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Surgical bypass via autologous vein remains an evidence-based treatment of choice for selected
patients with infra-inguinal lower extremity or coronary occlusive disease. However,
contemporary data shows that almost 40% of lower extremity vein bypass grafts develop
occlusive lesions or fail within a year(1), and almost half of cardiac bypass patients will lose
(> or = 75% stenosis) a vein graft within a year(2). Since many technical avenues for improved
patency have been exhausted, the future of enhancing the durability of these reconstructions
lies in a better knowledge of and interventions based on the biology of the vein graft wall.

This article will briefly review vein graft failure research to date, and then focus on the pro-
inflammatory cytokine TNF-α and the early vein graft. Finally, the current status of the field
will be outlined in the context of cytokine based research, and challenges and opportunities for
the future discussed. Certainly a multitude of biochemicals (growth factors, cell cycle
regulators, etc.) have been linked to mechanisms of vein graft failure, and the following is in
no means comprehensive.

Evolution of Current Vein Graft Concepts
Vein grafts undergo a defined sequence of anatomic adaptations after placement, though not
all favor long-term patency. The principal cause of failure is traditionally cited as development
of neointimal hyperplasia which leads to an obliterative stenosis(3-7). Early work in the vein
graft research field focused on mechanical factors(3-5;8). Like arteries, vein graft wall structure
adapts to the hemodynamic environment(9;10), though there may be some subtle wall
differences(5). Intimal hyperplasia has been noted to occur at vein graft areas of low flow(3),
probably areas of low wall shear stress(4;8). Conversely, high flow appears to have protective
effects(6;11), in association with decreased wall inflammation(12). The early 1990's also
brought a recognition of the importance of circumferential wall tension on the adapting vein
graft (5;13).

The 1990's saw increased recognition in vascular biology of the interplay between the
inflammatory and cardiovascular systems. The arterial wall response to injury was associated
with early inflammatory events including monocyte and T cell adhesion to vascular endothelial
cells(14-16). Platelet activation and mural thrombus formation were also implicated in this
cascade, as well as cytokine and growth factor elaboration, all leading to subsequent vascular
remodeling(17) through cellular migration, proliferation, and matrix deposition(14-16;18;19).
In the mid- 1990's, these paradigms began to transfer to the vein graft arena(20). Works
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specifically examined the role of inflammatory mediators in vein graft failure(10;21-24). For
instance, the macrophage was identified as a pivotal cellular mediator of vein graft neointimal
hyperplasia, with macrophage depletion suppressesing this process(22).

However, despite incremental progress over these decades, specific cause/effect links between
hemodynamic factors → inflammatory biochemical mediators → cellular effectors → vein
wall adaptations remain lacking. Thus, not surprisingly, few therapeutic agents to improve vein
graft durability have been identified. Anti-platelet and anticoagulant approaches show only a
modest benefit under specific circumstances (25;26). Recent trials testing edifoligide (an
oligonucleotide decoy that binds to and inhibits E2F transcription factors) failed to yield
substantial clinical benefit(1;2).

Pro-inflammatory Cytokines and Vein Graft Failure
Pro-inflammatory cytokines (e.g. TNF-α and IL-1β) were implicated in vein graft intimal
hyperplasia almost a decade ago(10;23), though the initiating factors for their expression and
the biologic implications of these inflammatory mediators in vein wall adaptations remained
largely unknown. Expanding knowledge in cytokine-driven inflammatory pathways in other
organ systems has led to effective methods for treating pathologies such as rheumatoid arthritis
and inflammatory bowel disease(27-35), and several anti-inflammatory cytokine based
pharmacologic compounds have emerged(36-38). While anti-inflammatory cytokine therapies
have received recent attention as a means to abrogate primary arterial occlusive disease (39),
cytokine manipulation strategies remain relatively unexplored with regards to vein graft failure.

TNF-α is a pleiotropic pro-inflammatory cytokine(40;41). Its expression is controlled at the
level of both gene transcription and translation, and it can be synthesized by several cell lines
relevant to vascular biology, including macrophages, T-cells, endothelial cells, fibroblasts, and
smooth muscle cells(42;43). This potent pro-inflammatory cytokine is initially synthesized and
processed to a transmembrane form(44). TNF-α-converting enzyme (TACE), a member of the
matrix metalloproteinase superfamily, releases TNF-α from the cell surface(45;46), and as a
homotrimer, the soluble TNF-α elicits responses in distal target cells(43). Since its description
over three decades ago, several related ligands have been described and are grouped in a TNF
superfamily of genes(47).

The tissue response to TNF-α is mediated through two distinct receptors, p55 (type 1 TNF
receptor) and p75 (type 2 TNF receptor)(40;48). These receptors belong to a large TNF receptor
superfamily which also includes NGFR, CD95, and Apo2(47;49;50). Most cell types co-
express both TNF receptors, though expression of the two receptors appears to be differentially
regulated and show tissue-specific prevalence. More importantly, the two receptors differ
markedly in their intracellular structure and signaling pathways(40;43). The majority of the
pro-inflammatory responses classically attributed to TNF-α appear to be mediated by p55
signaling. Studies have shown that administration of TNF-α muteins with specificity for the
p55 receptor are pro-inflammatory and shock inducing, whereas p75 muteins lack any pro-
inflammatory properties(51;52).

The theory for a pivotal role for TNF-α in vein graft neointima formation and the related
pathologic process of atherogenesis is founded on in vitro cell culture studies, pathologic
observations, and a limited number of in vivo studies. In cell culture, TNF-α augments
expression of intercellular adhesion molecules in human vascular endothelial cells(53) and
vascular smooth muscle cells(54), thus increasing the possibility of interactions between
mononuclear cells, endothelial cells, and smooth muscle cells in neointimal lesions and
atherosclerotic plaques. Additionally, TNF-α induces prostanoid synthesis, corticosteroids,
and other cytokines(41), and stimulates smooth muscle cell migration(55) and proliferation
after vascular injury(42). Via receptors, TNF-α signaling activates caspases leading to
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apoptosis, MAP kinases and NF-kappaB(40)—intracellular mediators linked to numerous
fundamental vascular processes.

Few studies have extended these in vitro cell culture and pathologic studies into the more
complex in vivo vascular setting. Pathologically, TNF-α co-localizes to areas of occlusive
lesions in human arteries(56) and arterialized vein grafts(23). In a rabbit heterotopic cardiac
transplantation model, in vivo blockade of TNF-α by way of TNF soluble receptor suppressed
the acute development of neointima formation by selectively reducing the vascular
inflammatory reaction and accumulation of fibronectin(57). Nonetheless, the mechanisms of
transplant atherosclerosis may be quite different from those of vein graft neointimal
hyperplasia. Another set of in vivo experiments demonstrated that exogenous TNF-α causes
coronary arteriosclerosis-like cellular changes in a porcine model(58).

Recent Research
For the last decade, our group has probed the role of cytokines in vascular biology. Initially,
we were interested in the role of TNF-α in low shear stress induced arterial intimal hyperplasia.
Using murine models and molecular approaches, we documented induction of TNF-α by acute
lowering of arterial wall shear stress(59). We have also probed the role of cytokine signaling
in the arterial wall response to high shear stress. It had been shown that TNF-α co-localizes to
areas of active positive remodeling in response to increased wall shear stress(60). Working
with collaborators, we completed experiments utilizing a novel murine model of arteriogenesis,
a clinically relevant form of outward arterial remodeling in response to increased wall shear
stress. The results showed that TNF-α positively modulates arteriogenesis, probably signaling
via the p55 receptor(61). Recent experiments demonstrate that this process is blocked with the
administration of TNF-α inhibitors(62).

Based on the above findings linking vascular wall adaptations to changes in hemodynamic
environment via pro- and anti-inflammatory cytokine signaling, we hypothesized similar
mechanisms in the vein graft. The vein graft is essentially an extreme example of acute
hemodynamic change, coupled with a local injury response, leading to morphologic
adaptations within the vascular wall. We developed and validated a bilateral jugular vein into
carotid artery vein graft model with clinically relevant differential hemodynamic environments
(6;63-65). In this model, unilateral reduction in carotid artery (and thus vein graft) flow is
accomplished via placement of 8-0 silk suture ligatures to completely occlude the internal
carotid and three of the four primary branches of the external carotid artery. Distal branch
ligation results in an immediate 90% flow reduction (p<0.001) in the vein graft on the ligated
side and 36% flow augmentation (p=0.01) in the contralateral vein graft. The vein grafts
develop physiologically relevant levels of wall shear, and neointimal hyperplasia volume that
is inversely proportional to wall shear.

To initiate studies into molecular mediators of these vein graft adaptations, quantitative real-
time two-step polymerase chain reaction (RT-PCR) was performed for TNF -α, IL-1β and
IL-10 on the paired high and low wall shear vein grafts in this rabbit model longitudinally. The
results revealed several shear and time dependent cytokine expression signatures (Figure 1)
(66;67). TNF-α induction was maximal at day one and gradually decreased over time, but was
persistently elevated even four-weeks later (p<0.001). Low shear (associated with increased
neointimal hyperplasia) resulted in significantly higher TNF-α mRNA expression (p=0.03).
TNF-α was induced 198 and 110 fold in low and high shear vein grafts respectively by the first
post-arterialization day. This elevation gradually decreased over time but was persistently
elevated from baseline even four weeks later (p<0.001). Over the course of the study, low shear
resulted in significantly higher TNF -α mRNA (p<0.003) vein graft wall expression.
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While the general expression pattern of IL-1β expression mirrored that of TNF -α, several
notable differences exist. IL-1β was induced a striking 1188- and 366- fold in low and high
shear vein grafts respectively at day 1, but the return toward baseline was more rapid. Flow
impacted IL-1β expression overall (p<0.001), though the differential was greatest at the 1
(p=0.002) and 3 (p<0.0001) day time points. Consistent with the theory that pro-inflammatory
cytokine mechanisms drive downstream vein graft adaptations, these early quantitative TNF-
α and IL-1β mRNA level changes were temporally distinct from the time course of later
morphologic and cellular changes in the vein graft wall. High pro-inflammatory cytokine levels
(as in the low flow setting) correlated positively with greater intimal hyperplasia. Via
immunohistochemistry, TNF-α and IL-1β protein localize to the vein intima in the first three
days after graft placement.

Finally, vein graft arterialization more slowly and modestly induced IL-10 mRNA expression.
Overall this occurred independent of shear (p=0.152), though there was a statistically
significant higher expression for high shear grafts at the 14-day time point (p<0.001). IL-10 is
an immunosuppressive and anti-inflammatory cytokine produced by T-cells, B-cells, natural
killer cells, and monocyte/macrophage cell lines(12;68). It has been shown to suppress the
production of numerous inflammatory cytokines, including TNF-α(41). Conversely, TNF-α is
a principal inducer of IL-10 biosynthesis(69). This acts in a negative feedback loop to suppress
TNF-α production and processing.

IL-10 is believed to exert its anti-inflammatory effects on the vascular system through
inhibition of leukocyte-endothelial cell interactions and inhibition of pro-inflammatory
cytokine and chemokine production(12;68). In support of the hypothesis that the anti-
inflammatory cytokine IL-10 downregulates vein graft neointimal hyperplasia, researchers
have demonstrated an effect of IL-10 on vascular smooth muscle cell proliferation. Physiologic
doses of IL-10 inhibited TNF-α and bFGF-stimulated DNA synthesis and cell proliferation
(70), suggesting that endogenous IL-10 not only suppresses pro-inflammatory cytokine
expression, but also may antagonize pathologic vascular remodeling induced by cytokines such
as TNF-α(70).

These results(66;67) in the context of the medical literature (10;23;71-75) led our group to
formulate the general hypothesis outlined in Figure 2. As an initial step to test this hypothesis,
we utilized a pharmacologic approach to abrogate TNF-α signaling in the early vein graft of
our validated rabbit model(66). Animals received pegylated soluble TNF-α Type I receptor
(PEG sTNF-RI; Amgen) or vehicle via either short or long-term dosing. PEG sTNF-RI is a 20
kd molecule containing a homodimer of human p55 covalently linked to a polyethylene
glycerol backbone(76). Molecular modification of these pegylated receptors through deletion
of 1.4 intracellular domains reduces immunogenicity while having no impact on ligand binding
(77). Due to a conserved sequence homology, the compound has been demonstrated to abrogate
the adaptive immune response across a range of species, including rabbits(76;78). After 14-28
days, grafts were analyzed. PEG-sTNF-R1 was found in high concentrations in the serum, and
localized to neointimal hyperplasia microscopically. Both high and low flow vein grafts from
treated animals demonstrated similar volumes of neointimal hyperplasia compared to controls.
PEG-sTNF-R1 had minimal impact on vascular wall cell turnover, as reflected by TUNEL and
anti-Ki-67 assays(66).

Thus, while placement of a vein into the arterial circulation acutely upregulates TNF-α(23;
66;75) (whose expression level correlates with the degree of subsequent neointimal
hyperplasia), pharmacologic interruption of this signaling pathway has no significant impact
on neointimal hyperplasia or smooth muscle cell proliferation/apoptosis(66). These data
suggest that early vein graft adaptations can proceed via TNF-α independent mechanisms.
Recent work by other investigators, however, supports a differing conclusion. Using p55
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receptor knockout animals, functional TNF-α inhibition has been shown to attenuate vein graft
neointimal hyperplasia(71). Further investigation is required to elucidate these apparently
contrasting observations.

Interesting comparisons can be drawn with observed challenges in application of anti-
inflammatory approaches in other pathologies. Early anti-TNF-α clinical trials in acute
inflammatory processes, such as sepsis, have had disappointing results(79-82) and may be
attributed to an over-simplistic view of these disease processes and TNF-α mediated
cytotoxicity(41). A similar situation arose in the setting of anti-TNF-α trials for heart failure
(83). These experiences may have lessons for work with the vein graft. We have recently
completed microarray analyses of vein graft wall in both mice and rabbits (both high and low
flow)(84). The results reveal a large number of gene perturbations across multiple families of
mediators. These results show that the overwhelming determinant of the wall's transcriptome
is the temporal relationship to the operative graft placement—that is, the trauma of the
operation itself, rather than the details (neointimal volume, etc.) of the wall adaption. Thus, it
may be naive to believe that abrogation of a single mediator would have substantial lasting
impact on the final morphology of the wall. Perhaps strategies that block central signaling
molecules that control numerous genes for various cytokines and adhesion molecules will be
effective (e.g. NF-kappaB)(85), though targets such as TNF-α seem to meet this criteria.

Future Considerations and Directions
To date several lessons have become apparent, and some considerations for future progress are
summarized:

• Single- vs Multi-agent Strategies Narrowly focused molecular targets hold the appeal
of limited unwanted side effects. However, in view of the large number of mediators
implicated in the vein graft wall adaptation, pertubation of several pathways may be
necessary to consistently achieve substantial and durable effect. For example,
multimodality approaches stand as a mainstay of anti-neoplastic therapies. The
multitude of processes involved in vein graft failure support use of such strategies,
yet the rationale and safety of each component must be confirmed, and substantial
investigative work will be required to define the composition of this “synergistic”
cocktail.

• Understanding the Interplay of Systems (e.g. Inflammatory, Thrombotic), including
Genetic Factors Large amounts of information (e.g. biologic and genetic) can now
be rapidly acquired and analyzed via high throughput experimental and statistical
techniques. Vascular biologist must embrace contemporary information management
and modeling approaches to understand the interplay of these factors in vein graft
failure.

• Broadening Focus to the Entire Conduit Wall Vein graft researchers must broaden
their observations to the behavior of the entire conduit wall, not just the neointima.
Adventitial events leading to fibrosis probably contribute substantially to vein graft
failure(86).

• Consideration of the Injured Host Patient Simple harvest dramatically changes the
vein wall cellular phenotype(87). Furthermore, surgical trauma globally impacts the
phenotype of pivotal cells such as the leukocyte(88;89), and these effects may all
biologically modulate local processes such as vein graft wall adaptations.

• Delivery Strategies—local vs systemic While vein grafts offer the unique situation of
ability to treat the conduit wall(1;85;90), more systemic approaches may be needed
in view of the extra-wall mediators (e.g. circulating cells) that participate in occlusive
adaptations(91).
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• Optimization of Trial Design to Insure Gain of New Knowledge Regardless of
Outcome Animal models of vein graft disease hold substantial biologic relevance
limitations, and clinical trials are expensive. While certainly breaking new ground,
as designed, the PREVENT Trials(1;2) failed to generate substantial new biologic
insights despite substantial work and fiscal investments. Thoughtful addition of
mechanistic endpoints when feasible will insure some progress independent of human
trial outcome.

• Translation into other Arterial Occlusive Adaptations (Primary Atherosclerosis,
Angioplasty Restenosis, etc) Emerging endovascular approaches bring into question
the relevance of vein graft research. However, contemporary evidence based
guidelines confirm that a substantial portion of our aging population will require vein
conduits for arterial revascularization. Additionally, basic biologic mechanisms
delineated in the vein graft field hold a strong likelihood of relevance for other
vascular responses to injury.

Summary
Understanding the cytokine mediated molecular mechanisms of vein graft arterialization may
suggest clinical interventions that will alter the conduit's natural history. The field appears
especially ripe for transfer of knowledge and therapeutic approaches that have evolved in the
arterial system, and inflammatory mediated processes such as inflammatory bowel disease and
arthritis. However, more robust research approaches such as broadening of the scope beyond
focus on single mediators and neointimal hyperplasia will be necessary to reach translatable
strategies to prolong human vein graft durability.
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Figure 1.
Time course of cytokine mRNA expression in a rabbit bilateral vein graft model with
differential shear. Data is combined from two prior J Vasc Surg reports(66;67).
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Figure 2.
Hypothetical mechanisms by which pro- and anti-inflammatory cytokines may interplay with
wall shear to modulate vein graft wall adaptations.
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