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ABSTRACT

Oxanine having an O-acylisourea structure was
explored to see if its reactivity with amino group is
useful in DNA microarray fabrication. By the chemi-
cal synthesis, a nucleotide unit of oxanine (Oxa-N)
was incorporated into the 5’-end of probe DNA
with or without the -(CH2)n- spacers (n=3 and 12)
and found to immobilize the probe DNA covalently
onto the NH2-functionalized glass slide by one-pot
reaction, producing the high efficiency of the target
hybridization. The methylene spacer, particularly
the longer one, generated higher efficiency of the
target recognition although there was little effect on
the amount of the immobilized DNA oligomers.
The post-spotting treatment was also carried out
under the mild conditions (at 25 or 428C) and the
efficiencies of the immobilization and the target
recognition were evaluated similarly, and analogous
trends were obtained. It has also been determined
under the mild conditions that the humidity and
time of the post-spotting treatment, pH of the
spotting solution and the synergistic effects with
UV-irradiation largely contribute to the desired
immobilization and resulting target recognition.
Immobilization of DNA oligomer by use of Oxa-N
on the NH2-functionalized surface without any
activation step would be employed as one of the
advanced methods for generating DNA-conjugated
solid surface.

INTRODUCTION

The DNA microarray is one of the most powerful
biotechnological tools used to conduct high-throughput
analysis of DNA sequences, genetic variations and gene
expressions (1–3). To develop efficient DNA microarray
systems, one of the most essential and important subjects
is how to immobilize probe DNA oligomers on the solid
surface so that the resulting hybridization between the
targets and the probe is detected clearly and the array
can be stored for long periods without cleavage of the
probes (4–6). For this purpose, fabrication systems
generating covalent bondings between the probe and the
solid surface is preferred since DNA probes, which are
tightly immobilized on the surface by the covalent bond
except in a few cases such as thiol-gold conjugating (7),
provide high stability of the arrays and reproducibility of
the data obtained (4–6,8,9).
For the fabrication of DNA microarray systems, both

probe DNA oligomers and solid surfaces are usually
modified with reactive organic functional groups (6,8,9),
and then by utilizing the chemical activation employing
appropriate reagents, covalent bonding is formed between
the probe and surface (4–6,8,9). Several functional
groups such as carboxyl, phosphate, aldehyde and
amino groups are commonly introduced, and therefore,
the relevant chemical activation steps have also been
developed according to the combination of the introduced
functional groups (6,8–15).
Amino groups, for instance, have been chiefly employed

for both the probe and the surface because of its easy
preparation, stable functionality and wide applicability.
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To attach the probe DNA oligomers covalently on the
NH2-functionalized surface, the solid surface modified
with amino groups are subsequently subjected to chemical
activation by use of homobifunctional linkers such as
disuccinimidyl glutarate (DSG), phenylene diisothiocya-
nate (PDC) (13,16), etc. Although such surface-activation
strategies are frequently adopted for covalent bonding
formation in DNA microarray fabrication, they have
some drawbacks that the activated surface has no
long life and the surface should therefore be activated
just prior to use, and during the cross-linking reaction,
undesirable by-products remain on the surface (6,16).
Also, there is a high possibility for the activated groups
to react with free amino groups on the same surface or
with the amino groups of DNA nucleobases, which
inactivate the immobilized probes (6,16).
As another approach, probe DNA oligomer is subjected

to chemical activation step and then the activated probe
DNA employed for the covalent bonding formation on
the surface (6,8,10–12). For instance, when the probe
DNA oligomers with carboxyl or phosphate groups at
the ends are immobilized on the NH2-functionalized
surface, dehydration reagents such as dicyclohexylcarbo-
diimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl)carbo-
diimide (EDC), etc. are employed usefully for their
activation (17–19). Such probe-activation strategies, how-
ever, have several fundamental problems in DNA micro-
array fabrication. Since most of the DNA microarray
fabrications are based on robotic-spotting process, the
probe should be prepared as a reproducible or control-
lable form for obtaining stable and reliable immobiliza-
tion performance. However, activated carboxyl or
phosphate groups do not have a sufficiently long half-life
in aqueous conditions, because the attached activator
group is easily hydrolyzed (17) so that the activated
DNA probes are inactivated. In addition, much excess
amount of the dehydration reagent is required compared
to the probe DNA oligomer, and therefore, by-products
are formed. Also, the sample solution containing only
the activated probe DNA oligomers, which would be
ideal, cannot be obtained easily by general purification
methods (10–12).
As mentioned above, in the processes of DNA

microarray fabrication, activation strategies, which
have been used widely for covalent bonding formation
between the probe and surface, still possess technical
problems. Consequently, simple and direct covalent
bonding fabrication method, which does not require
additional activation steps and leaves no by-products,
is preferred.
In the present study, we employed oxanine (Oxa) as

a new linker for mediating direct covalent bonding
reaction for the immobilization of probe DNA oligomer
on the NH2-functionalized surface in one-pot mode,
as shown in Figure 1. Oxa was identified in 1996 as a
unique lesion generated as one of the main deamination
products of guanine (Gua) by NO- or HNO2-induced
nitrosative oxidation (20–28) and the formation mecha-
nism has been identified in detail (29–31). Since Oxa has
an O-acylisourea structure, an activated-carboxyl group,
as illustrated in Figure 2A, Oxa is expected to react with

amino or thiol group of biomolecules (32,33). However,
the practical use of such a unique function has not
yet been focused on until date. Recently, we have
developed a solid-phase chemical synthesis procedure for
incorporating Oxa into DNA oligomers (34), so that it is
possible to employ Oxa-containing DNA oligomers in the
field of biotechnological applications such as DNA
microarray fabrication. Probe DNA molecules were
prepared by incorporation of phosphoramidite monomer
of deoxyoxanosine (dOxo, deoxynucleoside of Oxa) into
the 50-end of DNA oligomers with or without fluorescence
labeled at 30-end by the chemical synthesis. They were then
spotted on the NH2-functionalized glass slide, and
subsequently subjected to the post-spotting treatments
such as baking process (conventional method) or mild
treatment (substitution method newly adopted in this
study). Then, the performance of Oxa as a linker was
evaluated by investigating the immobilization efficiency
and hybridization efficiency. This study shows that use of
Oxa as a linker is efficient for covalent attachment of
probe DNA in one-pot mode even under the mild
conditions and therefore practically appropriate for
DNA microarray fabrication.

MATERIALS AND METHODS

Materials

Reagents for DNA oligomer synthesis including CPG
column and appropriately protected normal nucleosides
were obtained from Glen Research (Sterling, VA, USA)
and solvents for the synthesis from Applied Biosystems
(Foster, CA, USA). Other organic solvents were pur-
chased from Nacalai Tesques (Osaka, Japan) and all other
chemicals from Wako Pure Chemicals (Osaka, Japan).
The glass slides and several NH2-functionalized glass
slides [25.4� 76.2mm (�0.05mm)] were obtained from
Matsunami (Osaka, Japan), Corning (Corning, NY) and
Nunc (Wiesbaden, Germany).

Figure 1. Schematic diagrams for the use of Oxa as a linker to directly
immobilize probe DNA oligomers on the NH2-functionalized surface.
Through the activation-free reactivity of Oxa-nucleotide unit (Oxa-N)
with amino groups, the probe DNA oligomers with Oxa-N (Oxa-Probe,
Oxa-c3-Probe and Oxa-c12-Probe) are covalently attached on the
surface in one-pot reaction.
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Instrument systems

For purification of synthesized probes and target DNA
oligomers, an RP-HPLC system consisting of a Tosoh
PX-8020 (controller), DP-8020 (pump), CO-8020 (tem-
perature controller) and PD-8020 (diode detector) and
Ultron VX-ODS column [150� 4.6mm (for analysis) or
150� 6.0mm (for purification), 5 mm; Shinwa Co. (Kyoto,
Japan)] were used. Chemical synthesis of DNA probes and
target DNA oligomers was carried out on an Applied
Biosystems 3400 DNA synthesizer [Applied Biosystems
(Foster, CA)]. UV spectra of DNA oligomers were
measured on a Shimadzu UV-260 UV-Vis spectropho-
tometer equipped with an SPR-5 temperature controller.
The DNA oligomers were spotted on the glass slides with
an inkjet spotter [custom built by NGK Insulators
(Nagoya, Japan)]. The spotted glass slides were scanned
with DNA MicroArray Scanner Model G2505A of
Agilent Technologies (Palo Alto, CA, USA) or Array
WoRx of Applied Precision (Issaquah, WA, USA).

Probe and target DNA oligomers preparation

Probe DNA oligomers with Oxa-nucleotide unit (Oxa-N)
at the 50-end were prepared by the solid-phase chemical

synthesis procedure, as reported previously (34).
The probe sequence, 50-d(TGTTGTCGAAAATGTCAA
CG)-30 (XDHp), was designed from the antisense part of
the xylitol dehydrogenase gene (XDH) from Pichia stipitis.
After the synthesis of XDHp, Oxa-N was incorporated at
the 50-end in the final coupling step. Three kinds of probe
DNA oligomers with Oxa-N were synthesized; one is the
wild type (Oxa-Probe) containing Oxa-N at the 50-end and
the others are those in which carbon 3 (–(CH2)3–) and
carbon 12 (–(CH2)12–) spacers are inserted between
XDHp and Oxa-N (namely, Oxa-c3- and Oxa-c12-
Probes, respectively) as shown in Figure 1. For the
analysis of the immobilization efficiency, probe DNA
oligomers labeled with fluorescein [�exmax =495 nm,
�emmax =519 nm, emax=75 000 (M�1 cm�1)] at the 30-end
were prepared by using fluorescein-bound CPG column
(Glen Research).
For the analysis of the hybridization efficiency of the

probe DNA oligomers immobilized on the glass slide, two
types of XDH target sequences, 50-d(CGTTGACATTT
TCGACAACA)-30 (short XDH target; XDHt-S) and
50d(CTGCTGCTGTCGCCAAGACCTTCGGTGCTAA
GGGTGTCATCGTCGTTGACATTTTCGACAACAA
GTTGAAGATGGCCAAGGACATTGGTGCTGCTA
CTCACACCTT)-30 (long XDH target; XDHt-L,
underlined bases are the same sequence as XDHt-S)
were prepared and their 50-ends were labeled with
Cy3 [�exmax =547 nm, �emmax =563 nm, emax=136 000
(M�1 cm�1)]. The probe and target DNA oligomers used
in this study are listed in Table 1.

Preparation of the amine-functionalized surface

The NH2-functionalized surface was prepared on glass
slides as follows. After 10min ultrasonication in acetone
and 10min vacuum drying, to prepare a hydroxyl group-
enriched surface, treatment in Piranha solution
(70% H2SO4, 30% H2O2) was carried out at 558C for
30min. After cleaning by sonication in methanol, metha-
nol/toluene [1:1 (v/v)] and toluene (for 10min each),
silanization was performed by immersing the glass
slides in 3-aminopropyl-triethoxysilane (APTS) solution
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Figure 2. (A) Covalent bond-forming reaction of Oxa with amine-
containing molecules. Oxa has an O-acylisourea structure, in which
carboxyl group is activated by carbodiimide in its base-ring (left), so
that Oxa reacts with amino group to make amide bond without any
additional activation (right). (B) The pH-dependent change of the
reactivity of Oxa with hexylamine. 20-deoxyoxanosine (dOxao)
(2.5mM) was incubated with hexylamine (25mM) for 4 h in several
universal buffer systems with different pH (pH 5.0, 7.4, 9.0, 10.0, 11.0
and 12.0) composed of borate, ascorbate and phosphate. Uracil was
added to the reaction mixture as an internal standard and the
components were separated by RP–HPLC and the conversions
were estimated on the basis of the peak areas of the product and
uracil. RP–HPLC condition: elution; a gradient of 0% (0min)–20%
(10min)–60% (20min) of CH3CN in 100mM TEAA buffer (pH 7.4) at
a flow rate of 1ml/min, column; Ultorn VX-ODS column
(150� 4.6mm, particle size being 5 mm), temperature; ambient.

Table 1. Probe and target DNA oligomers used in this study

Probe DNA oligomers
Oxa-Probe 50-d(OTGTTGTCGAAAATGTCAACG)-30

Oxa-c3-Probe 50-d(Oc3TGTTGTCGAAAATGTCAACG)-30

Oxa-c12-Probe 50-d(Oc12TGTTGTCGAAAATGTCAACG)-30

Oxa-Probe-F 50-d(OTGTTGTCGAAAATGTCAACG F)-30

Oxa-c3-Probe-F 50-d(Oc3TGTTGTCGAAAATGTCAACG F)-30

Oxa-c12-Probe-F 50-d(Oc12TGTTGTCGAAAATGTCAACG F)-30

Target DNA oligomers
Cy3-XDHt-S 50-d(Cy3 CGTTGACATTTTCGACAACA)-30

Cy3-XDHt-L 50-d(Cy3 CTGCTGCTGTCGCCAAGACCT
TCGGTGCTAAGGGTGTCATCGT
CGTTGACATTTTCGACAACAAG
TTGAAGATGGCCAAGGACATT
GGTGCTGCTACTCACACCTT)-30

Non-complementary 50-d(Cy3 GCAACTGTAAAAGCTGTTGT)-30

O: Oxanine, F: Fluorescein, c3: Carbon 3 spacer (–(CH2)3–), c12:
Carbon 12 spacer (–(CH2)12–), Cy3: Cy3 fluorescence label; In Cy3-
XDHt-L, underlined bases are the same sequence as Cy3-XDHt-S.
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(2% in toluene). During the silanization, containers were
placed in an orbital shaker with gentle shaking (70 r.p.m.)
at room temperature. The glass slides were then cleaned in
an ultrasound bath in toluene, toluene/methanol [1:1(v/v)]
and methanol (for 10min each). The glass slides were
baked at 1108C for 1 h. The prepared NH2-functionalized
glass slides were stored in vacuo at room temperature
immediately prior to use.

Spotting, post-spotting treatment and analyses
of immobilization and hybridization efficiencies:
procedures for evaluation of the modifier as a linker

To see the effect of the modifiers attached to the 50-end on
how efficiently probe DNA oligomers were formed on the
NH2-functionalized surface (the performance of the
modifier as a linker), two different evaluations were
employed. One is the immobilization efficiency evaluated
by immobilizing probes labeled with fluorescein at the
30-end (Oxa-Probe-F, Oxa-c3-Probe-F and Oxa-c12-
Probe-F) and by measuring the fluorescence intensity of
each spot. The other is the hybridization efficiency of the
target DNA oligomers, labeled with Cy3 at the 50-end,
with the probes without the fluorescein-label (Oxa-Probe,
Oxa-c3-Probe and Oxa-c12-Probe). The resulting
Cy3-fluorescence intensity of each spot was measured,
assuming that the Cy3-fluorescence intensity is correlated
with the quantity of the active probe DNA oligomers
immobilized on the glass slides.
First, on the NH2-functionalized glass slides, probe

DNA oligomers were spotted as follows; aqueous solu-
tions of probe DNA oligomers (100 pmol/ml) were mixed
in the ratio of 1:1 (v/v) with an inkjet-spotting solution
consisting of glycerin, glycerol and disaccharides (35), the
pH of which was controlled by using sodium-phosphate
buffers (10mM). About 100 pl of these spotting probe
solutions (50 pmol/ml) was spotted at 3mm spacing on the
NH2-functionalized glass slides with an inkjet spotter.
As shown in Figure 3A, the spotted DNA probes were
round in shape (�80 mm in diameter) and clearly separated
from each other. No satellite spot was observed.
After the inkjet spotting of the probes, the post-spotting

treatment, which is required for the efficient attachment of
probe DNA oligomer, was employed on the spotted glass
slides. Baking process carried out at 808C for 1h was
employed as the conventional method. As substitution
method for baking process, the mild conditions (e.g. at 25
and 428C) were also employed as described in the the next
section (Exploration of new conditions of post-spotting
treatments).
After the post-spotting treatments, in order to remove

the unreacted DNA probes from the slides, the incubated
slides were rinsed with 2� SSC (saline sodium citrate)
containing 0.1% SDS (sodium dodecyl sulfate, 15min),
soaked in 2� SSC containing 0.2% SDS (5min), washed
with water, soaked in ethanol (1min) and air-dried at
room temperature (30min). To inactivate unspotted areas,
the rinsed slides were incubated in a blocking solution
containing 1% bovine serum albumin (BSA), 4� SSC and
0.5% SDS at 428C for 45min. The prepared slides with the
immobilized probe DNA oligomers were stored in a

desiccator, and used to see the effects of the modifiers on
the efficiency of the immobilization (see IMB of
Figure 3A).

Then, the hybridization efficiency was analyzed in
another method for evaluating the performance of the
modifier as a linker. The prepared slides were treated with
hybridization buffer (5� SSC containing 0.5% SDS)
containing the target DNA oligomers (10 pM). After
covering with a cover slip, the glass slides were kept at
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Figure 3. (A) Fluorescence intensity data obtained for the spots. After
the baking process (incubation for 1 h at 808C) of the spotted glass slide
was employed as conventional post-spotting treatment, the immobiliza-
tion efficiency and hybridization efficiency of each spot were analyzed
for the evaluation of the performance of Oxa as a linker, as explained
in Materials and Methods section. The spots in the line of IMB show
the fluorescence from fluorescein attached to the probe DNA
oligomers, which indicates the efficiency of the immobilization, and
those in the line of HYB the fluorescence from Cy3 attached to the
target DNA oligomers (Cy3-XDHt-L, a long XDH target of 106-mer)
hybridized with the probe, which is referred to the hybridization
efficiency and also indicates the efficiency of the probe immobilization.
It should be noted that the spots are named according to the name of
the probe DNA oligomers as listed in Table 1 and that in the case of
IMB and HYB, probes with and without fluorescein label were used,
respectively. (B) The bar graphs representation of the average
fluorescence intensities (arbitrary unit) of the spots in (A) [emax

(fluorescein)=75 000 (M�1 cm�1) and emax (Cy3)=136 000
(M�1 cm�1)]. The error bar represents the SD of fluorescence intensity.
The meaning of immobilization and hybridization in the box is the
same as explained in (A).
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428C for 16 h. Then, to remove non-hybridized target
DNA oligomers, the incubated slides were immersed in 2�
SSC containing 0.1% SDS (5min), and finally agitated in
a gently shaking bath in 1� SSC (5min) and 0.1� SSC
(5min). After spin-drying, the slides were stored in a
desiccator, and used to see the hybridization efficiency of
the immobilized probe DNA oligomers (see HYB of
Figure 3A).

The glass slides were scanned with a microarray scanner
such as DNA MicroArray Scanner Model G2505A or
Array WoRx, and the fluorescent image intensities and the
location of each analyte spot on the slides were measured
using the mapping software, GenePixPro Ver 5.0 or 5.2 of
Molecular Devices (Sunnyvale, CA, USA). The fluores-
cence intensity data obtained for 90 spots for each type of
probe DNA oligomer were used for the calculation of the
statistical data, which are shown in Figure 3B.

Exploration of new conditions of post-spotting treatments

As described in the previous section, baking process of the
spotted slide carried out at 808C for 1 h, was used as
conventional post-spotting treatment. In this study, some
other substitution methods, in particular, incubated under
the mild conditions (e.g. 25 and 428C), were explored as
new post-spotting treatments and their effects on the
performance of the modifier as a linker were compared
with those by conventional baking process.

The same procedures of spotting, washing and hybrid-
ization steps were carried out on the same probe and
target DNA oligomers as adopted in the previous section,
except for the employment of the new conditions or
combinations of post-spotting treatments. As shown in
Figure 4, the temperature, humidity and time of the post-
spotting treatments, pH of the spotting solution and the
combination of conventional or new post-spotting treat-
ments were investigated. For the evaluation of the
performance of the modifier as a linker, the efficiencies
of immobilization and hybridization were analyzed, and
their analyses procedures were conducted in the same way
as described in the previous section, unless otherwise
specified.

RESULTS AND DISCUSSION

Performance of Oxa as a linker

Covalent bonding formation with amines. As a preliminary
trial, Oxa was explored for its property as a linker,
for instance, its reactivity with primary amines and the
stability of the resulting product (Supplementary Data,
Table S1 and Figures S1 and S2). Since Oxa contains an
O-acylisourea structure in the 6-membered ring in
which the carboxyl group moiety is bound to the
carbodiimide group, as shown in Figure 2A, Oxa is
expected to react with amino groups readily to result
in the amide-bond formation without any further activa-
tion step of carboxyl group. When 2.5mM dOxo was
incubated in the presence of 25mM hexylamine, a peak
due to the product was observed in RP–HPLC chromato-
gram (Supplementary Data, Figure S1). Spectroscopic
analysis including NMR (Supplementary Data, Figure S2)

and mass spectroscopy (data not shown) indicated
that O-acylisourea structure in Oxa of dOxo reacted
with the amino group of hexylamine, resulting in the ring-
opened product (dOxo-hexylamine, 1-(2-deoxy-
b-D-ribofuranosyl)-5-ureido-1H-imidazole-4-carboxylic
acid hexylamide), as shown in Figure 2A. This amide-
bond formation was observed in the confined pH range of
�6.5� 11 as shown in Figure 2B. The rate constant
for this reaction was measured at pH 9.5 and 258C as
2.30� 10�4mM�1min�1 (second-order reaction). Further,
the stability of the N-glycosidic bond was analyzed and for
instance, the sufficiently long half-life at pH 9.5 and 428C
was obtained at 841 h (Supplementary Data, Table S1).
It should be noted that the O-acylisourea structure of

Oxa can be maintained as ring-closed structure up to
relatively high pH conditions [pKa=9.4 (36)].
Considering both that the optimum condition for the
active amino groups is above pH 9 and that Oxa is stable
in alkali conditions, the use of Oxa as a linker is suitable
for the covalent attachment of the probe DNA oligomers
on the NH2-functionalized surface. Based on these data
and the functional merits, Oxa was employed as a new
linker, in the present study.

Direct immobilization of Oxa-containing DNA oligomers
onto NH2-functionalized glass slides. As shown in the
previous section and Figure 2, Oxa reacted with amino
groups without any activation step and the amide bond
was formed in relatively high pH conditions (pH 9–10).
It was expected, therefore, that Oxa could provide efficient
covalent bonding formation with amino groups, that is,
it could be utilized as a new linker for simple and
direct covalent attachment of the probe DNA oligomers
on the NH2-functionalized surface. To see if this is the
case, fluorescein-labeled probe DNA oligomers
(Oxa-Probe-F, Oxa-c3-Probe-F and Oxa-c12-Probe-F)
were spotted on the NH2-functionalized glass slides, and
the glass slides were subjected to the baking process
(1 h incubation at 808C), conventional post-spotting
treatment. The slides were washed to remove the
unreacted probe DNA oligomers and then the fluores-
cence intensity of each spot was measured for estimating
the amount of DNA probes immobilized. The typical
fluorescein fluorescence of the spot is shown in the line of
IMB in Figure 3A and the intensities of the spots were
measured by the scanner. It was found, as represented in
Figure 3B, that the fluorescence intensities of the spots of
probe DNA oligomers with Oxa-N were 1761 (Oxa-
Probe), 1805 (Oxa-c3-Probe) and 2032 (Oxa-c12-Probe)
(black bars). Although the longer spacer such as
–(CH2)12– was found to increase the immobilization
efficiency, it was not remarkable. The spotted probe
DNA oligomers with Oxa-N were further washed by the
use of high-salt 5� SSC for over 16 h. In the cases of the
probe DNA oligomers with Oxa-N, the changes in
fluorescence intensities were negligible while in the case
of those without Oxa-N, significant decrease in the
intensities observed (data not shown), indicating that
Oxa-N covalently immobilized the probes.
The efficiencies for the hybridization of the target

DNA oligomers with the probes immobilized on the
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75% for 48 h), and the black bars by another mild condition of post-spotting treatment (at 428C and RH 50% for 24 h). [emax (fluorescein)=75 000
(M�1 cm�1)]. (B) Hybridization efficiency obtained for the probes with Oxa-N at the 50-end (Oxa-Probe, Oxa-c3-Probe and Oxa-c12-Probe). The
hybridization efficiency of each spot was analyzed for the evaluation of the performance of the modifier as a linker. The representation of gray and
black bars in the figure and the mild conditions of post-spotting treatment are the same as explained in (A). [emax (Cy3)=136 000 (M�1 cm�1)].
(C) Time-dependent performance of Oxa as a linker under the mild conditions of post-spotting treatment (at 428C and RH 50%). The resultant
hybridization efficiency was analyzed for the evaluation. Probes with Oxa-N at the 50-end (Oxa-Probe, Oxa-c3-Probe and Oxa-c12-Probe) were used
and the target was Cy3-XDHt-L. The vertical axis shows the Cy3-fluorescence intensities of the spots including the duplexes between the probes and
the target. (D) Effect of the spotting solution pH on the covalent bonding formation between Oxa and amino group on the surface. The resultant
hybridization efficiency and its time-dependent change were analyzed for the evaluation of the performance of Oxa as a linker. The probe was Oxa-
Probe and the target Cy3-XDHt-L. The black bars were the results obtained without the pH control, and the gray bars were the results obtained by
adding the same amount of phosphate buffer solution to the spotting solution (final pH 9.5). (E) Effect of the combinations of the post-spotting
treatments on the performance of Oxa as a linker. First, the mild conditions of the post-spotting treatment (72 h incubation at 428C and RH 50%)
were employed on the glass slide, in which Oxa-Probe in original spotting solution was spotted and then, the glass slide were subsequently
subjected to other conventional post-spotting treatments such as (a) none, (b) baking (at 808C for 2 h) and (c) UV irradiation at 600mJ. Bar (d) was
obtained without the employment of the mild treatment but only by UV irradiation at 600mJ. All the spots were then hybridized with the target
Cy3-XDHt-L and measured for Cy3-fluorescence intensities. The resultant hybridization efficiency was used for the evaluation of the performance
of Oxa as a linker.
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glass slide were also investigated. Oxa-Probe, Oxa-
c3-Probe and Oxa-c12-Probe, which have no fluorescein-
label, were spotted analogously on the NH2-functionalized
glass slide and the spotted slides were also subjected
to baking process (1 h incubation at 808C). After such
a conventional post-spotting treatment and washing
steps were performed, the target DNA oligomer, a 106-
mer (Cy3-XDHt-L) that has a 20-base sequence in the
middle complementary to the probe and whose 5’-end
was labeled with Cy3 was hybridized. Cy3-fluorescence
intensities of each spot were measured as shown in
the line of HYB in Figure 3A. As depicted by the bar
graphs in Figure 3B, the three types of probe DNA
oligomers with Oxa-N showed high Cy3-fluorescence
intensities. The intensities were 3227 (Oxa-Probe), 3678
(Oxa-c3-Probe) and 4992 (Oxa-c12-Probe) (gray bars).
It was suggested that the longer alkyl spacer would
produce the larger efficiency for the target recognition.
Analogous results were obtained when Cy3-XDHt-S
was used as a target, and when non-complementary
was utilized as a target, non-specific adsorption of
the target was not detected. Several kinds of commercially
available aminosilane-modified glass slides were also
tested, and analogous results in immobilization
and hybridization efficiencies were obtained (data
not shown).

Exploration of new post-spotting treatments

Effects of temperature and humidity on the performance of
Oxa as a linker. If the probe DNA oligomer and the
functionalized surface are prepared in the same ways, the
post-spotting treatment becomes the determinant step,
which influences the performance of the modifier as linker
on the solid surface. As described in the previous section,
baking process of the spotted slide carried out at 808C for
1 h was employed as conventional post-spotting treatment.
However, such a harsh condition does not seem to be
proper for the natural property of probe DNA oligomers,
so that mild conditions would be ideal for post-spotting
treatment, if covalent attachment is possible. In this study,
some other substitution methods, which are more
compatible to probe DNA oligomer, were investigated
as new post-spotting treatments because Oxa is expected
to show sufficient reactivity with amino group in the mild
conditions even without any activation step.

Two kinds of mild treatments, in which the spotted
glass slide was incubated at 25 and 428C, were employed
as the post-spotting treatment and the performance of
the modifier as a linker was evaluated by investigating its
immobilization and hybridization efficiencies. The three
probe DNA oligomers with Oxa-N at the 50-end
and fluorescein-label at the 30-end were spotted on the
NH2-functionalized glass slides and then, each mild
treatment was employed on the spotted slides as the
post-spotting treatment by controlling relative humidity
(RH). First, in the case of mild treatment at 258C, it was
found that at this temperature condition, the fluorescence
intensities increased with increase in RH and reached a
plateau when RH was 75% (data not shown). The data
obtained at 258C and RH 75% for 48 h are depicted

by the black bars in Figure 4A. The average fluorescein
intensities of the immobilized probe DNA oligomers with
Oxa-N were 3991 (Oxa-Probe-F), 4025 (Oxa-c3-Probe-F)
and 4203 (Oxa-c12-Probe-F). In the experiments at 428C,
the immobilization efficiencies of the probes were also
investigated by controlling RH. In the experiments at
428C for 24 h, the highest immobilization data was
obtained at RH 50%, as represented by the gray bars in
Figure 4A. The average fluorescein intensities obtained
were 5096 (Oxa-Probe-F), 5139 (Oxa-c3-Probe-F) and
5298 (Oxa-c12-Probe-F).
Then, the hybridization efficiency was also analyzed for

the probe DNA oligomers obtained by the employment of
the same mild treatments (post-spotting treatment) as
performed in the experiment for the immobilization
efficiency. The probes without fluorescein-label were
used and Cy3-XDHt-L was the target. At 258C and RH
75% for 48 h, the Cy3-fluorescence intensities of the
targets were measured to be 3005, 3582 and 4915 for Oxa-
Probe, Oxa-c3-Probe and Oxa-c12-Probe, respectively, as
shown by the black bars in Figure 4B. The average values
obtained at 428C and RH 50% for 24 h were 5590, 6268
and 9551 for Oxa-Probe, Oxa-c3-Probe and Oxa-c12-
Probe, respectively, as represented by the gray bars in
Figure 4B. The results obtained at 428C and RH 50% for
24 h were found to be higher than the results obtained
by the baking process as post-spotting treatment
(Figure 3A and B). These results indicate that the
performance of Oxa to make a covalent bonding
formation with amino groups on the surface is effective
even in such mild conditions, resulting in the high-
hybridization efficiency. Analogous results were obtained
when Cy3-XDHt-S was used as a target, and when non-
complementary was utilized as a target, non-specific
adsorption of the target was not detected.

Effects of treatment time and pH on the performance of
Oxa as a linker. Another parameter responsible for the
performance of Oxa as a linker may be the time of post-
spotting treatments. Several spotted glass slides were
identically prepared by spotting the probes (Oxa-Probe,
Oxa-c3-Probe and Oxa-c12-Probe) on the NH2-
functionalized surface. Then, under the employment of
post-spotting treatments at 428C and RH 50% (mild
treatment), the treated slides were taken according the
treatment time. For each slide sample, the resultant
hybridization efficiency measured by Cy3-fluorescence
intensities (the target: Cy3-XDHt-L) was investigated for
the evaluation of the time-dependent performance of Oxa
as a linker. As shown in the bar graphs in Figure 4C, the
hybridization efficiency increased depending on the time
of the post-spotting treatment. Analogous results were
obtained when Cy3-XDHt-S was used as a target, and
when non-complementary was utilized as a target, non-
specific adsorption of the target was not obtained.
Next, the influences of the pH values on the covalent

bonding formation between Oxa and amino group on the
surface were investigated by controlling the pH of the
spotting solutions. The resultant hybridization efficiency
was used for the evaluation of the performance of Oxa as
a linker. The probe DNA oligomers employed were
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Oxa-Probe and the target Cy3-XDHt-L. The pH value of
the original spotting solutions was �7.5. The pH of the
spotting solution was adjusted by adding the same portion
of 10mM sodium phosphate buffer with different pHs to
the original spotting solutions. After the spotting of the
probes, the glass slides were subjected to the post-spotting
treatment at 428C and RH 50%. As the pH was raised
from �6 to 10, the efficiency was increased at the higher
pH, that is, the reaction of Oxa and amino group on the
surface was increased as the pH of the spotting solution
increased (data not shown). However, as shown in
Figure 4D, as the incubation time increased, the efficiency
decreased after 24 h at high pH, such as pH 9.5, while in
the original spotting solution, which does not contain
additional salts of sodium phosphate, the efficiency
increased with time. These results indicated that although
high pH and salts enhance the formation of amide
bonding between Oxa and amino group on the surface,
they may also cause undesirable influence when the spots
are formed and the concentrations of the components
raised accordingly as the time of post-spotting treatments
elapsed.

Effects of the combination of post-spotting treatments on
the performance of Oxa as a linker. As mentioned above,
when Oxa is employed as a linker of probe DNA
oligomers, the mild conditions (25 or 428C) can be
employed efficiently as new post-spotting treatment.
Such a mild condition of new post-spotting treatment
(mild treatment), which is currently adopted here, could
be more adequate for the quality or the nature of probe
DNA oligomer than the harsh condition of conventional
method (baking process). In the present section, the new
mild treatment or its combination with the conventional
post-spotting treatments such as baking process or UV-
irradiation were employed on the spotted glass slides.
Then, the synergistic effects were investigated by analyzing
the hybridization efficiency, which is closely correlated
with the linkage performance of the spotted probe DNA.
Oxa-Probe and Cy3-XDHt-L were employed as a probe
and a target, respectively. The original spotting solution
was used for the spotting, and the new mild treatment of
post-spotting treatment was carried out at 428C and RH
50% for 72 h. Compared to the result obtained by the new
mild treatment only (Figure 4E-a), as shown in
Figure 4E-b, the combination of the new mild treatment
and the following baking process (at 808C for 2 h) did not
create any synergistic effects but lowered the efficiency. On
the other hand, as presented in Figure 4E-c, the
combination of new mild treatment with UV irradiation
with a total energy of 600mJ, which mediates reactive
radicals to induce the cross-linkage among the probes, was
observed to show synergistic effect, more than double
efficiency than the result obtained by the new mild
treatment only. This result is probably due to the
increased amount of immobilized probe DNA oligomers
on the surface, in which first, the covalently attached
probes are formed though the reactivity of Oxa and then,
the non-covalently attached probes are cross-linked non-
specifically by the UV irradiation. UV irradiation alone
(Figure 4E-d) did not show such desirable results.

Consequently, such sequential employments of post-
spotting treatments, in particular, a combination of the
new mild treatment and UV irradiation, will be usefully
used for the fabrication of highly efficient DNA micro-
array systems.

CONCLUSION

To fabricate DNA microarray systems that recognize
targets with high reproducibility and without error and
are stable during storage, the development of efficient
methods by which probe DNA oligomers are immobilized
on the solid surface through the covalent bonding
formation between the probe and the solid surface is
required. Also, it is recommended that such a covalent
bonding reaction is performed under mild conditions so
that undesirable by-products are not produced on the
surface.

In the present study, Oxa, which is one of the unique
lesions generated from Gua by NO- or HNO2- induced
nitrosative oxidation and has an O-acylisourea structure
reactive to amines, was investigated as a functional linker
to see if it is useful in DNA microarray fabrication carried
out under mild conditions. By solid-state chemical
synthesis, a nucleotide unit of Oxa (Oxa-N) was incorpo-
rated into the 50-end of probe DNA oligomers with or
without the spacers such as –(CH2)3– and –(CH2)12–
between Oxa-N and the probe sequence, and utilized to
immobilize the probes onto the NH2-functionalized glass
slide surface.

For evaluating the performance of Oxa as a linker, two
analyses such as immobilization efficiency and hybridiza-
tion efficiency were performed. The former was estimated
by measuring the fluorescence intensity of the spots for the
probe DNA oligomers whose 30-end was labeled with
fluorescein and the latter by immobilizing the probe DNA
oligomers without fluorescein-labeling and measuring the
fluorescence intensity after the hybridization with the Cy3-
labeled target DNA oligomers.

Mild conditions were also explored as a new post-
spotting treatment for the efficient attachment of probe
DNA oligomer on the surface. The temperature and
humidity of the post-spotting treatment were controlled
and their effects on the performance of Oxa as a linker
were investigated. Under the mild conditions of post-
spotting treatment such as a temperature of 258C and a
RH of 75%, and 428C and RH 50%, it was found that
probe DNA oligomers with Oxa-N produce high efficien-
cies of immobilization and hybridization, and that longer
alkyl chain spacers lead to better recognition of target
DNA oligomers. In addition, the effects of some other
parameters such as the time of post-spotting treatment
and pH of spotting solutions were investigated to enhance
the covalent bonding formation of Oxa with amino group
on the surface. It was found that under the mild
conditions of post-spotting treatment, the performance
of Oxa as a linker increased linearly with the time of post-
spotting treatment, but that pH of spotting solution did
not give rise to the desirable improvement of the results
although at higher pH of the spotting solution, the
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covalent bonding formation of Oxa with amino group on
the surface was accelerated. The newly adopted mild
treatment and other conventional post-spotting treat-
ments were sequentially employed on the spots of probe
DNA oligomer with Oxa-N, and the synergistic effect
was found in the combination of the mild treatment
(428C and RH 50%) and UV irradiation with a total
energy of 600mJ.

Consequently, Oxa has been found to be useful to
covalently immobilize probe DNA oligomers onto the
NH2-functionalized glass slide by one-pot reaction under
the mild conditions. For covalently immobilizing probe
DNA oligomers by the conventional methods on the
solid surface, additional activation steps for probe and
surface are commonly employed, which require some
additional steps such as stringent washing, etc. and
produce undesirable by-products which reduce the
immobilization efficiency of the spotted DNA probe
and results in the low-hybridization efficiency. On the
other hand, the currently developed system in which
Oxa-N is employed as a linker and immobilization of
probe DNA oligomers can be performed under mild
conditions that requires no activation step and produces
no by-products. Also the resulting high target recogni-
tion efficiency is notable. The incorporation of Oxa-N in
the probe DNA oligomers as a linker would be
employed as one of the advanced methods for the
immobilization of the widely used NH2-functionalized
glass slides. Preparation of various types of DNA
molecules with Oxa-N would also be a useful tool for
the investigation of physiologically active DNA con-
jugates with other biological high molecules such as
proteins, which is one of the hottest but the most
difficult subjects in the current biochemistry and
molecular biology.
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