the smallest.
Each segmentation technique assumes an image model.

Under the assumptions of the simplest model-a uniform
gray level object and background, and a step edge-any
algorithm that selects a threshold between the object and
background gray levels could be used to segment the image.
Clearly, these assumptions do not hold for real images, but
MID could provide a good threshold if the assumptions are
relaxed a bit. The attractiveness of this method is its
simplicity. Imaging systems with histogram boards can per-
form this type of thresholding at a rate near the standard
television frame rate of 1/30 s.

(iii) Minimum of the smoothed histogram (MINSH). Prewitt
and Mendelsohn (20) suggested an approach based on the
assumption that the pixels in the distinct background and
object regions cluster about unequal gray levels (Fig. 1). The
modes of the gray levels of the regions appear in the
histogram as peaks. The minimum between the peaks is used
to divide the distribution. Even if the assumption of distinct
regions is relaxed a bit and there exists a small transition
between the object and the background, there will be a
valley between the histogram peaks.

In real images, the minimum may not be unique, and even
if it is, noise and sampling may combine to create false or
spurious minima. Smoothing the histogram can alleviate this
difficulty (Fig. 3). We implemented MINSH using a decision
criterion based on the number of succeeding gray levels with

larger distribution counts (before a gray level with a smaller
frequency or the image maximum).
Our results indicate that this criterion yields a minimum

that corresponds well with a visually selected minimum. For
example, the criterion indicated a minimum at 46 for the
smoothed histogram shown in Fig. 3C.

(iv) Maximum first derivative (MAXD1). Most edge-based
segmentation methods attempt to identify the maximum
change in gray level-the gradient or first derivative of the
image function. Marr and Hildreth (16) accomplished this by
finding the zero-crossings of the second derivative. The first
derivative of the smoothed profile can be smoothed until
there is a single, second-derivative zero-crossing, corre-
sponding to the maximum first derivative (Fig. 2).
Segmentation methods based on gradient measures are

popular, with many variations having been suggested (15).
Under the assumption of a circular, concentric, monotoni-
cally decreasing spot, some of these variants reduce to
finding the maximum first derivative of the profile. Five
methods that combine gradient and histogram information
are described below.

(v) Minimum of histogram of high-gradient pixels (MI-
NASH). Weszka and Rosenfeld (27) suggested a variant on
the search for the minimum of the histogram. They formed a
histogram in which only pixels with sufficiently high gradient
were counted. The threshold is the minimum of this histo-
gram. In implementing this idea, we included only the 10% of
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FIG. 3. Effect of smoothing on the image histogram of an example sphere image. The complete, raw histogram is shown in panel A. The
region of interest is shown on an expanded scale in the raw (B), smoothed (C), and very smoothed (D) forms. The smoothing method causes

artificially high values outside the region of interest. Data are from the example sphere used in Fig. 2.

the pixels with the largest profile gradient. This criterion is
also used for MAXASH and AVGASH below.

(vi) Maximum of the histogram of high-gradient pixels
(MAXASH). Panda and Rosenfeld (19) proposed a two-
pronged approach-finding the minimum of the histogram of
low-gradient pixels and the maximum of the histogram of
high-gradient pixels. These values are used to divide the
two-dimensional histogram of gray level and gradient. For
our profiles, segmentation of the low-gradient pixels is not a

problem. Moreover, the MINSH/D1 approach (described
below) performs an operation similar to this use of low-
gradient pixels. Therefore, we examined only the effective-
ness of thresholding at the maximum of the histogram of
high-gradient pixels.

(vii) Average of the histogram of high-gradient pixels (AV-
GASH). Katz (12) proposed using the average gray level of
the high-gradient pixels.

(viii) Minimum of the quotient of histogram and gradient
(MINSH/D1). Weszka and Rosenfeld (28) proposed adding
gradient information to the histogram by reducing the rela-
tive weight of pixels with high gradients. They reasoned that
after discounting edge pixels that tend to fall between the
histogram peaks, the minimum of the histogram should be
easier to locate. We calculated the ratio of the smoothed
histogram frequency to the first derivative of the smoothed
profile for each gray level:

Hs(i)
HQ) = s(i)9)

1'(Rs(i))

where the minimum of HQ is used as the threshold.
(ix) Maximum of the product of histogram and gradient

(MAXSH*D1). The last of the five methods that combine
gray level and gradient information was proposed by Wata-
nabe (26). This method selects the threshold that maximizes
the sum of gradients. Under our assumptions, this is the
maximum of the histogram H, defined as:

(10)

(x) Minimum of the second derivative (MIND2). Prelimi-
nary observations indicated that the first-derivative or gra-
dient-based methods may underestimate the sizes of
spheres. Visual examination of profiles suggested that the
proper threshold was closer to the point where the sphere
profile begins its rise out of the background noise. At this
point, the curvature of the profile is maximum and concave
upward. To test this hypothesis, we implemented an algo-
rithm that determined the minimum of the second derivative
of the smoothed profile. The use of the second derivative has
been suggested by others (16, 18, 22), but to our knowledge
its use in this manner is new.

Evaluation of methods. The errors of each method were
calculated by subtracting the nominal sphere area from that
determined from the threshold selected by each method. The
nominal area (in units of pixels) was calculated from the
nominal sphere diameter (micrometers) and the pixel-to-
micrometer conversion factor of the image analysis system
measured at the appropriate magnification. This difference
was then expressed as a percentage of the nominal area and
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FIG. 4. Size measurements of 6.1-,um-diameter fluorescent microspheres of six different brightnesses (dye intensities of 1, 2, 5, 10, 20, and
100%) with a single threshold gray level of 12, visually chosen to best match the 20% spheres. Horizontal line shows the nominal sphere
radius. Fifty spheres of each dye intensity were analyzed.

referred to as the normalized error in area. This was calcu-
lated for each sphere measured, and the means and standard
deviations were considered in comparing methods. This
method retained the sign of the error indicating whether the
method over- or underestimated the sphere area. The root
mean square error was also calculated for a more absolute
measure of the performance of each method unaffected by
the sign of the error.
The program which calculates the thresholds from an

image histogram by the methods described here is available
from us. It was written in C for use on a Unix computer.

RESULTS AND DISCUSSION

Initial attempts to visually determine thresholds for accu-
rate sizing with fluorescent microspheres indicated a com-
plicated relationship between sphere brightness and appar-
ent size (Fig. 4). Sizes of dim spheres were underestimated
and those of bright spheres were overestimated. Across an
intermediate range of maximum grey levels (about 50 to 170),
the relationship was nearly linear. The dimmest spheres
were obviously underdetected, and the brightest spheres
caused video blooming (11). These results led us to believe
that a simple global threshold calibrated to standard fluores-
cent microspheres is not adequate for accurate sizing. To
examine the reasons for this effect, we examined the sphere
image profiles.

Preliminary observations of sphere image profiles indi-
cated that the point where the sphere first starts to rise out of
the background was most closely associated with the loca-
tion of the edge as determined by the nominal sphere
diameter. This point could be estimated by the minimum of
the second derivative of the sphere image profile. Both the
visual threshold and the maximum gradient of the profile
occurred inside of the actual edge, leading to an underesti-
mate of sphere size. These preliminary observations were
generally verified by the performances of the methods on the
test sphere images.

Spheres of different brightnesses. The 144 sphere images
used for the intensity set are shown in the composite image
in Fig. 5. The root mean square errors of the areas for each
method (Table 1) indicated that the MIND2 method was

generally the most accurate of the automated methods,
second only to visual thresholding. MIND2 performed con-
sistently better than the other automated methods for images
taken with four ND filters and was the best automated
method for three of the six sphere image sets with three ND
filters. Thresholds were linearly correlated with average gray
level and ranged from 16 to 109 by the visual method (VIS,
r- = 0.94) and from 16 to 137 by MIND2 (r2 = 0.87). The
corresponding ranges in sphere image areas were 205 to 469
pixels for VIS and 187 to 550 pixels for MIND2.
The normalized error in area measurement for each of the

methods is shown in Fig. 6. The mean and standard devia-
tions illustrate an estimate of accuracy and precision for
each thresholding method. This set of pooled data of all the
spheres from the intensity set shows that mean errors of the
estimates ranged from an underestimation of 39% for MAX-
ASH to an overestimation of 66% for MAXSH*D1. The best
method, MIND2, underestimated an average of less than
1%, while visual thresholding resulted in the second lowest
normalized error, underestimating by 7%.
The MAXASH method consistently underestimated the

sphere size by the largest margin (Fig. 6). This method
locates the edge as the maximum of the high-gradient gray
levels of the histogram and apparently was weighted by
pixels toward the sphere center, leading to a greater under-
estimation than the other gradient-based methods. The
MAXSH*D1 method was most variable and produced the
largest overestimates of sphere area (Fig. 6). This method
was strongly influenced by the large number of background
pixels, causing the estimated threshold value to be too low.
It was apparently also strongly influenced by the high-
gradient pixels leading to the observed high variability. The
other methods generally underestimated sphere size by
about the same amount, probably owing to their common
dependence on the maximum gradient.
The mean errors of the MAXD1 method were consistently

negative across the range of intensities, indicating underes-
timation of sphere sizes by this method (Fig. 7). In contrast,
the MIND2 errors ranged from negative for the dimmer
spheres to positive for the brightest spheres. The intensity
data in Fig. 7 are presented as the ratio of the maximum
measured gray level divided by the visually chosen threshold
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FIG. 5. Digitized images of fluorescent spheres used in this study. This composite image shows the 12 sphere images from each of the six
dye intensities (1, 2, 5, 10, 20, and 100%) and illuminated with three (upper six rows) or four (lower six rows) ND filters.

for each sphere to account for the slight differences in
background noise levels between the three and four ND filter
images (Fig. 5).

Spheres of different sizes. The root mean square errors for
the three sphere image sets of different sizes (Table 2)
showed a performance pattern similar to that of the intensity
sphere set. MIND2 had the lowest error of the automated
methods for the 0.94- and 3.1-jim-diameter spheres. The
areas of the smallest spheres (0.51 ,um) were best estimated
by MID, although AVGASH had a low error as well. For the
smallest spheres, five of the automated methods had errors
lower than or equal to the visual estimates.
The normalized error of the methods for the three sphere

image sets of different sizes (Fig. 8) showed a pattern similar
to that of the intensity sphere images (Fig. 6). Of the
automated methods, MIND2 had the lowest error and
MAXSH*D1 had the highest error. There was a general
underestimation of sphere size by all methods except
MAXSH*D1. VIS significantly overestimated the sizes of
the smallest spheres (0.51 jim). MID had less error relative
to the other methods with these spheres than with the
intensity sphere image set (Fig. 6).
There was no consistent trend of error with sphere size.

150

z- 5° l 0

~2i
w'50

z

-50.

1623 4 6 6 i 6 6 i0
Method

FIG. 6. Normalized error of area measurements for the compos-
ite set of intensity spheres. Means and standard deviations are
shown (n = 144). Thresholds were selected by the following 10
methods (see text for details): (1) VIS; (2) MINSH; (3) MAXD1; (4)
MIND2; (5) MINASH; (6) MAXASH; (7) AVGASH; (8) MINSH/
D1; (9) MAXSH*D1; (10) MID.
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TABLE 1. Root mean square errors in area (pixels) for the 10 methods of measuring fluorescent microspheres of different intensities
(nominal sphere size [6.1-pLm diameter] at the magnification used is equivalent to an area of 350 pixels)

% Dye No. of ND Measured Root mean square error of method
intensity filters n avg gray

level VIS MINSH MAXD1 MIND2 MINASH MAXASH AVGASH MINSH/D1 MAXSH*D1 MID

1 3 12 35.3 25.1 73.6 53.0 66.6 75.2 115.3 53.5 70.9 52.8a 69.3
2 3 12 38.0 28.0 85.0 62.2 30.5a 75.2 151.2 80.0 77.3 83.4 83.3
5 3 12 43.9 26.4 73.9 62.8 48.0a 73.9 138.5 69.1 73.7 67.4 81.6
10 3 12 70.8 37.7 112.3 73.5 79.6 121.0 143.9 75.1 96.9 72.8a 91.7
20 3 12 109.4 28.0 106.2 58.5 38.7a 89.2 132.5 61.0 101.6 155.4 81.7
100 3 12 163.5 21.6 31.3 35.2 33.0 46.3 62.9 17.5b 42.7 399.1 32.9

1 4 12 30.7 42.5 241.0 132.1 44.3a 144.0 169.7 125.9 291.2 393.0 82.0
2 4 12 31.0 65.1 114.0 110.0 47.7b 114.0 171.6 114.9 311.4 377.7 73.8
5 4 12 35.3 77.4 234.6 105.9 66.2b 126.8 165.7 117.0 129.2 451.4 95.1
10 4 12 50.5 59.9 89.7 74.5 44.2" 89.7 146.1 78.2 75.8 587.4 78.8
20 4 12 74.4 51.8 76.3 72.4 52.4a 76.3 142.9 72.4 76.7 480.4 83.9
100 4 12 136.8 35.3 70.7 70.5 51.9a 70.7 144.1 71.8 71.6 306.7 74.6

All 3 72 28.2 84.6 58.7 52.6a 83.2 127.5 62.9 79.6 183.9 75.9
All 4 72 57.1 155.4 97.0 51.7b 107.0 157.2 99.4 189.4 441.7 81.7

All 3 and 4 144 45.0 125.1 80.2 52.la 95.8 143.1 83.2 145.3 338.4 78.9
a Lowest error (excluding VIS).
bError lower than VIS.

Some methods did better with small spheres, such as
MIND2, while others, such as MAXASH and MAXSH*D1,
did better with larger spheres. The size sphere images were
not controlled for brightness, and the 0.94-,um sphere images
were not as bright as the others and had higher errors by
several of the methods (e.g., MINSH, MAXD1).
Unpaired t tests for each sphere type indicated that

one-half of the methods resulted in area estimates which
significantly departed from the nominal sphere size for all
sphere types. Of the remaining five methods (Table 3),
MIND2 most often gave estimates not significantly different
from the nominal size. Only with the lowest intensity and the
3.1-,um-diameter spheres were the sizes significantly dif-
ferent with this method.

Cell cultures. The methods tested performed in a similar
manner with cell images as with the microsphere images,
with the exception of the Synechococcus sp. cells (Fig. 9).
As with the microspheres, MID and the methods combining
histogram and gradient information (data not shown) did not

perform better than the simpler methods shown in Fig. 9.
The Synechococcus sp. cells were overestimated by visual
thresholding (VIS) as well as by MIND2. MAXD1 per-
formed best for this cell type. This cell type also had the
largest variation in percent error of all the cells. These cells
were both the smallest and the brightest cells measured, and
this may have contributed to this result. The fluorescence of
phycoerythrin under green excitation is very bright and
appears to have led to very sharp cell edges. Since these
cells had the fewest pixels per cell image, their percent error
would be expected to be more variable. For the other four
cells, MINSH and MAXD1 generally caused an underesti-
mation of cell size, VIS was the best method, and MIND2
was the best automated method. This pattern of method
performance was the same as the microsphere results.
Image model. The optical factors leading to the final image

of a stained cell or a fluorescing microscopic latex sphere are
exceedingly complex. The development of a comprehensive
image model would have to account for a large number of

60
40.
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w1 00.
-1 20

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
Maximum Gray Level/Visual Threshold

FIG. 7. Mean errors in area across the range of sphere intensities for the MAXD1 (O)and MIND2 (0) threshold selection methods. The
abscissa values are the ratio of maximum gray level to visual threshold. Error bars show + 1 standard error. Solid lines show the model results
for the two methods for spheres 20 pixels in diameter, a background level of 20, and with a point spread function modeled as a Gaussian
distribution with a standard deviation of 1 pixel.
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TABLE 2. Root mean square errors in area measurements by the 10 methods with spheres of various sizes
(results from the two 100% dye intensity sphere images are included for comparison)

Nominal size Root mean square error of method

(Am) (pixels)" VIS MINSH MAXD1 MIND2 MINASH MAXASH AVGASH MINSH/D1 MAXSH*D1 MID

0.51 42 18.2 18.3 17.9 12.3 29.9 34.9 8.6 28.5 165.3 7.3
0.94 142 7 59.4 60.7 34.7 71.6 94.3 47.2 66.5 128.4 36.9
6.1b 350 21.6 31.3 35.2 33 46.3 62.9 17.5 42.7 399.1 32.9
6.1c 350 35.3 70.7 70.5 51.9 70.7 144.1 71.8 71.6 306.7 74.6
3.1 1,539 202.5 309.8 292 191.7 309.8 491.8 302.1 302.8 700.4 274.9

a Areas in pixels do not match diameters in micrometers because different magnifications were used for the different-size spheres.
b 100% dye intensity spheres with three ND filters.
c 100% dye intensity spheres with four ND filters.

A. 3.1 gm

I
.I I I

B. 0.94gm

; K

I

I~~~~~~

i 2 3 4 5 6 7 8 9 10
Method

FIG. 8. Normalized error of area measurements for 3.1-,um (A)-,
0.94-p.m (B)-, and 0.51-p.m (C)-diameter spheres (n = 14). Methods
are numbered as described in the legend to Fig. 6. Note different
ordinate scales.

parameters which are difficult to measure. The quantum
reflection, refraction, and absorbance properties of each
optical interface in the system would need to be known for
both the excitation and the emitted light. This would include
the filters and dichroic mirrors in the excitation and emission
light paths in the microscope, objective lenses, glass cover
slip, the microsphere surface itself, and the filters and
dichroic mirrors in the color camera. As noted by Inoue (11),
the modulation transfer functions for many microscope
contrast methods have not yet been determined. Knowledge
of the quantum yield of fluorescence for the particular dye
used in the spheres would be necessary. Then the response
of the video tube and associated electronics would need to
be modeled. Finally, the response of the analog-to-digital
converter and contributions of electronic noise by the sys-
tem would have to be evaluated. An image model encom-
passing all these parameters would be outside the scope of
this study and does not appear to be necessary to explain our
results.
By making some simplifying assumptions, it is possible to

develop a model of a fluorescent microsphere image which
can account for the better performance of MIND2 over the
maximum gradient methods. The refractive index of the
latex microspheres is 1.600, and they are mounted in immer-
sion oil with a similar refractive index of 1.515. We may,
therefore, assume the sphere itself to be essentially trans-
parent. The sphere contains fluorescing dye molecules which
we may assume to be evenly distributed. Considering the
small size of these spheres, we may also assume that the
excitation light penetrates the sphere to excite all the dye
molecules. Since the emission intensity is proportional to the
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FIG. 9. Normalized errors in area of five different cell cultures
for three of the automated methods and visual thresholding. Fifty
cells of each of the following cultures were measured: Synechococ-
cus sp. (0), C. salina (0), a heterotrophic flagellate (x), and two
heterotrophic ciliates (O, U).

80

60

40

20

0

-20

-40
150
125

. 100
0
t 75
w
V 50
N
c 25
E
E 0
z

-25

-50
-75
500

400

300

200

100

0

-100

APPL. ENVIRON. MICROBIOL.



AUTOMATED CELL SIZING 2771

TABLE 3. Significance (P) values for unpaired t tests of sphere areas for the different types of spheres
and different methods used in this studya

Sphere type or _______________________________
% dye intensity No. of ND filters

VIS MINSH MIND2 AVGASH MAXSH*D1

Intensity
1 3 0.06 b 0.01 0.99
2 3 0.16 -
5 3 0.01 0.02 -
10 3 0.39 0.18 - 0.12
20 3 0.07 0.28 - 9.07
100 3 0.68 0.84 0.08

1 4 0.62
2 4
5 4 - 0.82
10 4 0.70
20 4 - 0.90
100 4 0.18
All intensity spheres 0.50

Sphere type
0.51-p.m diam 0.77
0.94-,um diam 0.32 0.63
3.1-p.m diam

a Areas determined by the following methods were significantly different from the nominal sphere sizes for all sphere types: MAXD1, MINASH, MAXASH,
MINSH/D1, and MID.
b_ p < 0.01.

excitation intensity, the brightness profile would be approx-
imated by the equation of a circle.
The edge of an ideal sphere would be defined as the point

on the profile with infinite slope, or where the profile
approached vertical. This type of perfect edge will never be
seen in an optical image processing system owing to the
limits of optical resolution, discrete sampling, and the point
spread function of the image acquisition (video) system.
Instead, the system point spread function would be con-
volved with the profile, yielding a smoothly inflected curve
down to the background intensity level. The maximum
gradient would, therefore, be shifted toward the sphere
center, yielding an underestimation of sphere size, such as
we observed (Fig. 6 and 7). The accuracy of the first versus
the second derivative would be determined by the specific
point spread function of the image acquisition system. Non-
linearity in the imaging system may be another factor,
particularly at low light levels. The combination of the point
spread function and the nonlinear response has a different
effect on each of the thresholding algorithms. Figure 10
shows the expected results for hypothetical spheres of three
intensities for the first- and second-derivative methods. The

a)

=)

L.
LO

first-derivative methods will consistently underestimate
sphere size, regardless of sphere brightness. In contrast, the
second-derivative method will overestimate the size of
bright spheres (Fig. 1OA) but will underestimate the size of
dimmer spheres (Fig. 10C). At some intermediate intensity
(Fig. lOB), the second derivative will yield the exact edge
position.
We modeled this sphere image using a sphere profile

convolved with a Gaussian point spread function. The model
inputs are sphere diameter, sphere intensity, and the point
spread function (the standard deviation of the Gaussian
distribution). The model outputs include the estimated
sphere radii from the maxima in the first and second deriv-
atives. From these, the errors in area were calculated to
compare with our results. Trials with this model indicated
that a Gaussian distribution with a standard deviation of 1
pixel yielded results most like our own. When the intensity
values were varied to cover the range of the camera re-
sponse, the model behaved very similarly to our results (Fig.
7). The MAXD1 method consistently underestimated sphere
size, while MIND2 underestimated the size of low-intensity
spheres and overestimated the size of high-intensity spheres.

Dark current
or background

level

--- edge position--
Distance trom center

FIG. 10. Model of sphere profiles with high (A), intermediate (B), and low (C) ratios of brightness to background level. The actual sphere
edge position is shown along with the positions of (1) the maximum first derivative and (2) the minimum second derivative.
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Even with some of the assumptions about the sphere
optical properties discussed above relaxed, the sphere edge
would still approach vertical and the relative performances
of first- and second-derivative methods would be similar to
those shown in Fig. 10. This is a different situation from
finding edges in an aerial photograph or a microscope image
by using transmitted illumination, in which maximum gradi-
ent methods generally perform well (20).
Knowing the optical properties of an image acquisition

and analysis system, one could correct (to some degree) for
nonlinearity and apply a deconvolution filter to each image
to attempt to restore it (1). Even when the response and
point spread functions are known, this is a very computa-
tionally intensive procedure and would not be practical for
rapidly processing many images with a relatively small
computer system such as ours.

Implementation of automatic thresholding. The MIND2
method took between 30 and 120 s per subimage on our
computer system. Because of this, our procedure was to
acquire images during the day and process them overnight.
Smoothing the histograms and profiles took the most com-
putation time. Faster processors, now inexpensive and
widely available, would improve this processing time con-
siderably. For routine use, the second-derivative method
can be used to set a threshold for a particular type of cell
being measured, for a specific sample, or for each image.
Several example cells may be chosen and profiles produced
(equation 2). While our profiles were calculated from the
equation of a circle, a more appropriate shape could be used,
such as an ellipse. The profile would then be smoothed
(equation 5), the first derivative calculated (equation 3) and
smoothed again, and the threshold calculated by finding the
minimum of the second derivative (equation 4). This se-
quence is relatively easily implemented on a small computer
and requires operator intervention only at the point of
choosing representative cells. An even more automated
method would be to convolve the image with a second-
derivative-finding filter (such as a LaPlacian filter) and
mapping the result back to the gray level of the image to give
the threshold for that image. This method would work best
for images containing cells which were similar in intensity
and edge characteristics.
For the purpose of obtaining accurate size estimates of

fluorescing cells without the subjectivity of visual threshold-
ing, the algorithm based on the second derivative offers the
best performance. We believe this application of the second
derivative for edge finding is the first such application. Our
simple image model provides a framework within which to
judge the performance of various sizing methods for fluo-
rescing cells.
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