Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1977 Jul;88(1):81–94.

Influence of the ionophore A23187 on the plastic behavior of normal erythrocytes.

J F Kuettner, K L Dreher, G H Rao, J W Eaton, P L Blackshear Jr, J G White
PMCID: PMC2032159  PMID: 327824

Abstract

Previous studies have demonstrated that A23187, an ionophore which selectively transports divalent cations across cell membranes, has profound effects on human erythrocytes: it causes red cells to take up calcium; lose potassium, water, and ATP; convert from biconcave discs to echinocytes and spheroechinocytes; and become more rigid. The present study has explored the influence of calcium uptake induced by the ionophore on the behavior of individual erythrocyte membranes by the micropipette aspiration technique. Exposure of erythrocytes to calcium and A23187 for intervals of up to 30 minutes resulted in marked changes in membrane viscoelastic properties, including the development of increased resistance to aspiration. The most striking manifestation of altered membrane mechanics was apparent after 10 minutes on incubation. Cells pulled into the pipette for a few seconds and the extruded back into the medium retained the deformity imposed by the pipette for several seconds to a few minutes before regaining the form they manifested prior to initial aspiration. The calcium-induced changes in erythrocyte behavior observed in this study strongly support the concept that extrinsic proteins located inside the membrane provide mechanical support to the cell wall, and that increased levels of calcium cause precipitation or cross-linking of the proteins responsible for the increased resistence to deformation and recoil observed after aspiration into micropipettes.

Full text

PDF
82

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark M. R., Greenquist A. C., Shohet S. B. Stabilization of the shape of sickled cells by calcium and A23187. Blood. 1976 Dec;48(6):899–909. [PubMed] [Google Scholar]
  2. Clawson C. C., White J. G. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am J Pathol. 1971 Nov;65(2):367–380. [PMC free article] [PubMed] [Google Scholar]
  3. Eaton J. W., Skelton T. D., Swofford H. S., Kolpin C. E., Jacob H. S. Elevated erythrocyte calcium in sickle cell disease. Nature. 1973 Nov 9;246(5428):105–106. doi: 10.1038/246105a0. [DOI] [PubMed] [Google Scholar]
  4. Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans E. A., La Celle P. L. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood. 1975 Jan;45(1):29–43. [PubMed] [Google Scholar]
  6. Jay A. W. Viscoelastic properties of the human red blood cell membrane. I. Deformation, volume loss, and rupture of red cells in micropipettes. Biophys J. 1973 Nov;13(11):1166–1182. doi: 10.1016/S0006-3495(73)86053-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kirkpatrick F. H., Hillman D. G., La Celle P. L. A23187 and red cells: changes in deformability, K+, Mg-2+, Ca-2+ and ATP. Experientia. 1975 Jun 15;31(6):653–654. doi: 10.1007/BF01944610. [DOI] [PubMed] [Google Scholar]
  8. La Celle P. L. Alteration of deformability of the erythrocyte membrane in stored blood. Transfusion. 1969 Sep-Oct;9(5):238–245. doi: 10.1111/j.1537-2995.1969.tb04930.x. [DOI] [PubMed] [Google Scholar]
  9. La Celle P. L., Kirkpatrick F. H., Udkow M. P., Arkin B. Membrane fragmentation and Ca ++ -membrane interaction: potential mechanisms of shape change in the senescent red cell. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):789–798. [PubMed] [Google Scholar]
  10. LaCelle P. L. Alteration of membrane deformability in hemolytic anemias. Semin Hematol. 1970 Oct;7(4):355–371. [PubMed] [Google Scholar]
  11. Leblond P. The discocyte-echinocyte transformation of the human red cell: deformability characteristics. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):815–824. [PubMed] [Google Scholar]
  12. Lux S. E., John K. M., Karnovsky M. J. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest. 1976 Oct;58(4):955–963. doi: 10.1172/JCI108549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Palek J., Curby W. A., Lionetti F. J. Size dependence of ghosts from stored erythrocytes on calcium and adenosine triphosphate. Blood. 1972 Aug;40(2):261–275. [PubMed] [Google Scholar]
  16. Pinder J. C., Bray D., Gratzer W. B. Actin polymerisation induced by spectrin. Nature. 1975 Dec 25;258(5537):765–766. doi: 10.1038/258765a0. [DOI] [PubMed] [Google Scholar]
  17. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RAND R. P. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. Biophys J. 1964 Jul;4:303–316. doi: 10.1016/s0006-3495(64)86784-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  20. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. White J. G. Effects of an ionophore, A23187, on the surface morphology of normal erythrocytes. Am J Pathol. 1974 Dec;77(3):507–518. [PMC free article] [PubMed] [Google Scholar]
  23. White J. G., Krumwiede M. Influence of cytochalasin B on the shape change induced in platelets by cold. Blood. 1973 Jun;41(6):823–832. [PubMed] [Google Scholar]
  24. White J. G. Scanning electron microscopy of erythrocyte deformation: the influence of a calcium ionophore, A23187. Semin Hematol. 1976 Apr;13(2):121–132. [PubMed] [Google Scholar]
  25. White J. G. Uptake of latex particles by blood platelets: phagocytosis or sequestration? Am J Pathol. 1972 Dec;69(3):439–458. [PMC free article] [PubMed] [Google Scholar]
  26. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES