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Abstract
We describe a fully automated algorithm for finding functional sites on protein structures. Our
method finds surface patches of unusual physicochemical properties on protein structures, and
estimates the patches’ probability of overlapping functional sites. Other methods for predicting the
locations of specific types of functional sites exist, but in previous analyses, it has been difficult to
compare methods when they are applied to different types of sites. Thus, we introduce a new statistical
framework that enables rigorous comparisons of the usefulness of different physicochemical
properties for predicting virtually any kind of functional site. The program’s statistical models were
trained for 11 individual properties (electrostatics, concavity, hydrophobicity, etc.) and for 15 neural
network combination properties, all optimized and tested on 15 diverse protein functions. To simulate
what to expect if the program were run on proteins of unknown function, as might arise from structural
genomics, we tested it on 618 proteins of diverse mixed functions. In the higher-scoring top half of
all predictions, a functional residue could typically be found within the first 1.7 residues chosen at
random. The program may or may not use partial information about the protein’s function type as
an input, depending on which statistical model the user chooses to employ. If function type is used
as an additional constraint, prediction accuracy usually increases, and is particularly good for
enzymes, DNA-interacting sites, and oligomeric interfaces. The program can be accessed online at
http://hotpatch.mbi.ucla.edu.
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Introduction
When a protein’s structure is first solved, it is generally examined for unusual features likely
to be functionally important, such as clefts1,2, patches of certain chemical or structural
properties3,4, possible catalytic residues5, or exposed conserved residues6,7. Searching for
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structural insights into functional mechanisms is the most common means by which we exploit
our understanding of structure-function relationships.

The assessment of functional relevance from structural data is still most often guided by
experience, and is rarely quantitative, even amidst the bioinformatics revolution. Our
substantial knowledge of protein structure/function relationships is applied to practical
problems via techniques that, for the most part, remain piecemeal and comparatively
subjective. In contrast, bioinformatics has attacked genomic sequence analysis with large-scale
computational methods like Psi-BLAST8, PROSITE9,10, PRINTS11 and Pfam12.

Meanwhile, structural genomics initiatives (SGI) promise to deliver a great acceleration in the
current rate of protein structure determination13,14,15,16, providing an opportunity to use
bioinformatic methods in structure analysis. It also creates new challenges, as it will be
increasingly common for structures to be solved with unknown functions and/or novel
folds17,18,19,20,21,22. There will be an increasing need for automated methods to identify
types of functions and locations of functional sites from protein structures18,19,20,21.

Towards this end, sequence conservation information is often mapped onto protein structures.
Sequence-based methods for finding functional residues require a collection of homologs with
reasonable sequence diversity, or the presence of common sequence motifs9,10. Methods have
been developed to automatically search for clusters of conserved residues on structures6,7,
23,24. This approach can be challenging, because functional residues may not be conserved
within a family if sub-families have different functions or different specificities. One method,
Evolutionary Trace7,25, attempts to exploit both sequence conservation and subfamily
variation, but is hard to automate. Sequence analysis will continue to be important, but if the
sequence family is too small, too diverse, or not diverse enough, it can be difficult to find
functional residues this way.

It is sometimes possible to guess the locations of functional sites on a structure by comparing
it to others of a similar fold, but there are many examples of proteins that share the same fold,
but have very different functions26,27,28.

Methods to identify functional sites directly from structure have also been developed. Perhaps
the most common approach is to find a large cleft or pocket, a task automated by several
algorithms29,30,31,32. These methods often report that an active site is inside the largest cleft
in ~80–90% of a test set of enzymes2,30,31. Though important, these methods have some
limitations. First, the largest cleft is usually several times larger than the active site, so such
predictions are not very specific. Second, they are intended mainly for enzyme analysis, while
about 50% of structures in PDB have no catalytic site. And third, some types of interactions,
like protein binding, usually occur outside concavities3.

To predict protein-protein interaction sites, several methods identify patches of
hydrophobicity4,33,34 or patches of planar shape34. Residue-residue interaction
propensities35,36,37 have been used to study protein-protein interactions, and for
discriminating dimer interfaces from crystal contacts38. To predict enzyme active sites, other
methods use structural (3-D motif) matching against known sites19,22,39,40,41,42,43,44,45.
Electrostatic destabilization was used to predict the active sites of six enzymes46. Ionizable
residues, whose computed charges were independent of pH variation, were used to predict
catalytic residues on three enzymes47. To predict metal ion-binding sites, one method finds
atom clusters high in ‘hydrophobic contrast’48. In general these methods judged their success
rates by different criteria, which were applied to different test sets that varied widely in size
and type, making comparisons between them difficult.
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The methods cited above are quite diverse, but most share three features. First, most of them
look for clusters of residues that share some property in 3-D space. Second, the properties are
often chosen based on intuition rather than a rigorous evaluation of their usefulness for a
particular function. Third, most of them predict a region to be functional, but do not estimate
the likelihood of success.

Numerous methods exist for predicting the functional types of proteins of unknown function,
and other methods for predicting functional sites on proteins of known function. But it is
particularly difficult to predict functional sites on proteins of totally unknown function; yet
exactly this type of problem will result from structural genomics.

Here we describe an automated algorithm, HotPatch, for predicting the locations of functional
sites by finding patches of unusual properties on protein surfaces. The method differs from
previous efforts in four ways. First, the program computes, for each patch, a statistical estimator
representing the probability that the patch overlaps a functional site. This statistic, called
Functional Confidence, is a “quality factor” by which we may judge the reliability of the
prediction. It is analogous to statistical estimators of homology returned by sequence analysis
programs, like Psi-BLAST’s p-value8. Functional confidence makes it practical to use
HotPatch on proteins of known or unknown functional type, by extracting only those
predictions that are most reliable.

Second, our method is optimized to predict very specific patches, where specificity is defined
as the fraction of residues in the predicted region that are functional. Other methods, like those
that find the largest cleft, often overpredict, identifying regions larger than the functional site.
Specific predictions are more useful to experimentalists, because they minimize the work they
must do, e.g. when introducing mutations to test a predicted site, or when designing a site
inhibitor.

Third, HotPatch treats oligomers in their biologically relevant quaternary structure. Most
previous methods have restricted their analysis to monomers only, or have treated single
subunits of oligomers as if they were monomers. Thus, functional sites shared between subunits
(which are common) were either avoided or analyzed inaccurately.

Fourth, the approach is general. The property analyzed can be any smoothly varying local
property of proteins, such as hydrophobicity, electrostatic potential, or a combination via a
neural network. The functional site can be of unknown type, or of any known type, assuming
there is a set of example structures on which HotPatch can be trained. When the user chooses
to predict sites with a statistical model trained on a specific function, partial information about
the function type is in effect an additional input. But when the user chooses a statistical model
trained on a mixture of functions, the test protein’s function type need not be known ahead of
time. In these cases we have decoupled the problem of functional site prediction from the
problem of function type prediction. (For comparison, sequence conservation methods
sometimes require no knowledge of function (e.g. BLAST), while other conservation methods
(e.g. Evolutionary Trace) require detailed knowledge of the test protein’s function.)

The generality of our method and of our statistical framework allow us to rigorously compare
the usefulness of 11 individual physicochemical properties, plus 15 Neural Network
combination properties, all optimized for predicting 15 diverse types of functional sites.

Results and Discussion
To predict functional sites, HotPatch performs the following steps: 1. it evaluates the property
of interest (individual property or Neural Network combined property) for all atoms in the
protein; 2. it clusters together atoms with high values of the property; and 3. to each patch, it

Pettit et al. Page 3

J Mol Biol. Author manuscript; available in PMC 2008 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assigns a statistical score called Functional Confidence (FC, see Table 1 for abbreviations)
describing how probable it is for the patch to overlap a functional site.

Example of HotPatch Predictions
Before reporting accuracy statistics for all of HotPatch’s predictions, we first show a few
examples of what the site predictions look like. Of the 15 protein functions examined in the
current work, we focus first on our generic function test set (see below), a mix of all protein
functions. Predictions with this set assume no knowledge of the type of function, simulating a
“worst case scenario” as might be encountered in Structural Genomics. Of the 11 properties
analyzed by HotPatch, for illustrative purposes we begin with examples using electrostatic
potential. (Note the Neural Net is a better predictor than electrostatics by itself.) Although
electrostatic potential is not useful for all function types, we can use HotPatch’s Functional
Confidence (FC) as a “quality factor” to tell us when the program has confidence this property
is useful for predicting a site of unknown type.

From predictions for the 618 proteins in this set of structures, the first six with the highest
FC’s are shown in Fig. 1.a–f. The selection of these six involved no a priori knowledge of
prediction success, only their FC’s. For each structure, Fig. 1 shows the top two (or three, in
1.b) predicted hotpatches of electrostatic potential, displayed alongside the functional sites.
(See Supplementary Materials for details on the proteins, their functions and predicted
residues.) The fraction of residues that are functional (i.e. specificities, see Eq. 1) in the #1
high-scoring patches on the six proteins are 80%, 83.3%, 68.4%, 87.5%, 65%, and 85%. For
their #2 patches, the specificities are 0%, 100%, 60%, 100%, 70%, and 100%. Among the
enzymes, the #1 patches all include one or more catalytic residues. Although we only illustrate
the top six proteins, in this test set, the #1 patch overlaps a site with specificity ≥ 1/3 in the top
21 proteins with the highest FC’s.

Several of the proteins are large complex oligomers, e.g. the nucleosome core particle (Fig.
1.e). Two proteins (Fig. 1.c,d) have active sites shared between subunits, sites that probably
would not be found by other algorithms that treat oligomers as monomers. On Annexin III
(Fig. 1.f), the membrane binding sites are not precisely known, but the #1 patch is found in a
sequence-conserved region at a channel entrance, thus predicting an unknown binding site, and
supporting theories that this region is a calcium channel49.

The six proteins shown in Fig. 1 are diverse—two bind DNA, one binds membranes, and three
are enzymes of distinct classes—but for most, the substrate is partially negatively charged (not
surprising, as the property used is electrostatic). Thus, a high FC is not restricted to one
functional type, but does provide hints at the nature of the interaction.

Example of a Pharmacologically Relevant HotPatch Prediction
Caspases are critical mediators of apoptosis and the inflammatory response, and are an
important class of drug targets for stroke, cancer, and inflammatory disease. The highly specific
nature of caspase active sites have so far frustrated drug discovery efforts. An alternative
possibility is to influence their regulation by targeting an allosteric site. Traditionally it has
been difficult to identify novel allosteric sites, however. As described in Hardy et al.50, a
previously unreported allosteric regulatory site was predicted by HotPatch. The #1 patch of
concavity is buried between two subunits of the dimer, as shown in Fig. 1 of Hardy et al.50
Compounds that target this allosteric site were found to inhibit the enzyme and prevent peptide
binding at the active site.
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The active site is not concave, however, and was not found by patches of concavity. We
analyzed caspase-7 (pdb 1I51) using electrostatics. The #1 patch of electrostatic potential
(FC = 48%) overlaps the active site, and includes both catalytic residues (H144, C186).

The above examples showed HotPatch predictions with high Functional Confidence scores for
the generic function test set analyzed by electrostatic potential. Below we assess HotPatch
predictions for many protein functions analyzed by many properties.

Protein Functions and Physical Properties Analyzed
HotPatch’s statistical models were trained against subsets of proteins of the same function,
extracted from the SFR database of known functional sites [http://nih.mbi.ucla.edu/~pettit/sfr].
The subsets, described in Table 2, consist of several catalytic types (e.g. protease, abbreviated
pr, hydrolase abbreviated hy, etc.), some non-catalytic types (protein-binding pb, oligomeric
interface ol), and some defined by type of substrate (e.g. positive metal ion-binding mp).
Subsets pb and ol distinguish between transient protein-binding interfaces and constitutively
bound oligomeric interfaces. Catalytic generic (cg) includes all enzyme types. Its site residues
are defined by annotation (in SFR) or by proximity to a substrate in a complex; thus they are
involved in catalysis and/or substrate binding. The other enzyme types (hydrolase, transferase,
etc.) are specific subsets of cg, and likewise consist of mixed catalytic/binding/recognition
residues. Subsets vary in size from 618 proteins (for generic function) to 24 (proteases).

Two subsets are especially relevant to structural genomics initiatives: catalytic generic (cg),
and generic function (gf), a mix of all kinds of functional sites. When these more generic subsets
are used for training, little or nothing need be known a priori about the function type of the
test protein. But when the user of HotPatch chooses to predict sites using the more specific
function subsets above, function type is in effect an input.

We analyzed HotPatch’s site predictions using 11 physical properties. Electrostatic
potential51 and charge52 (positive and negative) and surface roughness53 are abbreviated as
epotn, negepotn, poscharge, negcharge and rufness. Concavity was assessed in two ways: by
an algorithm similar to Connolly’s54, and by the program CAST55, abbreviated as concav and
castcav. Hydrophobicity and hydrophilicity were defined on a by-residue56 or by-atom57
basis, abbreviated as hydrofob.res, hydrofil.res, hydrofob.at and hydrofil.at. Below we present
results of testing 11 individual properties on 15 protein functions, for 164 combinations (not
165 because we did not test castcav for subset ol; see Methods).

In addition we designed neural networks58,59,60,61 that combine all above properties with
other properties (e.g. residue exposed area) together into ‘super-predictor’ properties. Each
neural network (NN) is optimized and tested on one of the 15 protein functions, e.g. the NN
optimized for hydrolases is only tested on hydrolases. For all properties, individual or NN, the
overfitting of data is prevented by a jackknifing technique.

Estimation of Functional Confidence
In the examples above, we used high FC values to extract successful predictions from a large
data set. However, Functional Confidence is more than just a quality factor; it has a useful
statistical interpretation. To define FC, we assume patches can be ordered by some value, like
patch size or score. The Functional Confidence of patch k is defined as the probability that a
patch of its size (or larger) will successfully overlap a functional site, given that at least one
patch of its size (or larger) exists on the protein. The overlap of a patch and site is the fraction
of functional residues in the patch (i.e. its specificity):
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speck =
ak
bk

(1)

where bk is the number of residues in patch k, and ak is the number of residues that are both in
patch k and in the site. In defining FC, “successful overlap” means that the patch specificity
exceeds a fixed percentage. In the current work we set the specificity cutoff somewhat
arbitrarily at 1/3. Of course other cutoffs are possible, and success criteria vary widely in the
literature. (In Supplementary Materials we give a mathematical expression for FC). The FC
of a patch obviously can only be defined if a protein has at least one patch of that size. HotPatch
estimates FC for patch k, by comparing against a training subset of proteins with known sites,
that all have at least one patch the size of k or larger.

The six examples above showed HotPatch predictions with high FC that overlapped functional
sites. Is this is true in general, i.e. is the actual rate of successful overlaps for patches generally
higher when their FC is higher, and lower when their FC is lower? As it is impractical to display
all 164 property-function combinations tested here, for a few interesting combinations we plot
actual success rates vs. estimated FC’s in Fig. 2. On the x axis, the #1 patches from all proteins
in the test set are binned by their estimated FC’s. The y axis shows fractions of successful #1
patches in each FC bin, and a linear fit to the success rate. Ideally, the success ratio vs. estimated
FC should be a diagonal. The success ratios are jagged due to small counts in some bins, but
there is a clear upward trend.

Figs 2.d, e, and f are all for one property (hydrophobicity) but for three types of sites, that are
strongly correlated, weakly correlated, and anti-correlated with hydrophobicity. As the protein
function is less correlated with the property, actual success rate goes down and FC goes down,
so the distribution shifts from high to low and from right to left. Fig. 2.f, a negative control
(DNA/RNA-interacting sites by hydrophobicity), shows that low FC’s emitted by HotPatch
can be a reliable warning when a property is a poor predictor for a given function. Also, in
Supplementary Materials we present receiver-operator characteristic (ROC) curves that further
show the reliability of FC estimation.

The above results show that predictions with high FC’s are more likely to overlap sites.
However, for some function-property combinations, patches with high FC’s may occur rarely,
since each physical property is useful for some functions but not for others. Thus we must
address two important questions. First, which properties are most useful for each protein
function? Second, for the best properties of each function, how often on average do high-FC
patches produce useful predictions?

Measuring Usefulness of Site Predictions With Two New Statistics
To be useful, a property must produce successful predictions in many proteins. However, there
is no universally accepted measure of usefulness for site prediction methods. Thus we introduce
two statistics to quantify the usefulness of site predictions. One statistic, success rate, gauges
the usefulness of the #1 high-scoring patch. The second, Residue Count Until Success
(RCUS), considers all (high and low-scoring) patches.

Success rate is the percent of proteins whose #1 patch has specificity above a threshold (set
arbitrarily at ≥ 1/3, as above, with specificity defined in Eq. 1); e.g. for a patch of ten residues,
four or more functional residues mean a “success”, while three mean a “failure.” Fig. 3
graphically displays success rates for the #1 patches of all properties, averaged over all proteins
in each function subset. These values, with no FC cutoff, give an overview of which properties
are most useful for each function. For a given function (column in Fig. 3), the best success rate
among all properties (with no FC cutoff) varies from 40% (for protein-binding) to 78% (for
oligomeric interfaces and proteases).
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The large variations seen between different protein functions are partially due to large
variations in the sizes of their sites. It is easy to predict the location of a big site on a small
protein, but hard for a small site on a big protein. When comparing accuracies between
functions, we take into account the relative difficulty of predicting sites of different sizes, by
defining the Fraction of Functional Surface Residues (FFSR):

FFSR = # functional site residues
# surface residues on protein (2)

Table 2 lists FFSR’s averaged over each subset. The easiest subset to predict is oligomer
interface (ol), and the hardest is metal ion-binding (mp), with FFSR’s = 0.28 and 0.041.

Although success rate is useful for comparing physical properties for prediction, it depends on
an arbitrary overlap criterion of 1/3. For example, a #1 patch of seven residues in which two
residues are functional is designated a failure. Moreover, sometimes when the #1 patch has
failed, the #2, #3 patches etc., may succeed. Incorporating these results can be complex, because
average patch sizes vary widely.

We therefore introduce a second, simplifying statistic to measure usefulness, called Residue
Count Until Success (RCUS). This takes into account all patches on a protein, and also accounts
for semi-successful patches with specificity greater than zero but < 1/3. RCUS estimates how
many residues an experimentalist might need to test (by, e.g., site-directed mutagenesis,
labeling, etc.) before finding one functional residue. For example, if a patch had five residues,
of which one was functional, and if an experimentalist picked at random from it, she might
find a functional residue after picking one, or sometimes after picking five; but on average she
would pick three. To generalize: if an algorithm predicts a set of regions (here, patches) ordered
by a criterion (here, FC), and if we initially choose residues at random from the first patch, and
secondly at random from the second patch, etc., and lastly from the non-patch surface, then
RCUS is the mean number chosen until we find at least one functional residue. Obviously, a
smaller RCUS is better.

Table 3 lists the median RCUS for each protein function (with no FC cutoff). These values
should be compared against RCUSRAN, the mean number of residues that would be chosen at
random from the whole protein surface (typically 9–12, sometimes much higher). Equations
for RCUS and RCUSRAN are given in Methods. (In Supplementary Materials we tabulate more
statistics, such as mean specificities, sensitivities, etc.)

Which Properties are Most Useful for Each Protein Function?
By comparisons of the usefulness of diverse properties for diverse protein functions, novel
structure-function relationships can be discovered. Of the 164 function-property combinations
displayed in Fig. 3, we briefly summarize which properties are useful for predicting sites of
each type. In evaluating which physical properties will be the best site predictors, we assume
we know the protein function type a priori. Below we distinguish between useful function-
property combinations that are to be expected from previously well-known principles, and
useful combinations that are novel and unexpected. Of properties previously known to be
useful, the most well-known are hydrophobicity for oligomeric interfaces4,33,34 and concavity
for enzyme sites2,29,30,31.

We found electrostatic potential useful for many functions: generic sites, most enzyme sites,
and several kinds of substrate binding sites. Some of these uses for electrostatics are well-
known (e.g. for predicting DNA-binding sites62,63). However, the use of electrostatic potential
by itself to predict enzyme sites has, to our knowledge, not been reported. We found it useful
for a mix of all enzyme sites, for transferases and for oxidoreductases.
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We also find electrostatic potential always more useful than electric charge; and hydrophobicity
more useful as defined by-residue than by-atom (i.e. by ASP57). The only enzymes for which
hydrophobicity works are the proteases, and that is marginal (success rate of 42% over all
FC). Because the protease subset is small, this result is tentative.

We previously showed that surface roughness is useful for small molecule binding sites53. The
novel results here are that we find it moderately useful for all enzyme types and for all types
of substrate binding sites (usually as the third best property).

The statistics in Fig. 3 and Table 3 are evaluated over all proteins, but in practice, only proteins
with FC above a reasonable threshold would be considered actual predictions. Which threshold
is reasonable depends on the protein function, however, because the difficulty of prediction
(FFSR) varies. For example, in the DNA/RNA-interacting subset, there are many electrostatic
patches with FC above 0.70, but in some functions that are harder to predict, no patch has
FC > 0.70. Thus, for each function-property combination, we fixed a success rate and found
the FC threshold at which that success rate is achieved. The percentage of all proteins with a
patch FC above the threshold (the coverage) must be significant for that property to be useful
for that function. For three fixed success rates (50%, 63%, and 75%) of #1 patches, Table 4
lists the FC threshold at which each success rate is achieved, and its coverage (i.e. percent of
proteins with FC above the threshold).

We now discuss the accuracy of site predictions for individual protein functions.

Generic Functional Sites—This is a mixture of all types of sites except oligomeric
interfaces. This subset is important because it serves as a ‘dry run’ test of what would be
expected when running HotPatch on many structures from a structural genomics initiative. As
in all of our functional subsets, each protein has no homologs in the dataset with sequence
identity ≥ 25%, as would be expected for difficult SGI targets.

Considering only patches of the NN property with FC ≥ 0.64 (found for 51% of all proteins of
unknown function), the success rate is above 66% and the median RCUS is 1.7 residues. Even
with no FC cutoff at all—a worst case scenario including all proteins of unknown function—
the median RCUS is 2. Either way, for most structures of unknown function from the SGI, we
expect the #1 patch (average size, 7.6 residues) will have at least three functional residues.
One functional residue would usually be found within the first two chosen at random from
HotPatch predictions.

For generic sites, the best individual properties are positive electrostatic potential and
concavity. Considering only electrostatic patches with FC ≥ 0.5 (found for 50% of all proteins
of unknown function), the success rate is above 63% and the median RCUS is 1.5. The #1 patch
(average size, 5.6 residues) will usually have two functional residues. Concavity is less useful:
again considering proteins in the upper half of FC scores, the success rate is 50% and RCUS
= 2.2.

Enzymes—Our catalytic generic subset (cg), a mix of all kinds of enzymes, corresponds to
the case where you know a protein is an enzyme, but don’t know what type. The #1 hotpatch
is generally a tiny fraction of the protein surface, far smaller than the largest cleft or pocket.
Considering only patches of the NN property with FC ≥ 0.63 (found on 62% of enzymes), the
success rate is over 74% and the median RCUS is 1.5 residues. Even with no FC cutoff at all
—including all enzymes of unknown type—the success rate is 65% and RCUS is 1.8. Either
way, for most enzymes of unknown type, we expect the #1 patch (average size, 8.6 residues)
will have at least three functional residues.
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For enzymes in general, the best individual properties are electrostatics and concavity.
Considering only electrostatic patches with FC ≥ 0.49 (found on 56% of all enzymes), the
success rate is over 63% and median RCUS is 1.5. Among #1 patches of concavity, the success
rate is over 63% and the RCUS is 1.8 for the top-scoring 60% of enzymes. For all cases
described here, a residue involved in substrate binding or catalysis would usually be found
within the first two residues chosen at random from HotPatch predictions.

If you know the functional type of the enzyme, even greater accuracy is possible. For proteases,
kinases, and transferases, success rates over 80% are achieved if we consider just NN patches
above moderate FC cutoffs, capturing 87%, 87%, and 55% respectively of all proteins in these
classes (see Table 4). Thus the #1 patch (average ~12–15 residues) will almost always have
at least four functional residues. For these higher-scoring predictions, the RCUS are 1.4–1.6,
compared with the random RCUS of ~10–12 residues.

Oxidoreductases are the most complex and difficult enzyme class we have examined. The best
individual properties perform relatively poorly: the success rates over all #1 patches of
electrostatic potential and concavity (with no FC cutoff) are 45% and 44%, at least 6% worse
than the best individual properties for other enzymes. We believe this to be because
oxidoreductases have cofactors far more often than other enzymes. Oxidoreductase active sites
(when excluding cofactor-binding residues) are often poorly defined, and are the smallest
among enzyme types examined; thus, they are inherently difficult. Our algorithm downweights
cofactor-binding residues and we consider them less interesting. Fortunately, combining
multiple properties with a neural network yields greatly improved performance. Considering
only NN patches with FC ≥ 0.58 (found on 75% of all oxidoreductases), the success rate is
over 74% and median RCUS is 1.8.

DNA/RNA-interacting Sites—The best individual properties are electrostatic potential and
hydrophilicity. Considering only electrostatic patches with FC ≥ 0.6 (found on 64% of all
proteins), the success rate is over 75%, and median RCUS = 1.5. Similarly, for NN patches the
success rate is over 75% when FC ≥ 0.68 (true for 63% of all proteins). The #1 patches of
electrostatics and the NN property (average size 14 and 15.3 residues) will almost always have
at least five DNA-interacting residues.

Small Molecule-Interacting Sites—Here ‘small molecules’ means all substrates, except
macromolecules and metal ions. These sites are hard to predict due to their small size (FFSR
= 0.075). Considering only patches of the NN property with FC ≥ 0.54 (found on 53% of
proteins), the success rate is over 70%, and median RCUS is 1.4 residues.

The best individual properties are electrostatic potential, concavity, and roughness.
Considering only electrostatic patches with FC ≥ 0.47 (found on 49% of proteins), the success
rate is over 63% and RCUS = 1.5. These results are impressive considering the inherent
difficulty of finding small molecule sites: for randomly located patches, the success rate is
11%, and the RCUS expected at random is a high ~12–14 residues.

Metal Ion-Binding Sites—These sites are the smallest (FFSR = 0.041) and inherently the
hardest to predict of all function types considered here. The best individual properties are
negative electrostatic potential, concavity and roughness, but all individual properties perform
poorly. For all #1 patches of negative potential (with no FC cutoff), the success rate is 25%
and RCUS is 10.8. Fortunately, combining multiple properties with an NN yields improved
performance. Considering only NN patches with FC ≥ 0.53 (found for 52% of metal-binding
proteins), the success rate is over 63%, and median RCUS is 1.5. This is a great improvement:
the NN success rate here is more than double that of the best individual property, and ten times
that expected for randomly located patches (6%). One would typically need to pick 36 residues
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at random from the surface before finding one metal-binding residue, but HotPatch using the
NN has reduced this by a factor of ~24.

Carbohydrate and Lipid -Interacting Sites—With FFSR = 0.062 and 0.060, these sites
are small and inherently hard to predict. For carbohydrate-interacting (which excludes
glycosylations), considering only patches of the NN property with FC ≥ 0.51 (found on 80%
of carbohydrate-binding proteins), the success rate is over 59% and RCUS = 2, to be compared
with the RCUS expected at random of ~15 residues. The best individual properties are
electrostatics and surface roughness, but neither performs well by itself.

For lipid-binding, considering only NN patches with FC ≥ 0.49 (found on 74% of lipid-binding
proteins), the success rate is over 65%, and median RCUS is 1.8. This is to be compared with
the random RCUS of ~17 residues. The best individual property is hydrophobicity. For
electrostatic patches, the RCUS (with no FC cutoff) is comparable to hydrophobic patches (7
vs. 6.5), perhaps because these sites interact with negatively charged membranes64; but the
individual properties do not perform as well as the NN.

Oligomeric Interfaces and Protein-Binding Sites—In these two functional subsets, the
interacting partners are proteins. But by definition, oligomeric interfaces are constitutive, while
protein-binding interactions are transient. Although oligomeric interfaces are not strictly
functional sites, their prediction from known structures is an important goal, e.g. to distinguish
biologically relevant crystal contacts from artifacts of crystal packing38,65.

For both types of sites, the best individual property is hydrophobicity defined by residue type.
For oligomeric interfaces, considering only hydrophobic patches with FC ≥ 0.69 (found on
67% of all oligomers), the success rate is over 80%, and median RCUS is 1.3 residues. Similarly,
for NN patches the success rate is over 80% when FC ≥ 0.76 (found on 82% of oligomers).
The #1 NN patch (average size, 30.5 residues) will almost always have at least eleven residues
in the interface, while the #1 hydrophobic patch (average size, 16.8) will almost always have
at least six interface residues.

Protein-binding sites are nearly twice as hard to predict as oligomeric interfaces due to their
smaller site size (FFSR = 0.15 vs. 0.28). For the former, success rates over 50% are achieved
if we consider only NN patches and hydrophobic patches above reasonable FC cutoffs, that
capture 50% and 43% (respectively) of all protein-binding proteins (see Table 4). Here the
RCUS’s are 2.4–2.6. Thus the #1 patches (average size, 6.3–7.8 residues) will usually have
three protein-binding residues. At moderate FC cutoffs, the NN provides a small improvement
in coverage vs. hydrophobic patches. But for all #1 patches (with no FC cutoff), the NN does
slightly worse than hydrophobicity (success rate 39% vs. 40%), a discrepancy that is discussed
in Conclusions.

Negative Ion-Binding—With FFSR = 0.049, these sites are the second smallest and hardest
to predict of function types examined here. The best individual properties are electrostatics and
concavity. Considering only #1 electrostatic patches with FC ≥ 0.26 (found for 67% of
proteins), the success rate is over 60% and RCUS = 1.8. This is to be compared with the
RCUS expected at random of ~19 residues. Oddly, for all #1 patches with no FC cutoff, the
NN performs worse than electrostatics (success rate 41% vs. 44%). This discrepancy is
discussed in Conclusions.

Are HotPatch’s Predicted Sites More Accurate Than Finding the Biggest Cleft?
It is generally assumed a functional site can be identified by finding the largest cleft or pocket.
Can HotPatch do better? Cleft-finding algorithms often report that, for enzymes, the active site
is inside the largest cleft ~80–90% of the time2,30,31. However, the largest cleft is often far
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larger than active sites, so such predictions are not very specific. Besides testing HotPatch’s
built-in concavity method, we also tested CAST, a standard program for finding clefts55. For
enzymes, CAST’s largest cleft is typically ~26–42 residues. Fig. 3 displays success rates for
HotPatch and for CAST’s largest cleft with no FC cutoff.

First, HotPatch’s Neural Nets always do better than CAST. Second, for some functional sites
that are not concave (e.g. protein-binding3), other individual properties computed by HotPatch
do better than concavity as computed by either HotPatch or CAST. Ignoring these cases, we
ask whether Hotpatch’s #1 patch of concavity by itself does better or worse than CAST’s largest
cleft. This is true for all functions but two: hydrolases (51% vs. 55%) and oxidoreductases
(44% vs. 48%). Hotpatches of concavity are usually more specific than CAST. Even if two
predicted regions have equal specificity, the smaller will generally have a better RCUS (see
Eq. 5). Thus, even for the exceptions (hydrolases and oxidoreductases), hotpatches of concavity
have an equal or better RCUS (2 vs. 2.5, and 3 vs. 3 respectively, with no FC cutoff). Of course,
HotPatch does better than concavity or CAST always when using the NN, and also sometimes
using other individual properties.

Are HotPatch’s Predicted Sites More Accurate Than Random Predictions?
To be useful, patches found by HotPatch must have more functional residues than would be
expected in randomly chosen patches. In Table 3 we compared HotPatch’s RCUS against
RCUS expected at random for each protein function (with no FC cutoff). This shows that the
mean number of residues that need to be picked before finding at least one functional residue
is far lower (often by a factor of 6) than with a random predictor. Also, in Supplementary
Materials we show that, on average, #1 hotpatches have specificities ~2.3–19 times higher than
randomly chosen patches, depending on function type.

Summary and Conclusions
To summarize: HotPatch was tested on 15 different types of functional sites. Considering as
predictions only patches of the best properties with FC scores above reasonable cutoffs, in 13
of the 15 protein functions examined, a site was successfully located in ~60–80% of proteins
of that type. The patch predictions are highly specific, as typically a functional residue would
be found within the first two chosen at random from the patches. Remarkably, this holds true
whether or not you know the type of function of the protein. If you know its function, you can
use customized training sets that often yield success rates at the higher end of the scale. If you
do not know its function, you can use generic parameters that still perform surprisingly well.

The “worst case scenario” of totally unknown function, which is most relevant to SGI, is
represented by our generic test set (618 proteins of mixed functions with no close homologs).
Considering only the top half of NN patches with higher FC’s, the #1 patch successfully
overlaps a functional site in about two-thirds of proteins. With or without an FC cutoff, one
would typically need to pick two or fewer residues from the NN patches before finding one
functional residue. For generic functions (as for enzymes), patches of individual properties
(e.g. electrostatics or concavity) are less accurate, but still useful if we limit predictions to
patches above reasonable FC cutoffs.

If you know a protein is an enzyme, but don’t know the type, increased accuracy results. This
situation is represented by our generic catalytic test set, for which a success rate over 74% and
RCUS of 1.5 is achieved above a reasonable FC cutoff. If you know the enzyme type, still
greater accuracy is possible: for most enzyme classes examined, success rates of ~74–80% are
achieved with FC cutoffs that are satisfied by many proteins.
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We also tested several functions defined by substrate type—lipids, carbohydrates, metal ions,
negative ions, and small molecules. These smaller sites are harder to predict. For lipid,
carbohydrate and metal ion sites, all individual properties perform poorly. But even here,
combining properties with a Neural Network yields good results: above reasonable FC cutoffs,
the RCUS ranges from 1.5 to 2, and success rates from ~60 to 65% (for small molecules, 70%).
The improvement with an NN is especially dramatic for metal ion sites.

For two types of sites, DNA/RNA-interacting and oligomeric interfaces, combining multiple
properties with an NN yielded only minimal benefits. Here the best individual property
(electrostatics and hydrophobicity, respectively) by itself performs very well, and the best
property is by far the most useful, so combining properties helps little.

Of the 15 functions examined here, we found no improvement with the NN for two of them:
negative ion and protein-binding. For the ion sites, we can get success rates over 60% with
electrostatic patches using a moderate FC cutoff. But oddly, for both functions, the NN has a
slightly lower success rate than the best individual property (with no FC cutoffs). We believe
this occurs due to a partial loss of information within the NN. As explained in Methods, when
HotPatch analyzes raw individual properties, it assigns each atom an individual score, clusters
by atoms, and in the last step, reclusters by residue. In contrast, when HotPatch employs neural
net properties, it averages individual properties over each residue, computes one NN score for
the whole residue, and then clusters. Thus, our NN loses atomic-level detail, sometimes
resulting in a small reduction in accuracy.

HotPatch using NN combination properties has proven accurate and useful for 13 of 15 diverse
protein functions tested. However, we emphasize that patches of ‘raw’ individual properties,
though less accurate, are still of great interest, for two reasons. First, testing them allows us to
quantify which properties are most important for predicting each type of site. Second, unusual
patches of individual properties often hint at underlying mechanisms of molecular interaction.
Thus, HotPatch’s predictions using individual properties are useful not just for finding sites,
but also for the possible hints they provide at functional types and mechanisms of interaction
— e.g., our six example proteins with the highest FC’s by electrostatic potential almost all
interact with negatively charged substrates. At present, these mechanistic hints remain only
qualitative, but in future work we will quantify this valuable information.

HotPatch was intended for use on structures originating from SGI, but, as demonstrated by its
identification of an allosteric binding site on Caspase 750, the program will be useful to
structural biologists seeking insight into individual proteins.

Materials and Methods
For individual properties, in the first step, a value of the property (score) is assigned to each
atom. However, for Neural Network properties, the first step is modified. For simplicity, the
NN averages individual properties over all atoms in each residue, and from all properties
computes one NN score, assigning it to all atoms in the residue.

Next, we find patches. The clustering algorithm has two free parameters, which make up the
Cluster Parameter Vector (CPV). To make a prediction, HotPatch evaluates the score x for all
atoms. Then it iterates through many CPV’s, repeatedly finding sets of patches of high x, and
computing the FC’s of all patches. The FC’s are computed from statistical models that vary
with CPV. The CPV which yields the highest FC for any one patch is found, and the
corresponding set of patches is retained as the output. In the final step, residues are assigned
to a patch based on the patches to which their atoms belong.
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Patch Finding and Patch Scores
The two free parameters of the patch-finding sub-algorithm are called the Atom Score Cutoff
(ASC) and Cluster Distance (CD), which together make up the CPV. At a given CPV, only
atoms p with surface property xp > ASC are candidates for being in patches. For each atom p,
we make a list of its neighbors i within a distance riP < CD. The rest of the process is similar
to a depth-first graph search algorithm, where the nodes are candidate atoms. The first exposed
candidate atom (by any ordering method) with xp > ASC nucleates a patch, then all of its exposed
neighbors i with xi > ASC and riP < CD are added to the patch; then all the exposed neighbors
of i are added by the same criteria, and so on recursively. The final result is independent of
initial atom order.

HotPatch repeats the patch-finding process for many CPV’s. Typically, the algorithm varies
over 5 CD’s in the range 3.8–5.4Å, and perhaps 9–10 ASC’s. The ASC’s were chosen by sorting
atom scores of all exposed atoms in a large diverse set of structures, discarding the lowest 60%,
and setting the bin dividers on the atom score axis so each bin contains an equal number of
atoms. The bottom 60% of atom scores were discarded because, for low ASC’s, patches tend
to spread across the whole protein.

A trick was added to prevent atoms on opposite sides of a protein from being clustered together
when CD is large. For each exposed atom, a vector normal to the accessible surface on its van
der waals sphere is computed; then the normals of its neighbor atoms are averaged, by a
smoothing algorithm like that described in Supplementary Materials. If two atoms are within
distance CD, but their smoothed normals form an angle > 120°, they are not considered
neighbors. (They can still be clustered together indirectly if they share a neighbor.) This
restriction is removed for patches of concavity, because atoms in the same patch may face each
other on opposite sides of a pocket.

The patch score, PS, is the sum of surface-area-weighted Z-scores for all atoms i in it:

PS = Σ
i

ai
aMax ,i ( xi − x̄

σx ) (3)

where ai is the accessible area of atom i in the structure, and aMax i is the maximum possible
area of a sphere with i’s radius. x̄ and σx are the average and standard deviation of property x
(which are pre-computed from a large set of structures). If property x was smoothed, the
smoothed value is used in place of xi. For all types of physical properties, patch scores have
the same units. Typically, PS > ~3 indicates a large patch.

Each patch is assigned an index j representing the bin on the PS axis in which its patch score
belongs. Bin dividers on the PS axis are defined by placing into each bin an equal number of
scores of patches from a large diverse set of structures. For each CPV, there is a different set
of PS bin dividers, called a PSC (Patch Score Cutoff) table.

Modeling Dependence of FC on Protein Total Area
Functional Confidence is defined as the probability that a patch of a given size or larger overlaps
a functional site. We expected FC would depend on the total accessible area of a protein
(PTA), because as PTA gets larger, patches become more common. However, the dependence
of the probability of overlap on PTA could take several possible forms. If, say, functional sites
grew larger linearly as PTA increased, then sites would take up a constant fraction of the protein
surface, and as patches likewise become more common, the probability that any one patch
overlaps a site would be approximately constant. Our analysis showed that something like this
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happens for sites that interact with macromolecules (protein, DNA, RNA), as these sites slowly
get bigger as PTA increases.

However, our analysis also showed that, for most types of sites (but not macromolecule-
interacting sites), as PTA increases sites get larger up to a point, then site area levels off (data
not shown). Thus the fraction of surface taken up by sites decreases for high PTA. For most
types of sites, the probability that any one patch overlaps a site increases to a peak, then at
higher PTA, the FC falls off as most patches are lost in a huge protein area.

We modeled this dependence of FC on PTA with ad hoc equations. This modeling resembles
the training of a simple neural net with a single input (PTA) and a single output (FC). Neural
nets usually model one type of equation. But here, because the dependence of FC on PTA could
take different forms, we tried modeling three different types of equations, and picked the best
fit of the three (for each patch size and each CPV). The three equations tried were a constant
FC independent of PTA, an exponential decay that at high PTA asymptotically approaches a
constant FC, and an ad hoc equation with a peak in the middle and different FC asymptotes at
high and low PTA. We expected the second (decay) equation would work for macromolecule-
interacting sites (see above), the third (peaked) equation would work for other types of sites,
and the first (constant) would be useful when there are not enough proteins to model the
dependence of FC on PTA.

Each of the three equations has free parameters (one, three, and five, respectively). Modeling
involves optimizing each equation’s free parameters to fit observed probabilities of patches
overlapping sites. HotPatch is trained by examining a set of structures with known functional
sites, counting their patches, and computing the mean probability that any one patch overlaps
a site. Then the free parameters of all three model equations are optimized to fit the observed
patch overlap probabilities, via a Bayesian likelihood maximization scheme. The three model
equations and the Bayesian likelihood maximization are described in detail in Supplementary
Materials. After optimization, the best fit of the three equations for the dependence of FC on
PTA is the one model finally chosen, called the PTA Model (PTAM). The process is repeated
many times, finding the best PTA model for all patch score bins and for all CPV’s.

If there are, say, 5 cluster distances (CD’s) and 10 atom score cutoffs (ASC’s), then there are
50 CPV’s, and therefore 50 sets of bin dividers on the patch score (PS) axis. If there are 40
PS bins, then there are 50×40=2000 best models for FC. Overfitting is not an issue because
the model finally used has at most one, three, or five free parameters.

SFR Database: Training & Testing Set of Structures and Functions
The sets of structures for training PTAM models, and for testing HotPatch, were drawn from
SFR (formerly ACT), a database of structure-function relationships of proteins of known
structure [http://nih.mbi.ucla.edu/~pettit/sfr]. The information on functional sites in SFR was
primarily drawn from the literature and manually curated. SFR structures were chosen as a
subset of PDB_SELECT66, so no proteins are homologs, i.e. pairwise sequence identity is <
25%. SFR has a mix of monomers, oligomers, and complexes, but it references oligomeric
symmetry operations, thus enabling accurate spatial analysis.

The jackknifing technique was used to avoid training set bias: that is, one-tenth of the proteins
were chosen at random and thrown out; the models were then trained on the remaining nine-
tenths; and the previously excluded tenth was used to test the models. This was repeated 10
times for different tenths.

SFR’s descriptions of protein interactions and sites are highly detailed, allowing us to
distinguish, e.g., protease-inhibitor complexes from non-catalytic protein binding, or cofactors
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from substrates, etc. Site residues are defined as those described in the literature as such, or
that are within 4 Å of a substrate or cofactor of the interaction. Many structures contain
surrogates of the substrate; e.g. phosphate ions binding where DNA backbone normally would.
Proximity to these may also define functional residues, if the literature describes the surrogate
as binding similarly to the substrate.

Lists of PDB codes for each functional subset are available in Supplementary Materials.

Symmetries: Crystallographic vs. Oligomeric, and the “Model Chains”
Spatial symmetries in functional analysis are complicated by three issues. First, a PDB file
represents a crystallographic asymmetric unit (AU) which is often different, either larger or
smaller, than a protein’s functional quaternary structure. In these cases, we first transformed
the PDB structure to the functional oligomer, which sometimes required duplicating and
rotating chains, and sometimes deleting superfluous copies of chains. The necessary spatial
transformations were obtained from the OGM (Oligomer-Generating Matrix) database, whose
transformations were all manually curated. The two databases, SFR and OGM, are released as
a package [http://nih.mbi.ucla.edu/~pettit/sfr].

Second, functional sites are often shared between subunits, so analyzing just one subunit as if
it were a monomer can give a very inaccurate picture of the site. But, having transformed to
the biological oligomer, we may accurately analyze shared sites.

Third, homo-oligomers may have multiple copies of a site, which, if overcounted, would cause
a statistical bias toward oligomers. To prevent bias, the idea of Model Chains is introduced.
The Model Chains are a non-redundant subset of the chains in each structure, after expansion
to the biological oligomer. For each structure, Model Chains are chosen based on oligomeric
symmetries, and on homologies to other chains in the database.

Usually the model chain is a single chain from each structure. In the case of a hetero-oligomer,
there might be more than one model chain (e.g., in an A2B2 heterodimer, there might be one
A and one B). In a complex of two independent proteins, the model chain might be just one:
for example, in an enzyme-protein inhibitor complex, the model chain might be the enzyme,
and the “substrate” the inhibitor. But if the enzyme has close homologs elsewhere in the dataset,
the model chain might be the inhibitor and the “substrate” the enzyme. (SFR would denote the
first possibility as a catalytic interaction and the second possibility as non-catalytic binding.)
Or, in a complex of two independent proteins, both of which have no homologs elsewhere in
the dataset, the structure might be included twice, once with the first chain as model and the
second as substrate, and once with the second as model and the first as substrate.

Patches found by HotPatch may extend between chains. Patches entirely on non-model chains
do not contribute to statistics. If a patch has two or more atoms on a model chain, the whole
patch, including any part on non-models, is counted in patch statistics.

Pre-processing of Structures: Ignoring Substrates, Skipping Cofactors
Before analysis, PDB structures are pre-processed. First, as explained above, PDB files are
transformed to the biological oligomers. For electric charge and potential analysis, hydrogen
atoms were built in67. For other properties, hydrogens were stripped off.

In the SFR database, all non-protein molecules in complexes are classified by their biological
relevance: substrate, cofactor, or artifact of crystallization (these classifications were manually
curated from the literature). Substrates and artifacts were always deleted. However, substrates
were restored (in the last step) to identify functional residues by proximity to a substrate, so as
to assess successful overlap between patch and site.
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Cofactors, on the other hand, were not deleted. Thus they could indirectly affect residues in
their vicinity, by partially burying their accessible area, or by affecting electrostatics in the
vicinity. This treatment, for consistency’s sake, mimics the most common situation in PDB
structures: the presence of a cofactor (if one exists) and absence of a substrate.

In a complex of two independent proteins— unlike oligomers— the non-Model chain is the
“substrate” and thus deleted. Conversely, in an oligomer, non-Model chains are left in (for
most functions), though patches entirely on non-Model chains are not counted.

But this pre-processing was modified when analyzing oligomeric interfaces: non-Model chains
in oligomers were then treated as substrates, and thus deleted. This was necessary to “unbury”
oligomeric interfaces before finding patches. This modified preprocessing is why we did not
run program CAST55 for oligomeric interfaces: it would have doubled the computational effort
required, and oligomeric interfaces are known to not be concave3.

Computation of Individual Properties and Neural Networks
Details on computation of electrostatic potential51, charge52, concavity54,55, surface
roughness53 and hydrophobicity (by residue56 and by atom57) are given in Supplementary
Materials. Atomic properties that take on discrete values are not ideal for patch-finding, so we
smoothed discrete properties (charge, hydrophobicity) by averaging the values of each atom’s
exposed neighbor atoms, via an algorithm given in Supplementary Materials.

The neural nets’ inputs included all individual properties above and other simple residue
properties (e.g. residue exposed area). The nets have 267 hidden units in two layers and a single
output (residue score). The networks were trained with NevProp458.

Residue Count Until Success
Suppose a protein has N exposed residues on its surface, and c residues in its site. If we pick
surface residues at random, the mean number chosen to find at least one functional residue is
given by a statistical “waiting time” distribution68. The mean RCUSRAN is:

RCUSRAN = N + 1
c + 1 =

1 + 1
N

FFSR + 1
N
≅ 1

FFSR (4)

Above we used FFSR ≡ c/N (see Eq. 2). Eq. 4 goes approximately as 1/FFSR because 1/N is
far smaller than FFSR for all functions considered here.

Now suppose we instead used an algorithm which predicts a set of regions (here, patches)
ordered by some criterion (here, FC), and we initially picked residues at random from the first
patch, and secondly at random from the second patch, etc., and lastly from the non-patch
surface, but stop when we find the first functional residue. In the notation of Eq. 1, define bk
as the number of residues in patch k, and ak as the number of residues in patch k that are also
functional. Also define n as the number of all patches, and q as the first patch with any functional
residues at all, i.e. with aq > 0. Then RCUS is given by

RCUS = { Σ
k=1

k<q
bk +

bq + 1
aq + 1

if ak = 0 for all k < q and aq > 0

Σ
k=1

n
bk +

N − Σ
k=1

n
bk + 1

c + 1
if ak = 0 for all k

(5)
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The lower condition applies when all patches have no functional residues, and we then test the
remaining (non-patch) part of the surface. This is actually worse than RCUSRAN.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of functional sites predicted using patches of electrostatic potential. The first six
structures (a.–f.) have the highest FC’s from the generic function subset. The color scheme
used is: red (or orange) = in patch #1 (or #2) and also in functional site, i.e. correct prediction;
pink (or yellow) = in patch #1 (or #2) but not in functional site, i.e. overprediction; cyan = in
functional site but not in patch #1 or 2; green = substrate (if present). a. Uroporphyrinogen
decarboxylase (pdb 1URO). b. DNA-binding domains of RAP1 (pdb 1IGN); patch #3 is in
violet. c. Alanine racemase (pdb 1BD0). d. Uridylyltransferase (pdb 1GUP). e. Nucleosome
core particle (pdb 1AOI). f. Annexin III (pdb 1AXN); arrow points to putative channel entrance.
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Figure 2.
Rate of successful predictions vs. estimated Functional Confidence (FC) for some properties
and functions of interest. x axis: for a large set of proteins of the same function, the estimated
FC values of their #1 high-scoring patches were binned in intervals of 0.1. On the y axis: thick
line with triangles: ratio of successful predictions in each bin (ideally, should be diagonal).
Light bar: count of #1 patches that had an estimated FC in that bin. Dark bar: count of #1
patches in that bin that successfully overlapped a functional site. Dashed line: linear fit to
unbinned success rate data. In Figs 2.a–f, the fits have slopes 1.11, 0.72, 0.67, 0.69, 0.53, and
0.65. a. Generic functional sites (all functions) by electrostatic potential. b. DNA/RNA-
interacting sites by electrostatic potential. c. General catalytic sites by Neural Net combination
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property. d. Oligomeric interfaces by hydrophobicity. e. Protein-binding sites by
hydrophobicity. f. (negative control) DNA/RNA-interacting sites by hydrophobicity.
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Figure 3.
Success rates of the #1 high-scoring patch on each protein, averaged over all proteins in all
functional subsets (with no FC cutoff) for all properties. Here “success” means #1 patch
specificity ≥ 1/3. Besides annotating success rates for the Neural Networks, in each protein
function (column) the second highest success rate (excluding the NN) is also annotated.
Oligomeric interfaces were not evaluated by CAST concavity (castcav).
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Table 1
Definitions of Statistical Terms

Acronym Long Name Equ. #

speck
sensk
FC
FFSR
RCUS

specificity of patch k
sensitivity of patch k
Functional Confidence
Fraction of Functional Surface Residues
Residue Count Until Success

1
S2 (Supplement)
S3 (Supplement)

2
5
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Table 3
Median RCUS and RCUSRAN over all proteins (with any FC)
The properties listed are the two best properties for each protein function. RCUS (Residue Count Until Success)
of a prediction and RCUSRAN (the RCUS expected for a random predictor) are defined in Eqs. 5 and 4 respectively.

Function Property RCUS Random RCUS
generic NN 2 9.6

epotn 3 7.9
concavity 2.5 8.4

oligomeric interface NN 1.5 4.1
hydrofob 1.4 4.1

protein-binding NN 4.0 8.4
hydrofob 3.5 8.3

protease NN 1.4 11.8
concavity 1.2 8.9
rufness 2.5 8.9

hydrolase NN 1.7 13.3
concavity 2 11.5
rufness 2.8 11.5

kinase NN 1.8 9.7
concavity 2 8.5
epotn 2.7 8.5

transferase NN 1.8 10.6
concavity 1.7 9.4
epotn 2 8.9

oxidoreductase NN 2.1 12
epotn 3.3 9.4
concavity 3 9.1

catalytic general NN 1.8 12.5
epotn 3 9.8
concavity 2.2 10.7

DNA/RNA interacting NN 1.8 7.8
epotn 1.7 7.4
hydrofil 2.5 7.4

negative ion binding NN 3.2 21.8
epotn 5 19.2
concavity 3.5 18

smallmolecule NN 2.3 14.1
epotn 3.5 12.4
concavity 2.5 13.8

carbohydrate NN 2 15.4
epotn 6 14.4
rufness 5 12.9

lipid-Interacting NN 2.4 17.3
hydrofob 6.5 16.3
epotn 7 15.5

metal pos. ion binding NN 2 36.3
negepotn 10.8 23.9
concavity 14.4 27.9
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