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Growth arrest vs direct cytotoxicity and the importance of molecular
structure for the in vitro anti-tumour activity of ether lipids
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Summary A panel of 25 different lipid agents was evaluated for in vitro activity against HT29 human colon
carcinoma and HL60 promyelocytic leukaemia cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. The structure-activity relationships seen with this series, including those for four sets
of positional or stereoisomers, indicate that specific receptor proteins are unlikely as targets for anti-tumour
lipid (ATL) action. Additional data confirm the lack of involvement of the platelet-activating factor receptor
in particular and suggest that metabolic stability is a most important determinant of ATL activity. More
detailed studies, with 1-O-octadecyl-2-0-methyl-rac-glycero-3-phosphocholine (ET18-OCH3) and (±)-2-
{Hydroxy[tetrahydro-2-(octadecyloxy)methylfuran-2-yl]methoxylphosphinyloxy)-N,N,N,-trimethylethaniminium
hydroxide (SRI 62-834), suggest three different modes of activity, depending on drug concentration and
exposure time. Low doses of up to 5 jiM in standard serum-containing medium cause population growth arrest
after prolonged exposure. Growth arrest was associated with a leaky G2/M block as determined by flow
cytometry. These effects are reversible. Intermediate concentrations (5-40 M) were cytotoxic, causing a net
reduction in cell numbers after 2-3 days. At even higher concentrations, all lipids caused rapid, direct
membrane lysis. When the clonogenic assay was used to assess the effects of ATLs, most agents reduced
colony formation at concentrations above 5 jIM. However, some compounds proved stimulatory at nanomolar
concentrations, suggesting that they might possess mitogenic properties. These results, particularly those
concerning the concentration and time dependence, may be relevant to current clinical trials with ether lipids.
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Synthetic anti-tumour lipids (ATLs), including the novel
alkylphosphocholine derivatives, have emerged as effective
agents in model systems and are currently undergoing clinical
trials (Berdel et al., 1980; Berdel, 1991; Houlihan et al.,
1995). Current preclinical and clinical experience with these
agents has recently been comprehensively reviewed
(Lohmeyer and Bittman, 1994). They represent a new class of
structurally distinct non-DNA-interactive anti-tumour agents
whose main site of action appears to be at the plasma
membrane (Berdel and Munder, 1987; Diomede et al., 1990;
Grunicke, 1991). Combination chemotherapy studies have
indicated that the mechanisms of action of ATLs, DNA-
interactive agents and radiation are independent (Andreesen
et al., 1982; Noseda et al., 1988a; Hofmann et al., 1989;
Neumann et al., 1991). In addition to their direct effects on

tumour cells, some ATLs also activate the host immune
system (Talmadge et al., 1987; Hilgard et al., 1991; Pignol et
al., 1992; Houlihan et al., 1995).
The encouraging results obtained in various model systems

have highlighted the therapeutic potential of ATLs. Several
compounds, including ET18-OCH3, SRI 62-834, the thioether
lipid BM 41.440 and hexadecylphosphocholine (HePC) (see
Table I), are scheduled for, or currently undergoing, phase
I/II clinical evaluation (Lohmeyer and Bittman, 1994). Con-
siderable success has already been achieved with bone mar-

row purging (Berdel, 1991; Vogler, 1994). Topical application
of HePC in breast cancer has also produced encouraging
results (Dummer et al., 1992; Unger et al., 1992). Some
responses were seen following systemic administration, and
studies are ongoing, but the overall results so far obtained by
oral and intravenous dosage have been disappointing (Berdel,
1990; Lohmeyer and Bittman, 1994).
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Despite extensive laboratory and clinical studies, the major
molecular mechanism of action of ATLs remains unclear (see
Berdel, 1991; Lohmeyer and Bittman, 1994; Houlihan et al.,
1995). Several plasma membrane proteins have been sug-
gested as targets for ATLs, including the Na+/K+-ATPase
membrane pump, Ca2+ channels, protein kinase C (PKC),
phospholipase C (PLC) and PI-3-kinase (Shoji et al., 1988;
Berdel, 1991; tJberall et al., 1991; Powis et al., 1992; Berg-
gren et al., 1993). ATLs also interfere with cellular phos-
pholipid metabolism (Modolell et al., 1979; Berkovic et al.,
1992). In addition, they alter membrane fluidity, effect cell
shape changes and permeabilise cells by membrane pore
formation (Noseda et al., 1989a; Dive et al., 1991). However,
direct permeabilisation and lysis may not be the key
cytotoxic lesion at lower, pharmacological doses of ATLs
(Lohmeyer and Workman, 1992). Sensitivity to ATLs has
been correlated with the rate of endocytotic activity, plasma
membrane cholesterol content and endogenous alkyl lyso-
phospholipid concentration (Modolell et al., 1979; Mangold
and Weber, 1987; Bazill and Dexter, 1990; Diomede et al.,
1991, 1992). ATLs also interfere with the production of
infectious HIV-1 virus particles in vitro and inhibit the fusion
of intracytoplasmic vesicles with the plasma membrane
(Meyer et al., 1991; Kucera et al., 1990, 1993). However, a
clear concept of the molecular target of ATL activity has yet
to emerge from these interesting, but diverse findings. Indeed,
it is possible that there is no one single mode of action, but a
series of critical events which can act in concert to inhibit
tumour cell growth.
We have investigated structure-activity relationships for

the in vitro activity of 25 different phospholipids related to
platelet-activating factor (PAF). Proliferation assays with
differing end points were performed to distinguish between
the cytotoxic and/or cytostatic effects of ATLs. Cells were
studied using population growth curves, MTT dye reduction
and clonogenic assays. Flow cytometric cell cycle analysis
provided a further insight into the cytostatic and cytotoxic
mechanisms of action of ATLs. We also investigated the
dose-response relationships for direct plasma membrane
damage using a large selection of agents. Moreover, the
potential interaction of ATLs with specific cellular receptors
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was examined. Experiments were performed on two ATL-
sensitive cell lines: HT29 human colon carcinoma and HL60
human promyelocytic leukaemia. Selected agents were also
evaluated against the EMT6/VJ mouse mammary tumour.

Materials and methods

Cells

Human promyelocytic HL60 leukaemia cells were cultured in
antibiotic-free RPMI-1640 (Gibco Biocult, Paisley, UK) con-

taining 10% fetal calf serum (FCS) (Seralab, Crawley Down,
UK) and 1 mM glutamine. HT29 human colon carcinoma
cells and EMT6 mouse mammary carcinoma cells were
grown in Eagle's MEM (Gibco) with 10% FCS (Seralab),
glutamine and antibiotics (penicillin and streptomycin at
100 IU ml- and 1001g ml-' respectively). Cells were myco-
plasma free and maintained at 37°C in a humidified atmos-
phere of 95% air and 5% carbon dioxide.

Lipid agents and other reagents

The compounds used are illustrated in Table I. ET18-OCH3,
HePC and 3-[4-(chlorophenyl)-9-methyl-6H-thienol[3,2-J[1,2,4]
triazolo-[4,3-a][1,4]-diazepin-2-yl]-(4-morpholinyl)- -propan-
one (WEB 2086) were kind gifts from Professor Wolfgang E
Berdel (Universitiitsklinikum Steglitz, Berlin, Germany), Dr
Peter Hilgard (Asta Pharma, Bielefeld, Germany) and Drs
Hubert Heuer and Karl-Heinz Weber (Boehringer Ingelheim,
Ingelheim am Rhein, Germany) respectively. Dr Bill
Houlihan (Sandoz Research Institute, East Hanover, NJ,
USA) kindly provided us with SRI 62-834, its pure isomers
(SDZ 266-336 and 266-337) and five other analogues (SAH
62-537, 62-817, 62-990, 63-871 and 63-875). PAF18, lyso-PAF,
arachidonoyl-PAF, methylcarbamyl-PAF and ET16-OCH3
were purchased from Peninsula Laboratories (St Helens,
Merseyside, UK), while phosphatidic acids and the PAF16
stereoisomers were obtained from Sigma (Poole, UK). The
positional isomers BN 52205, BN 52207 and BN 52211 were

synthesised by Drs C Broquet and B Vandamme (Institut
Henri Beaufour, Les Ulis, France) and kindly made available
to us by Dr H Hendriks (EORTC New Drugs Development
Office, Amsterdam, The Netherlands). Agents were dissolved
in 95% ethanol (phosphatidic acids and arachidonoyl-PAF)
or Dulbecco's phosphate buffered saline (PBS) (all others)
and stored in glass vials at - 20°C in the dark.
MTT was purchased from Sigma. 51Cr-labelled sodium

chromate was obtained from Amersham (Aylesbury, UK) at
10-35 mCi ml-'.

Cytotoxic potency

The antiproliferative potency of ATLs and related lipid
agents was assessed using the MTT dye reduction assay, as
described previously (Lohmeyer and Workman, 1992).

Membrane damage

The 5'Cr radiolabel release assay was performed as described
previously (Lohmeyer and Workman, 1993). For the trypan
blue dye exclusion assay, HT29 cells were seeded into
flat-bottomed 24-well plates and allowed to attach overnight.
For analysis, the medium was aspirated and replaced with
200 pl of a 9:1 mixture of medium and trypan blue
(2.5 mg ml' in PBS). An area with about 250 cells in the
field of view was photographed before, and at regular inter-
vals after, addition of the test lipids.

Clonogenic assay

Cells were seeded into 25 cm2 flasks and incubated for 2
days. Lipid agents were added on day 3 and after 24 h
exposure cells were trypsinised, diluted and seeded into
60 mm tissue culture plates (Nunclon). After 10 days of
incubation, the plates were washed twice with PBS, fixed in
100% methanol for 10min, dried and stained with 0.1%
crystal violet. Colonies were counted using a model 980
Artek Colony Counter. Results from four replicate plates
were expressed both as a percentage of vehicle control and as

the relative plating efficiency. The former expression is more
usual, but fails to account for variations in plating effic-
iency between experiments, which will distort the resulting
percentages. The latter was calculated by the formula
100 x (EXP - CTRL)/1000, where EXP is the colony num-
ber on treated plates, CTRL is the colony number on control
plates and 1000 represents the number of cells plated per
dish.

Population growth curve analysis

HT29 or HL60 cells were seeded into 24-well plates (Nun-
clon). HT29 cells were left to attach to the plastic for 4 h
before addition of the test compounds. Two wells were try-
psinised and counted for each time point and concentration.
In reversibility experiments, drug-containing medium was
replaced by drug-free medium at the indicated time. HL60
cells were treated similarly, but trypsinisation was not
required and medium was replaced by centrifugation and
resuspension.

Table I Structures of lipid agents

Compound J'-substitution 2'-substitution 3'-substitution Stereochemistry

PAF16 OC16H33 OCOCH3 O-PC R and S
PAF18 OC18H37 OCOCH3 O-PC R H2C-O-C,*H37 H2C-C17H3S
Lyso-PAF,6 OC16H33 OH O-PC R
Lyso-PAF,8 OC18H37 OH O-PC R 0
Arachidonoyl-PAF OC16H33 OCOC9IH31 O-PC R H2C-O-PC H2C-o-PC
Methylcarbamyl-PAF OC16H33 OCONHCH3 O-PC R SRI 62-834 SAH 62-990
ET16-OCH3 OC16H33 OCH3 O-PC R .,-CH2-O-C,,H, CH2-O-C,6H33
ET18-OCH3 OC18H37 OCH3 O-PC rac
HePC C13H27 H O-PC NA >JIX
BN 52205 OCH3 NCH3C,8H37 O-PC rac "`CH2-O-PC CH2-o-PC
BN 52207 NCH3C,8H37 O-PC CH3 rac SAH 63-871 SAH 63-875
BN 52211 NCH3C,8H37 OCH3 O-PC rac a

0 H2C-O-C,68H3 CH2-O-C,6H33
Dilauroyl-PA OC0C1IH23 OCOCIIH23 OPO2-OH R oOK
Dimyristoyl-PA OCOC13H27 OCOC13H27 OPO2-OH R
Dipalmitoyl-PA OCOC15H3- OCOC5IH31 OP02-OH R C2H4-o-PC CH2-o-PC
Lyso-PA OCO-alkyl OH OP02-OH R SAH 62-537 SAH 62-817
The majority ofcompounds investigated in this study are based on a glycerol backbone with different substitutions at 1', 2' and 3' carbons. The six

structures differing significantly from this basic scheme are illustrated individually. Note that the R and S stereoisomers of SRI 62-834 are denoted
SDZ 266-337 and SDZ 266-336 respectively. SRI 62-834 is present as the racemate. PC, phosphocholine; PA, phosphatidic acid; rac, racemic; NA, not
applicable.
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Cell cycle studies

Flow cytometry was used to investigate the effect of ATLs on
the cell cycle of logarithmically growing cells. Cells were
grown and exposed to ATLs as described for the clonogenic
assay. Cells were trypsinised (where necessary), resuspended
in 150 pl of PBS and fixed by the dropwise addition of 600 1l
of ice-cold 70% ethanol with vortexing. For analysis, cells
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were washed twice with PBS, exposed to 0.1 mg ml-' RNAse
A (Sigma) for 15 min at 37°C and then diluted to
t I06 cells ml'. Propidium iodide (1 pg ml 1) was added
before analysis on a Beckton Dickinson FacsStar. Triplicate
samples of 10 000 events each were analysed using the flow
cytometer software.

Results
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Figure 1 MTT cytotoxicity dose-response profiles for R-PAF16
(-), lyso-PAF16 (X), HePC (0), ET18-OCH3 (0), SRI 62-834
(A) and MCP (A) in HT29 cells. The ICm concentrations (dot-
ted line) are those at which MTT dye absorbance was reduced to
50% of control values. Error bars have been omitted as standard
deviations of eight replicate wells were routinely below 15% of
the mean. The data illustrated are representative of at least four
independent experiments and very similar results have also been
obtained with HL60 cells (see Table II). Means and standard
errors for replicate experiments are given in the text.

Structure-cytotoxicity relationships by MTT assay

Figure 1 shows typical cytotoxicity data in HT29 human
colon carcinoma cells, using the MTT assay. Note that there
is only a comparatively narrow range over which these agents
develop their full effect. Average IC50 values for the complete
panel of agents, tested against HT29 and HL60 cells, are
given in Table II. Despite differences in cell type (carcinoma
vs leukaemia) and growth characteristics (adherent
monolayer vs detached single-cell suspension), both cell lines
were generally equally sensitive to any given agent. Selected
compounds were also evaluated in EMT6 mouse mammary
tumour cells. The IC50 values for ET18-OCH3 and SRI 62-
834 in EMT6 cells were 95 ± 10 and 100 ± 20 j4M respec-
tively. PAF18 and lyso-PAF18 failed to reach the IC5o at
concentrations up to 150 jAM. Thus EMT6 cells were at least
3-fold more resistant to PAF and lyso-PAF and about 30-
fold more sensitive to the ATLs.

Table I illustrates the chemical structures for all lipid
agents tested. Comparison of individual drug potency against
HT29 cells revealed that ATLs, as exemplified by ET18-
OCH3 and SRI 62-834, all had IC5o values around 2-5pM.
In contrast, the naturally occurring parent compounds of the
PAF and lyso-PAF family were much less potent with IC50
values in the 40-5011M range. Interestingly, the synthetic S
isomer of PAF16 was as potent as some of the ATLs. SAH
63-817 was the only compound which proved more toxic in
one particular cell line (HT60) than the other (HT29).
Intermediate potencies were seen with SAH 62-537 and the

Table II Cytotoxicity of lipid agents against HT29 and HL60 cells in the presence and absence of
WEB 2086

HT29 HL60
HT29 HL60 +49 gM WEB 2086 +49 j4M WEB 2086

PAF,8 45.6 ± 2.4 43.8 ± 8.5 43.2 ± 4.8 50.3 ± 4.8
PAF16 (R) 53.6 1.9 ND 57.5 4.5 ND
PAF16 (5) 8.5/4.0 ND ND ND
Lyso-PAF18 41.4 1.7 40.0 ± 4.0 45.5 + 2.2 34.6 ± 8.2
Lyso-PAF16 54.8 ± 3.5 ND 56.6 ± 6.9 ND
Arachidonoyl-PAF 44.3 ±4.3 ND 39.2 5.7 ND

HePC 15.5 ± 1.4 18.1 ± 1.9 17.7 + 0.3 16.4 ± 3.4
Methylcarbamyl-PAF 3.0 + 0.2 3.3 + 0.1 3.2 ± 0.2 2.8 ± 0.5
ET18-OCH3 2.5 + 0.3 2.6 ± 0.1 2.5 ± 0.3 2.2 ± 0.3
ET16-OCH3 3.6 1.1 ND 4.1 ± 1.2 ND
SRI 62-834 3.3 0.4 2.7 0.1 3.1 ± 0.2 2.5 ± 0.6
SDZ 266-336 (S) 2.5 i 0.2 3.0 ± 0.3 3.0 ± 0.4 ND
SDZ 266-337 (R) 2.1 ± 0.2 2.6 ± 0.2 2.6 ± 0.4 ND

SAH 62-817 35.2 ± 4.9 21.3 + 2.9 43.3 ± 4.8 ND
SAH 62-537 7.5 + 1.1 9.1 ± 1.1 7.5 ± 0.4 ND
SAH 62-990 3.1 ± 0.3 4.9 ± 0.9 4.0 ± 0.2 ND
SAH 63-871 2.2 ± 0.3 2.2 ± 0.2 2.7 ± 0.5 ND
SAH 63-875 2.8 ± 0.5 2.9/4.2 3.6 ± 0.9 ND

BN 52205 2.1 ± 0.2 3.0 ± 0.2 ND ND
BN 52207 1.4 0.3 2.2 ± 0.1 ND ND
BN 52211 2.3 ± 0.6 3.7 ± 0.3 ND ND

Dimyristoyl-PA > 500 ND ND ND
Dipalmitoyl-PA > 500 ND ND ND
Dilauroyl-PA > 200 ND ND ND
Lyso-PA > 100 ND > 100 ND
ICo values CuM) are the mean ± standard error of three or more experiments. Where only two

experiments were performed, both repeats are given. Suffixes R and S denote isomerically different
compounds. ND, not determined; PA, phosphatidic acid.

4 4
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alkylphosphocholine HePC. The four different phosphatidic
acids all proved comparatively inactive with IC_0 values in
excess of 100 M.

Also evident from Table II is that none of the complemen-
tary ATL stereoisomers (i.e. SAH 63-871 and SAH 63-875 or
SDZ 266-336 and SDZ 266-337) showed any marked
differences in cytotoxic potency. Differences between the
positional isomers (i.e. BN 52205, BN 52207 and BN 52211)
were also not statistically significant (1-test). Thus molecular
stereochemistry clearly does not correlate with anti-tumour
activity.
Compounds with differing alkyl chain length (i.e. C16 vs

C18) were available for PAF, lyso-PAF and ET18-OCH3. The
C18 compounds, particularly of PAF and lyso-PAF, were
more cytotoxic than their C16 counterparts (see Table II).
However, the differential was not statistically significant for
the more potent anti-tumour agents ET18-OCH3 and ET16-
OCH3.

Lack of toxicity modulation by WEB 2086

The PAF receptor antagonist WEB 2086 was non-toxic at
concentrations exceeding 250JM. At 49 JM, WEB 2086 had
no effect on the cytotoxicities of any of the lipid agents tested
in HT29 and HL60 cells (see Table II). These results argue
against the involvement of a WEB-sensitive PAF receptor in
the cytotoxicity of PAF or its ATL analogues.

Population growth curve analysis

Figure 2 illustrates the effect of continuous SRI 62-834
exposure on HL60 cells. Cytostasis occurs at 3-5 JAM and
population growth arrest persists for > 7 days. Similar
results were seen in HT29 cells, in agreement with their
coordinate MTT data. Again, the dose-response curve is
extremely steep for both cell lines with population growth
hardly affected at 1 JAM, but with almost complete stasis
occurring at 2-3 JAM.

Figure 3 summarises the comparative effects of ET18-
OCH3, SRI 62-834, HePC and PAF16 on HL60 cell numbers
after 7 days of continuous exposure. Both ET18-OCH3 and
SRI 62-834 are equally active with IC50 values between 1 and
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2 JAM. HePC was less active with an ICm of 10-15 JAM. PAF16
was least potent, effecting half-maximal growth arrest at
40-50 JAM. These IC5o values agree well with the MTT data
(Table II). Complete population growth arrest, i.e. no in-
crease in cell number over the original seeding density, was
achieved using ET18-OCH3, SRI 62-834, HePC and PAF16 at
3.9, 4.5, 31.6 and A 125 JAM (extrapolated) respectively. Note
that these concentrations (IC1oo values) are only around 2-
fold higher than those causing half-maximal growth arrest
(Figure 3).

Interestingly, HL60 promyelocytic cells did not differen-
tiate in response to treatment with ATLs at these doses.
Cellular differentiation was not evident under the conditions
used, as judged by morphology, adhesion and flow cytomet-
ric analysis of cell shape and granularity.
We have previously shown that serum concentration affects

the lytic potency of ET18-OCH3 and SRI 62-834 (Lohmeyer
and Workman, 1993). Here, we show that serum concentra-
tion also affects the non-lytic antiproliferative activity of
ATLs. Reducing serum concentrations from 10% to 5.5%
and 1% results in markedly slower growth of untreated
HT29 cells. Control cell numbers after 7 days were reduced
to 55.0% and 9.5% respectively. After continuous exposure
to various ATLs, a steep antiproliferative dose-response
relationship was evident at all serum levels. The ICs values
in 10%, 5.5% and 1% FCS were 1.8, 0.8 and 0.3 JAM respec-
tively, confirming the potentiating effects of serum levels on
the non-lytic antiproliferative activity of ATLs.

Cell cycle effects of ether lipids
Population growth curves (e.g. Figure 2) show that cell
numbers increase at almost the normal rate for the first 24 h
after addition < 5 JAM ATL. Only after that period does a
significant slowing of cell proliferation (or an increase in cell
death) become apparent. This suggests that the majority of
cells are able to proceed through one cell division - or
complete the one they are currently in - before arresting. At
> 10 JAM ATL, however, an immediate reduction in cell
growth is apparent after 24 h (Figure 2).

Figure 4 shows DNA histograms of HT29 cells treated for
28 h with 2 and 5 JAM ET18-OCH3. Progressive reduction of
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8 10 Figure 3 Comparison of the population growth retarding effects
of ET18-OCH3 (-), SRI 62-834 (A), HePC (-) and PAF16 (0)
in HL60 cells. HL60 cell numbers after 7 days of continuous
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cells in Go and GI phases occurs with a concomitant increase
of cells arrested in the G2 or M-phase of the cell cycle
(Figure 4a-c). This shows that cells in the G2 or M-phase
were unable to proceed through mitosis to the next GI phase,
accumulating instead in the G2/M compartment. The propor-
tion of cells in S-phase was comparatively unchanged by
ET18-OCH3 treatment. A large amount of DNA-containing
debris was also seen routinely at 5 JAM doses (Figure 4c). The
amount of fluorescing debris increased from just over 2% in
control cells to almost 35% of all 'events' collected at 5 J.M
ET18-OCH3 (Figure 4c). Thus, ATLs at > 5 gM can induce
significant cellular fragmentation within 28 h. Interestingly,
the debris was non-random in size and scatter characteristics
(debris 'peaks' in Figure 4c). This may suggest a controlled
process of cell destruction.

Incubating cells for up to 46 h did not markedly effect
further shifts in the cell cycle distribution at any given dose
of ATL. The major difference observed was a significant
increase in the amount of cell debris at > 5 JAM ATL. Here,
up to 48.6% of 'events' constituted DNA-containing debris
and cell fragments. At 2 JAM ATL, the amount of debris
collected was low and similar to that after 28 h. Incubating
HT29 cells for 6 h with up to 5 jAM ETl8-OCH3 did not
change normal cell cycle distributions or induce debris for-
mation (not shown). Very similar cell cycle changes were also
evident in ATL-treated HL60 cells (Figure 5).

Reversibility ofA TL-induced growth arrest
The finding that ATLs can induce growth arrest and cellular
fragmentation within 28 h led us to investigate the rever-
sibility of ATL-induced damage. After 24 h exposure, HT29
and HL60 cells were hardly affected by < 3 gM ETI8-OCH3
and regrew as soon as the agent was removed. At 5 gAM, the
population took longer to recover its normal growth rate,
while recovery from 10 tM took between 70 and 90 h. The
effects of 48 h exposure are illustrated in Figure 6. HL60 cells
treated with 2 gM ETI8-OCH3 were able to recover their full
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growth potential within 24 h - as fast as their 24 h counter-
parts. However, 3 JiM ATL required a recovery time of about
30 h. Between 70 and 90 h were required for 51AM ET18-
OCH3. Progressive population reduction, indicating large-
scale cell death, was evident at 5-10I JM and corroborates
our earlier flow cytometry results. Thus reversibility was seen,
but recovery time was related to both drug concentration and
duration of exposure. Similar data were obtained in HT29
cells (not shown).
As mentioned previously, we did not observe any

differentiation of HL60 cells as a result of ATL treatment at
these moderate doses. Therefore, we are confident that the
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Figure 5 Changes in the cell cycle distribution of HL60 cells as a
result of ET18-OCH3 treatment. Cells were prepared and
analysed as detailed in Materials and methods. The proportion of
cells in the different cell cycle phases was calculated using the
sum of broadened rectangles model available with the flow
cytometer. Data points represent the mean percentages of three
replicate determinations and the resulting graph is representative
of three independent experiments. Error bars have been omitted
as the standard deviations of triplicate points were below 10% of
the mean. 0, GO/GI; 0, S; A, G2/M.

106.

Q 105..0
E
C

cJ

4-

g 104

1 O

Propidium iodide fluorescence
(DNA content)

Figure 4 DNA histograms showing the cell cycle arrest of HT29
cells in response to 2 and 5 JAM ETI8-OCH3. Cells were prepared
and analysed as detailed in Materials and methods. (b and c)
Effects of a 28 h exposure to 2 and 5 JAM ETI8-OCH3 compared
with control cells (a). These histograms are representative of three
independent experiments.
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Figure 6 Representative population growth curves for HL60
cells exposed to ETI8-OCH3 for 46h. Cells were seeded at 104
cells per well as described in Materials and methods and ET18-
OCH3 was added when indicated (filled arrow). After 46 h, the
drug-containing medium was removed and replaced with fresh,
drug-free medium (open arrow). Cell numbers from two replicate
wells, counted in triplicate, were averaged for each data point.
Error bars have been omitted for clarity. The data illustrated are
representative of two independent experiments. Similar data were
obtained for HT29 cells. *, control; 0, 2 JM ET18-OCH3; A,
3 JiM ETI8-OCH3; 0, 5 JAM ETI8-OCH3; *, 10 JAM ETI8-OCH3.
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observed 'regrowth' did not result from the proliferation of a
small non-differentiated population.

Effects on clonal growth

Figure 7 shows typical effects of ET18-OCH3, lyso-PAF and
methylcarbamyl-PAF (MCP) on HT29 cell cloning. Lyso-
PAF markedly increased relative plating efficiency by up to
21% (2.3-fold control) and over a wide range of concentra-
tions from 5 nM up to 5 JLM (Figure 7). ETl8-OCH3 also gave
significant stimulation (up to 2.5-fold control) of clonal
growth, while MCP and SRI 62-834 (not shown) gave only
comparatively moderate stimulation (1.2 to 1.5-fold control
values) at 0.1 JAM (Figure 7). Neither racemic PAF nor its
R or S isomers affected clonal growth up to 5 JAM (not
shown). At high lipid concentrations (generally >2pM), a
dose-dependent reduction in colony counts was noted. Col-
ony size did not appear to be affected as a result of lipid
exposure.

Membrane-damaging effects

Exposing HT29 cells to 23 JAM (; 10 x MTT IC50) ET1 8-
OCH3 or SRI 62-834 for up to 60 min had no effect on
trypan blue exclusion. In 10% FCS, > 98% of cells remained
'viable'. PAF18 and lyso-PAF18 had no immediately lytic
effect in HT29 cells up to their MTT IC50 dose. After 60 min
at 48 JAM, only 5.4% of cells scored trypan blue positive, had
lysed or become detached. At 91 JAM, however, 50.2% of cells
had lost membrane integrity within 7 min, increasing to
72.5% after 60 min. Higher concentrations caused immediate
lysis of >96% of cells within the first 7 min.

Direct membrane damage was further quantified by 5'Cr
release. The R50 values for HL60 and HT29 cell lines are

given in Table III. These data confirm that ATLs are not
membrane lytic on short-term exposure to concentrations
which cause growth inhibition with longer exposures. More-
over, the membrane-damaging potencies of the ATLs were
similar to PAF or lyso-PAF. In HT29, the last two com-
pounds both feature R50 values <110 JAM, while Rso values
for most ATLs are between 139 and 145 JAM. Only HePC is
significantly less lytic. In HL60 cells the Rm values for PAF
and lyso-PAF, as well as for ET18-OCH3 and SRI 62-834,
were between 105 and 120 JIM. MCP and HePC retained the
same degree of potency seen in HT29 cells.
Note that the trypsinisation process necessary with HT29

cells had no detrimental effect on the membrane integrity or
the amount of spontaneous 5'Cr release when applied to
HL60 cells (not shown).
The PAF receptor antagonist WEB 2086 caused no in-

creased 5'Cr release at concentrations up to 200 JAM and also
failed to exert a clear modulating effect on the membrane-
permeabilising potencies of ATLs (Table III). This shows
that the PAF receptor is not involved in the mechanism of
action leading to cell lysis.

Discussion

One of the main questions addressed in this study concerns

the importance of molecular structure for ATL anti-tumour
activity. The great majority of previous structure-activity
studies have examined racemic compounds only, ignoring the
potential importance of stereochemistry for activity (Berdel et
al., 1987; Fromm et al., 1987; Herrmann and Neumann,
1987). Here, we present data for three sets of matched stereo-
isomers, chosen to reflect different groups of compounds
(PAF, the anti-tumour lipid SRI 62-834 and novel com-

pounds SAH 63-871 and 63-875). Further, we examine the
importance of molecular configuration using a set of three
positional isomers. This work is also the first to system-
atically separate and recognise three different antiproliferative
activities of ATLs, using a combination of cytotoxicity, pro-

liferation and flow cytometric assays. Another novel aspect
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Figure 7 The effect of ET18-OCH3 (=II), lyso-PAF (E) and
MCP ( M ) on the plating efficiency of HT29 cells. Each column
represents colony counts from four replicate plates with standard
deviations indicated by error bars. No change in the morphology
or size of colonies was apparent. Numerical data for these and
other compounds tested are given in the text. The data presented
are representative of two (lyso-PAF) and three (ET18-OCH3/
MCP) independent experiments.

Table III Membrane damage of lipid agents against HL60 and HT29
cells in the presence and absence of WEB 2086

HT29
HL60 HT29 + 49 JAM WEB 2086

PAF18 120 3 121 14 114 14
Lyso-PAF18 115±24 110±11 140±10
Methylcarbamyl-PAF 145/117 145 + 14 ND
HePC >170 190 10 184 25
ET18-OCH3 115 10 139 9 128 23
SRI 62-834 108 3 139 7 130 24

WEB 2086 >200 >260

IC50 values (JuM) are the mean ± standard error of three or more
experiments. Where only two experiments were performed, both repeats
are given. ND, not determined.

of this work is our finding that some ATLs can promote
mitogenesis at nanomolar doses. Extending previous studies
by ourselves and others, we investigate the serum dependence
of the non-lytic anti-tumour activity of ATLs and the impor-
tance of interactions with cellular PAF receptors for cytotox-
icity and cell lysis (Andreesen et al., 1982; Fleer et al., 1992;
Lohmeyer and Workman, 1992).
The extensive structure-activity data reported here show

that the human HT29 colon carcinoma and the HL60 pro-
myelocytic leukaemia cell line were equally sensitive to any
given lipid in our panel. This similarity was seen despite the
different biological origins (colon epithelial vs haemato-
poietic) and modes of growth (attached monolayer vs single-
cell suspension). The murine EMT6 mammary carcinoma cell
line proved much more resistant to both ATLs and PAF
analogues than the human lines. With ATLs, the difference
was about 30-fold. With PAF and lyso-PAF, little or no
cytostatic effect was seen in EMT6 up to 150 JiM - a concent-
ration 3-fold higher than the IC50 in HT29 and HL60 cells.
Clearly, EMT6 cells either metabolise and detoxify ATLs
more rapidly or lack the specific target(s) responsible for
potency in the human lines. Decreased endocytotic activity
and/or increased cholesterol levels have also been advanced
as a determinant of ATL resistance (Bazill and Dexter, 1990;
Diomede et al., 1991; reviewed in Workman, 1991). The
effect is unlikely to involve species differences, since other
murine cell lines such as WEHI-3B myelomonocytic leu-
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kaemia and Meth A fibrosarcoma cells are sensitive to ATLs
(Houlihan et al., 1987; Bazill and Dexter, 1990).
To date, three basic key molecular features are recognised

for ATL activity: (1) an ether or thioether linked alkyl
moiety at the sn-1 position of the glycerol backbone; (2) a
small substituent at the sn-2 position; and (3) a phos-
phocholine head group at the 3-position of sn-glycerol (Fleer
et al., 1990; Munder and Westphal, 1990; Vogler et al.,
1993a). However, these apparent 'rules' are being rapidly
eroded as medicinal chemists prepare ever more exotic lipid
compounds which nevertheless retain anti-tumour activity
(Ishaq et al., 1989; Kasukabe et al., 1990; Marasco et al.,
1990; Houlihan et al., 1995).
The most important conclusion from our structure-

activity data is that molecular conformation at the sn-2

position of the glycerol backbone is not an important deter-
minant of activity. Both isomers of SRI 62-834 (i.e. SDZ
226-336 and SDZ 226-337), and SAH 63-871 and SAH 63-
875 were equally cytotoxic in spite of their very different
conformations. Similarly, the three positional isomers (BN
52205, 52207 and 52211) were found to possess very similar

ICm values. The large panel of agents tested also shows that

activity is not related to any particular structural feature at
the sn-2 position. Many very different substituents of greatly
varying size proved equally active. Thus, a particular
biophysical property of these lipids most likely holds the key
to their activity.

Interestingly, the S and R isomers of PAF16 did show a

significant difference in cytotoxic potency. The 'synthetic'
S-PAF was as potent as some of the ATLs, but features the
same functional groups as the less toxic R-PAF, just in a
different conformation. So why do R-PAF and its natural
analogues not possess potent activity, when molecular struc-
ture was so clearly not important for activity of the other
isomer pairs? The most likely explanation is the rapid
metabolism of natural lipids and the relative metabolic inert-
ness of ATLs. PAF, lyso-PAF and arachidonoyl-PAF are

rapidly metabolised by cellular acetylhydrolases (Shen et al.,
1987; Nakagawa and Waku, 1989). Although metabolised to
some extent (Bishop et al., 1992; Fleer et al., 1992), synthetic
lipids such as MCP, ET18-OCH3 and HePC are known to be
metabolically stable compounds with long half-lives (Arnold
et al., 1978; Hoffman et al., 1986; Breiser et al., 1987). At the
present time, we believe the most parsimonious hypothesis to
be that ATLs are more potent than natural lipids because of
their greater metabolic stability.
The precise molecular mode of action of ATLs remains to

be elucidated. The potential involvement of a PAF receptor
(Honda et al., 1991) was suggested by the close structural
similarity of some ATLs to PAF. ET18-OCH3 and MCP in
particular are known to antagonise PAF binding, MCP
exhibiting a potent agonist activity (Shen et al., 1987). The
triazolodiazepine derivative WEB 2086 potently antagonises
the various known PAF effects in vitro and in vivo (Casals-
Stenzel et al., 1987) and has been described as the 'reference
PAF antagonist' (Page and Abbott, 1989). Testing a larger
panel of agents, we have confirmed our earlier finding
(Lohmeyer and Workman, 1992) that WEB 2086 does not
affect the cytotoxicity of ATLs or related agents. This con-
clusion is borne out by other studies showing that the
presence of PAF-specific binding sites on neoplastic cells also
failed to correlate with their sensitivity to the PAF
antagonists (Danhauser-Riedl et al., 1991). Overall, it seems
clear that a WEB-sensitive PAF receptor is not involved in
the antiproliferative mechanism of ATLs.
Whether ATLs interact in a highly specific way with other

cellular proteins is still uncertain (Munder and Westphal,
1990; Berdel, 1991), but this hypothesis becomes increasingly
tenuous in the light of our structure-activity data. Given the

great structural diversity among active ATLs, it appears
unlikely that all of those compounds should be equally active

against one or more particular target proteins. Moreover,
one might question the significance of various reports of

'specific' interactions of ATLs with a plethora of important
cellular proteins such as PKC, phospholipases C and A2,
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PI-3-kinase, the Na+/K+-ATPase, Ca2+ channels and the
epidermal growth receptor (Oishi et al., 1988; Kosano and
Takatani, 1989; Powis et al., 1992; Berggren et al., 1993).

All of the proteins known to be affected by ATL exposure
are membrane bound or at least membrane associated. Many
membrane enzymes and receptors are exquisitely sensitive to
their surrounding lipid microenvironment (Epand et al.,
1991) and some, e.g. PKC, PLC, phospholipase A2 (PLA2)
and PI-3-kinase, require lipid co-factors and/or substrates for
optimal activity. All of these proteins are thus potentially
susceptible to modulation of their boundary lipids and the
general phospholipid environment. Postulating such a com-
paratively indirect interference as a potential mechanism of
action accommodates the multitude of membrane proteins
affected and may account for the effectiveness of structurally
diverse ATLs. However, other more direct mechanisms of
action may well be operating in addition to subtle membrane
perturbation.
PAF and the ATLs are known to be membrane-active

detergents owing to their amphiphilic nature (Noseda et al.,
1989b; Sawyer and Andersen, 1989; Kantar et al., 1991).
However, an important point to stress is that our
experiments show no correlation between the lytic potency of
these lipids and their cytostatic potency in long-term pro-
liferation assays. In spite of their very different cytostatic
potency, ATLs and PAF were equally lytic. Our results
confirm that ATLs do not exert rapid, gross membrane
damage until concentrations greatly exceed those required to
produce antiproliferative effects on prolonged exposure.
Thus, the much speculated upon detergent effect of ATLs
(Noseda et al., 1988b) is not the cytotoxic lesion at low
concentrations of these agents. However, the ICm values for
the less potent natural lipids are roughly at the point where
membrane damage does become significant (,<40pM). This
suggests that the cytotoxic effect seen with PAF and lyso-
PAF in the MTT assays may be due primarily to severe
membrane perturbation. These results show that the cyto-
static and cytotoxic events during long-term exposure are
different from short-term effects at higher doses. This is an
important distinction to be borne in mind. We have also
confirmed our earlier finding (Workman et al., 1991) that
WEB2086 fails to protect HL60 cells against direct mem-
brane damage by ATLs, using a larger panel of active lipid
agents.
Taken together, our various studies suggest that ATLs

inhibit cell growth of sensitive HT29 and HL60 cells in a
fashion which involves three distinct phases, depending on
ATL concentration. (1) At low doses of 1-5 pM in serum-
containing medium, ATLs effect a gradual cessation of
population growth (cytostasis). We show that this growth
arrest is predominantly centred on a G2/M block and a
general slowing of cell cycle progression. However, even after
46 h, a sizeable proportion of cells were still found in the GI
and S-phases, indicating that the block in G2 or M is 'leaky'.
Using extremely high concentrations of up to 200yLM over
short periods of time, Principe et al. (1992) have reported a
similar G2/M block and some arrest in GI. We have shown
that the block in G2/M is also observed when cells are treated
with lower cytostatic concentrations of ATLs.
The ATLs induced cytostasis in HL60 cells without con-

comitant cellular differentiation. This is unusual in HL60
cells, which will readily differentiate in response to a large
variety of agents including retinoic acid, dimethylsulphoxide
and other cytotoxic agents (Gallagher et al., 1979; Shoji et
al., 1988; Vallari et al., 1988). Some authors have reported
differentiation of HL60 cells in response to ATL exposure
(Honma et al., 1981, 1991; Vallari et al., 1988; Maurer and
Hilgard, 1992), but inhibition of differentiation has also been
described in the same model system (Shoji et al., 1988; Kuo
et al., 1990; Raynor et al., 1991).

(2) At intermediate concentrations between 5 and 40 gAM, a
net reduction of viable cell number is observed (cytotoxicity).
The precise mechanism of cell death is not yet known, but
our flow cytometry data show dramatically increased debris
formation which may be indicative of apoptotic cell death.
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Apoptosis has been observed in some leukaemic cell lines,
including HL60, in response to challenge with ATLs
(Diomede et al., 1993, 1994), but this response is not univer-
sal (Morimoto et al., 1991). (3) As concentrations exceed
40 JAM, the detergent properties of the ATLs begin to induce
direct lytic membrane damage. At these high concentrations,
the toxicity differential between ATLs and naturally occurr-
ing ether lipids is progressively eroded, with all types of lipid
killing cells by rapid membrane lysis.
Our results show that the recovery of cell population

growth after ATL treatment is both dose and exposure time
related. ATLs are widely believed to integrate into the
plasma membrane and possibly other cellular membranes
(Hoffman et al., 1986). It was perhaps surprising, therefore,
that growth inhibition could be removed by simply replacing
the drug-containing medium with fresh, drug-free medium.
This suggests a rapid equilibrium between the serum-bound
and cell-associated lipid. Cells presumably recover their full
growth potential by rapid 'back-exchange' onto serum pro-
teins. This putative recovery mechanism has important im-
plications. To be efficiently exchanged with serum proteins,
the majority of ATLs must be associated with the outer
leaflet of the plasma membrane. The precise location of
ATLs within cell membranes has yet to be established and
only little is known to date about related phosphocholine
lipids (Sleight and Abanto, 1989; Andreesen et al., 1982;
Bazill and Dexter, 1990).

Interestingly, in addition to the antiproliferative effects
above, we noted that some ATLs promoted clonogenic col-
ony formation and cell proliferation in MTT assays (not
shown). Submicromolar concentrations were seen to stimu-
late significant increases in colony counts, while concentra-
tions above about 2 JAM reduced colony counts dramatically.
This potentially mitogenic activity has been mentioned 'in
passing' (Hoffman et al., 1984; Mende et al., 1989; Sobottka
et al., 1993), but there have been no data to support the
hypothesis that some ATLs can stimulate growth at
nanomolar doses.

Other evidence for a potentially mitogenic role of ATLs
comes from cell signalling experiments. ATLs can elicit lipid-
specific calcium elevations in tumour cells (Lazenby et al.,
1990; Seewald et al., 1990; Lohmeyer and Workman, 1993).
Under certain circumstances, such as at low ATL concentra-
tions, these calcium changes may conceivably serve as
mitogenic signals, thus stimulating cell proliferation. On the
other hand, it should be noted that certain conventional
anti-tumour drugs, such as doxorubicin, can also induce cell
proliferation at very low concentrations, probably via a
membrane effect (Vichi and Tritton, 1989). It is not clear
whether these results are relevant to the clinical use of ATLs,
but one possibility is that they may relate especially to the
observed immunostimulatory effects.
A factor of definitive clinical relevance is the schedule

dependence of ATLs. Our studies highlight the importance of

exposure time for the in vitro anti-tumour effectiveness of
ATLs. We found that with pharmacologically relevant con-
centrations of ATLs, the cytostatic/cytotoxic effect generally
developed after the first 24h of exposure. This 'induction
period' was also noted for other ATL activities, such as the
suppression of growth factor signalling (unpublished observa-
tion; Berens et al., 1988; Seewald et al., 1990). Moreover,
recovery of cell growth following 24 h of exposure was com-
paratively rapid. Longer exposures (> 48 h) resulted in more
pronounced cytostasis/cytotoxicity, and a much delayed
recovery. Under conditions of continuous exposure, 2-3 f4M
ET18-OCH3 or SRI 62-834 was cytostatic, maintaining
growth arrest for over 7 days. The dependence on prolonged
exposure for maximal activity has also been commented
upon by others (Seewald et al., 1990; Principe et al., 1992). It
is possible that the failure of some recent phase I/II clinical
trials (Rodriguez et al., 1992; Verweij et al., 1992, 1993) to
show activity may lie with the dose schedules used, rather
than the efficacy of the drugs per se. Clearly, most of the
clinical trials to date have failed to match the promise of the
in vitro and in vivo preclinical studies (Lohmeyer and Bitt-
man, 1994; Houlihan et al., 1995). However, success has been
reported for local topical administration of HePC in breast
cancer (ten Bokkel Huinink et al., 1992; Khayat et al., 1993)
and for bone marrow purging, where higher drug levels and
longer exposures can be effected (Vogler et al., 1993b; Vogler,
1994). Pharmacokinetic monitoring is urgently required to
determine whether active concentrations of ATLs can be
achieved and maintained clinically. Failure to do this could
lead us to discard these mechanistically very interesting
agents prematurely.
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