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Abstract
Variability in cell properties can be an important driving mechanism behind spatiotemporal patterns
in biological systems, as the degree of cell-to-cell differences determines the capacity of cells to
locally synchronize and, consequently, form patterns on a larger spatial scale. In principle, certain
features of spatial patterns emerging with time may be regulated by variability or, more specifically,
by certain constellations of cell-to-cell differences. Similarly, measuring variability in a system (i.e.
the spatial distribution of cell-cell differences) may help predict properties of later-stage patterns.

Here we apply and compare different statistical methods of extracting such systematic cell-to-cell
differences in the case of patterns generated with a simple model system of an excitable medium
and of experimental data by the slime mold Dictyostelium discoideum. We demonstrate with the help
of a correlation analysis that these methods produce systematic (i.e. stationary) results for cell
properties. Furthermore, we discuss possible applications of our method, in particular how these
cell properties may serve as predictors of certain later-stage patterns.

Background
In biological pattern formation a process of self-organiza-
tion and a breaking of spatial symmetry are sometimes
related. In physics symmetry breaking is often triggered by
random fluctuations, enabling the system to select a par-
ticular stable steady state. In biology, however, differences
between the constituents of the system may in a sense pre-
determine the outcome of symmetry breaking and can in
principle allow predicting the layout of resulting patterns.
This possibility to translate cellular variability into fea-
tures of patterns requires new methods of analyzing spati-
otemporal data. One set of methods in the core of this
endeavor, the reconstruction of variability distributions
from data, is the topic of the present paper.

In theoretical studies variability (sometimes refered to as
disorder) is now appreciated as a source of randomness
that, similarly to noise, can interact with the non-lineari-
ties of the system and systematically influence patterns.
For noise such influences are well known: Noise-induced
transitions and even noise-enhanced structure formation
have been explored in theoretical model systems [1,2] as
well as in nature (see, e.g., [3] for an overview of activities
in this field related to biology). Remarkably, this discus-
sion of stochastic contributions acting constructively can
be found on all spatial and temporal scales, from the
genetic level to the molecular and cellular levels and up to
the level of ecological pattern formation. If we discuss a
multicellular system, variability can be thought of as the
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spatial distribution of systematic cell-to-cell differences.
In contrast to dynamic noise, biological variability is a
static system property. In order to study the effect of vari-
ability on patterns in a biological system, one has to
reconstruct variability distributions from observable spa-
tiotemporal data. For better understanding the details
involved in reconstruction, it is convenient to comple-
ment the design of new analysis techniques by sample
data generated by mathematical model systems and then
putting similar restrictions on these sample data as in the
case of an actual experiment. With the help of such sam-
ple data one can test, how well the analysis tools are capa-
ble of handling experimental data [4,5]. A model system,
for which a regulation by variability could be a principal
mechanism (see, e.g., [6,7]), is the slime mold Dictyostel-
ium discoideum. In this example of biological pattern for-
mation individual cells aggregate under the influence of
the chemotactic signal cAMP and form a multicellular
organism [8]. Under nutrient deprivation single cells start
to emit cAMP into the environment. The molecules are
detected by neighboring cells via highly specific surface
receptors [9]. This initiates the intracellular autocatalytic
synthesis of additional cAMP by the enzyme adenylat
cyclase (ACA) and the subsequent segregation into the
environment. Time delayed receptor desensitization and
stopping of ACA activity are involved in the following
refractory period. Extracellular cAMP is degraded by mem-
brane-bound and segregated phosphodiesterase, which is
on the other hand regulated by its inhibitor. The coupling
of the underlying reaction kinetics with diffusion results
in wave propagation. As long as the local cAMP concentra-
tion increases in time, the cells react with positive chemo-
taxis, resulting in the periodic movement perpendicular to
the wave front, i.e. towards the origin of the chemical sig-
nal. The process of aggregation is accompanied by target
patterns and spiral waves of cAMP [10,11] and, at a later
stage, cell streams leading from the periphery to the center
of the territory [12-14]. At a later stage the cells have accu-
mulated to a cell mound in the center of the aggregation
territory. The advanced stages of the developmental cycle
include transitions into successive types of multicellular
aggregates and finally the formation of a differentiated
fruiting body with spores capable of germination (see [15]
for detailed information on D. discoideum life cycle).

We believe that in the case of D. discoideum variability is
responsible for certain stages of symmetry breaking in the
usual course of the developmental cycle (local pattern ini-
tiation, spatial distribution of cell streams, distribution
and proportions of differentiated cell types). A strong sup-
port for our hypothesis that indeed cell properties can
affect the collective patterns in D. discoideum has come
from the recent observation that direction and magnitude
of a cell's response to a signal pulse is indeed a cell prop-
erty, which remains constant in time [16] and therefore

falls into the general scheme outlined within the present
paper. In that work the behavior of single cells under peri-
odic cAMP signals has been analyzed and it is observed
that the characteristics of the gradient sensing response of
an individual cell at a certain time point strongly corre-
lates with that of the same cell at a later time point.

The structure of our paper is as follows: First we will for-
mulate spatiotemporal analysis tools capable of extracting
distributions of cellular properties (Section 2). Next we
will study for a simple model system of excitable media
(Section 3) how well pre-defined distributions can be
reconstructed from the simulated spatiotemporal patterns
with the help of these analysis tools (Section 5.1) and
lastly we will apply these tools to measured wave patterns
for D. discoideum (Section 4) and show that the recon-
structed distributions are indeed systematic: distributions
found for a particular time window strongly correlate with
those distributions of the same observable obtained for
other time windows (Section 5.2). In the conclusions
(Section 6) we place the process of variability reconstruc-
tion into the larger context of prediction schemes.

Spatiotemporal analysis tools
CA fluctuation number
Cellular automata (CA) are a useful mathematical
approach for studying, by numerical simulation, the glo-
bal patterns arising in a system on the basis of certain local
interactions [17,18]. In a series of previous studies spatio-
temporal filters have been formulated translating CA-type
neighborhood constellations into quantitative estimates
of a certain system property [19]. We have used these tools
to study the phenomenon of spatiotemporal stochastic
resonance [20], to quantify synchronization properties of
biological patterns [21] and to develop an algorithm for
evaluating independently the contributions of measure-
ment noise and internal noise to a spatiotemporal data set
[22]. All these applications were based upon the temporal
change of space-averaged observables.

Here we will formulate and study a spatially explicit vari-
ant of this fluctuation analysis and apply it to patterns
from excitable media. These tools can form a basis for
identifying and quantifying variability in spatiotemporal
data sets from biological systems.

Let  denote a two-dimensional spatial data set, i.e. a

square matrix of size N with components aij ∈ Σ, where Σ
is the set of possible states. The restriction to a square
matrix is only imposed for notational convenience. A time

sequence of such matrices (or "images") is a set { (t) ; t
= 1, 2, ..., NT}, again with some normalized (dimension-

less) time t and the number of images NT in the sequence.
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We formulate a spatiotemporal filter, which approximates
the contribution of noise to an observed dynamics by
studying the relative movement of neighbors of a particu-

lar cell  at a time t, i.e. by looking at changes of the

quantities  in

which serves as a means of separating directed and undi-
rected (eventually stochastic) change of the state of a cell.
If the discretization of the spatiotemporal data set in space
(due to the finite cell size) and time (due to the finite
number of images) is small enough, directed and stochas-
tic changes will have very different scales in time and
space. For means of separation, one has to assume that the
scales for the stochastic part will be smaller than the scales
present in the discretization of the data set and the time
scales of deterministic dynamics themselves. This leads to
a (suffcient) condition for a manifestation of noise in a

specific change at 

where the last two inequalities are subsidiary conditions
introduced for convenience and the sign function Sig [x]
gives 1, -1 or 0, if x is larger than, less than or equal to zero,

respectively. Each transition 

fulfilling the condition (2) gives a contribution

Averaging with respect to k leads to the final expression for
the spatially explicit version Ωij(t) of the CA fluctuation
number Ω(t):

where the term in the second row is either 0 or 1 filtering
the dynamics according to the fluctuation condition (2).
This quantity Ωij(t) attributes an estimate of the fluctua-
tion to each point of the spatiotemporal data set.

Variants of the mutual information
The mutual information I ([23]; see also [24]) has been
shown to characterize the degree of complexity and infor-
mation transport in complex biological systems [25,26].
The crucial idea is to analyze correlations over a spatial or
temporal distance due to an interaction (or transfer of
information) between the elements.

The general form of the mutual information I compares
pair probabilities pab of observing the symbol combina-
tion (ab) in the output sequence of some stochastic model
with the corresponding quantity papb of a reference model
of independent symbols:

where pa is the probability of observing the symbol a. The
quantities a and b in Eq. (5) run over the whole set Σ of
possible symbol states. When maximum likelihood esti-
mates are used for the probabilities pa and pab, it is conven-
ient to project the data under consideration onto a binary
state space Σ = {0, 1}.

Variants of applying the mutual information to the analy-
sis of some spatiotemporal pattern differ in the precise
definition of the joint event (ab), which leads to the pair
probability pab, and in the specific projection of the spati-
otemporal pattern onto a binary state space.

Figure 1 illustrates three different ways of defining the
event (ab) entering the definition (5) using experimental
data of D. discoideum pattern formation. In variant (a) the
temporal neighborhood is used, i.e. two incidents a and b
form a joint event (ab), when they are observed at two
consecutive time points. Note that this variant does not
involve spatial neighborhoods. In contrast, in variant (b)
the event (ab) is defined via spatial neighborhood in x-
direction. Variant (c) uses an arbitrarily chosen spatial ref-
erence point to define the joint event (ab). Here we focus
on variant (a). It should be noted, however, that in very
noisy data the variants (b) and (c) may show a better per-
formance in extracting variability. As in all these cases the
mutual information is computed for the time courses of
individual spatial points the result of analyzing a full spa-
tiotemporal data set is a spatial matrix Iij

A simple model of an excitable medium
In order to study the link between intrinsic cellular prop-
erties and the local signature of these properties in the spa-
tiotemporal patterns it is convenient to consider a simple
model of an excitable medium given by a cellular autom-
aton. In cellular automata the spatial discretization coin-
cides with the discrete nature of cells and the observed

aij
t( )

δij
t k( , )

δ δ δij
t

ij
t t t

ij ij
t

ij
t

a b b ij( ) ( ) ( ) ( ) ( , ) ( ,| |)
{ ; } { ,..., }= − ∈ =  1 ,,

aij
t( )

Sig Sigδ δ δ δij
t k

ij
t k

ij
t k

ij
t k( , ) ( , ) ( , ) ( , )−



 ≠ −



 ∧− +1 1 δδ δ δ δij

t k
ij
t k

ij
t k

ij
t k( , ) ( , ) ( , ) ( , ) ,− ≠ ∧ − ≠− +1 10 0

δ δ δij
t k

ij
t k

ij
t k( , ) ( , ) ( , )− +→ →1 1

1
2

1 1δ δ δ δij
t k

ij
t k

ij
t k

ij
t k( , ) ( , ) ( , ) ( , ) .− + −( )− +

Ωij
ij k

ij
t k

ij
t k

ij
t k

ij
t kt

ij

( ) ( , ) ( , ) ( , ) ( ,= − + −
=

− +∑1 1
21

1 1




δ δ δ δ ))

( , ) ( , ) ( , ) ( , )

( ) ×

−



 −− +1

2
1 1Sig Sigδ δ δ δij

t k
ij
t k

ij
t k

ij
t k



 −



 −


− +Sig Sigδ δ δ δij

t k
ij
t k

ij
t k

ij
t k( , ) ( , ) ( , ) ( , )1 1



 −( )1 ,

I p
p

p pab
a b

ab

a b
=

∈
∑
,

log ,
Σ

Page 3 of 12
(page number not for citation purposes)



Nonlinear Biomedical Physics 2007, 1:10 http://www.nonlinearbiomedphys.com/content/1/1/10
states within the spatiotemporal pattern are reduced to
few essential elements. In its simplest form, an excitable
medium is a spatial arrangement of identical elements, for
which (at least) three states exist, namely "quiescent"
(excitable) (Q), "excited" (E) and "refractory" (R). A typi-
cal time sequence of states for a single cell is characterized
by a switch from the quiescent state Q to the excited state
E when a certain condition is fulfilled; the falling into the
refractory state R after one time step and the remaining in
R for a fixed period of time (called the refractory time).
This sequence immediately leads to the formation of
propagating wave fronts and, when disturbed, to spiral
waves. In a more formal way, the three rules thus read as
follows: (1) An element aij in the state Q changes to E,

when E appears in its neighborhood (aij). (2) An ele-

ment in the state E always proceeds to the state R in the
next time step. (3) When aij = R, the element will be in the

state Q in the next time step, if the element has been in the

state R for a time ∆t(R) equal to or larger than the refrac-

tory time τ.

The letters Q, E and R introduced above can now be used
almost in a telegram style to describe the dynamics of the
slime mold D. discoideum, where one has an ensemble of
cells aggregating under the influence of a chemotactic
cAMP signal that each cell is capable of producing and
detecting: Sensing cAMP (which is, e.g., produced by one
of its neighbors) the amoeba changes from Q to E (i.e., it
emits cAMP itself), enters a rest phase R and starts to move
perpendicular to the wave front. After a short period (of
the order of minutes) the amoeba is sensitive to cAMP
again, i.e., it again enters the stage Q. The existence of a
refractory period, together with the interaction with
neighbors (detection, emission and degradation of the
cAMP signal) results in the formation of characteristic
excitable-media patterns, namely concentric rings and spi-
ral waves [27].

From the different cellular automaton models of excitable
media (see, e.g., [28,29]) we select a variant, which com-



Binarization of the spatiotemporal dataFigure 1
Binarization of the spatiotemporal data. The aim is to achieve a format suitable for computing the mutual information. (A) 
shows the time course xij (t) of a single spatial point, together with the corresponding time series of temporal differences xij(t + 
1) - xij(t) for 300 images from the early-stage patterns of D. discoideum. The temporal differences are inserted into a binarization 
filter δij(t) = Sig(xij(t + 1) - xij(t)). If δij(t) is zero, the value at the previous time step is used instead. For convenience one then 
passes to values 1 and 0, rather than 1 and -1. The lower row in (A) shows the resulting binarizations as bar code diagram. As 
described in the main text, variant (a) of the mutual information can be computed from this sequence of zeroes and ones. For 
variant (b) the binary patterns of two adjacent spatial points are considered (B). Variant (c) compares each spatial point with an 
arbitrarily selected reference point (C).
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bines simple update rules involving few parameters with
a quasi-continuous state space helpful in achieving simi-
larity with experimental data [30]. In this model we
implement a simple interaction rule for epidemic spread-
ing of excitations from cell to cell, which allows to study
the global dynamics on a quasi-continuous state space
(which in an epidemic scenario would correspond to the
immunization state of the elements). The state space has
the form

Σ = {0, 1,..., n - 1, n},

where healthy elements are represented by 0 (correspond-
ing to the Q state of our general model introduced above),
infected cells can be in states 1, ..., n - 1 (the E state), and
the diseased (sick) elements are given by n (the R state).

The update rules which determine the state of a cell in the
next time step are as follows:

where [x] is the integer remainder of x (i.e. the remaining
integer value after removing the decimal part), a denotes

the number of infected cells in the neighborhood  of

a point (ij) and b represents the corresponding number of

sick cells in . The quantity s in the update rule for

infected cells is the sum over all elements in . The

remaining quantities k1, k2 and g are model parameters,

which regulate the impact of infected and sick cells on
neighbors and the excitability of a cell, respectively. In a
certain range of the parameter space the model exhibits a
dynamics, which is highly comparable to that of real excit-
able media, particularly early patterns in D. discoideum or
the spatially extended Belousov-Zhabotinsky (BZ) reac-
tion (cf. Figure 2).

We introduce variability in this system as distributions of
g and of k2. In both cases we use two different integer val-

ues (a high value g* and , respectively, and a low back-

ground value gB and , respectively). A certain

percentage of spatial sites is assigned the high value. The
percentage of high-value sites constitutes the strength of
variability, while the spatial distribution of parameter val-
ues is the matrix we aim at reconstructing with the help of
our spatiotemporal observables defined in the previous
sections. The spatial matrices Kij and Gij for k2 and g distri-

butions, respectively, constitute our model implementa-

tion of cell-cell differences (in two different cellular

properties). In the following, νk and νg denote the respec-

tive percentage of  and g* values in the parameter
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Cellular automaton model of an excitable medium for differ-ent variablitiesFigure 3
Cellular automaton model of an excitable medium for differ-
ent variablities. Snapshots of a 132 × 132 lattice after 1000 

time steps are shown with n = 100, k1 = 2, gB = 28,  = 2, 

g* = 40 and  = 3. The percentage of high-value elements 

for g has been varied between 0.1 and 3.1 percent in steps of 
0.5 percent (top to bottom), while the percentage of high-
value elements for k2 has been varied between 5 and 55 per-
cent in steps of 5 percent (left to right).
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Snapshot of a pattern generated by the cellular automaton described in Section 3 after 2000 time steps (A) and of exci-tation waves in D. discoideum (B)Figure 2
Snapshot of a pattern generated by the cellular automaton 
described in Section 3 after 2000 time steps (A) and of exci-
tation waves in D. discoideum (B). In (A) the excitability was 
set to g = 28, the other parameter values are k1 = k2 = 2 and 
n = 100. The array size is 200 × 200 cells. Elements in the 
excitable state (0) are displayed in black, refractory elements 
(n) are white. The gray values correspond to the excited 
state (1, ..., n - 1). The section in (B) corresponds to 7.4 × 7.4 
mm. The black wave fronts are cells, which have just 
detected the cAMP molecules. In the bright area the cells are 
moving chemotactically towards the respective spiral center.
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matrices. These quantities allow tuning the strength of
variability.

Indeed, the patterns produced by the model depend sys-
tematically on the two sources of variability. Figure 3
shows typical snapshots of simulations for different
strengths of variability.

At low νg the effect of νk is very pronounced: with increas-

ing νk one has larger domains and a bias towards target

waves (compared to the spiral-dominated patterns at low

νk). At higher values of νg the effect of νk on domain size is

less pronounced, but the bias towards target waves
remains. Note that our scheme of implementing variabil-
ity allows us to pass to a higher variablity strength simply
by inserting further high-value sites into the previous grid.
When passing from one value of variability to a higher
value of variability we keep the previous pacemaker posi-
tions fixed and add the correct amount of new pacemakers
randomly. Qualitatively speaking, we implement variabil-
ity here as a pacemaker density, e.g., as the density of
highly excitable cells. Note, however, that in our setup
such pacemakers can differ from the other cells in two
properties: g (corresponding to the excitability) and k2

(corresponding to a sensitivity). These two contributions
to the overall excitability are well known in the case of D.
discoideum [31]. The matrices Gij and Kij store the positions

of these pacemaker elements. The percentages of high-

value entries (  and g*) in these matrices correspond to

the variability strengths varied in Figure 3 and discussed
quantitatively in the following analyses.

In this way we can understand more clearly, how the
reconstruction of cell-cell differences, e.g., depends on the
number of high-excitability cells in the system (rather
than a new arrangement of these elements).

Experimental methods
D. discoideum cells of the axenic strain AX2 were cultivated
from frozen spores (-18°C) according to the standard pro-
cedure [32] in HL5-medium at 21°C to a final cell density
of 6·106 cells/ml. To initiate starvation and therefore pat-
tern formation the cells have been harvested by low speed
centrifugation and washed twice with phosphate buffer
(15.7 mM KH2PO4/Na2HPO4, pH 6.14). The resuspended
cells were spread homogeneously onto water agar plates
(1% Difco Bacto agar, 2 mM caffeine in phophate buffer,
pH 6.14) to a density of 6.2·105 cells/cm2. The superna-
tant was removed and the plates were incubated in dark-
ness. After five to six hours of starvation cAMP waves
become indirectly visible in dark-field [33,34]. Individual

cells change their light scattering properties in depend-
ence of the local excitation state, resulting in macroscopic
wave pattern. Our dark-field optics was constructed
according to [35]. Successive images were taken in equi-
distant time intervals of 3 sec (Hamamatsu C 3077, DT-
Open Layers DT 3155 Mach Series Frame Grabber).

Results
Results for the model simulation
From Figure 3 we see that the two forms of variability
described in Section 3 have a systematic influence on
properties of the resulting patterns. Note that here we are
not interested in studying the effect of variability on the
patterns in detail. In such a case the mean value of each
parameter should be kept constant. The interesting prop-
erty for our present aim of reconstructing cell-cell differ-
ences is the mere presence of a parameter distribution.
With the more general framework in mind, it is of course
noteworthy that (for this deterministic system) the
parameter distribution determines the exact layout of the
patterns. We believe that by virtue of the process of self-
organization even in a non-deterministic (stochastic) sys-
tem this correspondence can exist and inscribes a certain
amount of predictability into the system.

In order to see, how well the spatiotemporal observables
from Section 2 reconstruct the parameter distributions we
compute the correlation coefficient between the matrices
Obsij and Parij, where Obsij is either Ωij or Iij and Parij can
be Gij or Kij, as introduced in Section 3. For the array of
data from Figure 3 we thus obtain the four correlation
arrays given in Figure 4, which are highly systematic: The
correlation between Ωij and Kij remains essentially con-
stant with νg, as it should be, but changes systematically
with νk. The opposite is true for the correlation between
Ωij and Gij . The other observable, the mutual information
Iij, reacts strongest to Gij, but also the comparison with Kij
shows a small but consistently negative correlation coeffi-
cient varying systematically within the array. In both cases
the observed correlation coefficients can be quite high (up
to 0.2 or 0.3) showing that our attempt of reconstructing
the variability distributions with these spatiotemporal
observables is rather successful.

An important issue for practical applications of these tools
is their robustness with respect to noise. In our model,
noise can be implemented, e.g., by adding a random inte-
ger number to each xij in each time step with the subsidi-
ary condition of remaining in the model's state space.
Here we are using n = 100, as before, and the random inte-
gers added as noise are equally distributed between -10
and 10. Figure 5 shows an array of typical spatial snap-
shots under the influence of this noise.

k2
∗
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The general features of the patterns remain the same as in
Figure 3. This is important for our analysis, as the noise
does not destroy the patterns completely. Note also that
the general trends of variability effects remain similar to
Figure 3. Details of the wave propagation and spiral for-
mation, however, are strongly affected by the noise. Sur-
prisingly, the reconstruction of the underlying variability
distributions is not impeded by noise. One rather

observes in many cases an enhancement of the reconstruc-
tion. This is particularly true for the fluctuation number
Ωij, which needs a certain amount of noise to properly
detect systematic differences between spatial neighbors.
Noise in this case helps sample the possibility space of
neighbor differences entering the filter defined in equa-
tion 4. The mutual information does not show such an
enhancement, but is still capable of filtering out the noise
contribution. It is also clearly seen that reconstruction of
the two sources of variability differs in their sensitivity to
noise: While excitability (Gij) is generally well recon-
structed in the noisy case, for the sensitivity (Kij) we
observe no enhancement compared to the noise-free case.

Figure 6 shows the corresponding arrays of correlation
coefficients. This enhancement due to noise (which is
reflected in higher correlation coefficients and a more sys-
tematic parameter dependence) can be seen more clearly,
when the correlation coefficients are plotted as a function
of one variability strength, while keeping the other con-
stant (i.e. by looking at cross sections of the correlation
arrays from Figures 4 and 6). This is summarized in Figure
7.

Even in our minimal system (two sources of variability,
two observables) we already see that the observables may
depend differently on different sources of variability. In
real-life systems such observations may help setting up a
combinatorical scheme for estimating, which source of

Same as Figure 3, but with the influence of noise, as described in the main textFigure 5
Same as Figure 3, but with the influence of noise, as 
described in the main text. Parameter values are the same as 
in Figure 3.
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variability contains the strongest signal for predicting
later-stage patterns.

An interesting numerical experiment is to introduce a sin-
gle highly excitable element in the system and then follow

the reconstruction of this element in the (Ω, I) plane. In

this experiment all Kij are set to  = 2 and all but one Gij

to gB = 25, while a single position is assigned a different
value g*, which is changed between g* = 60 and g* = 10.
Figure 8 displays the corresponding reconstruction from

simulated data in the (Ω, I) plane. The cloud of small

black dots denotes the (Ω, I) values for all other (non-
pacemaker) elements. Starting now from a very high value
of excitability g* = 60 for the single pacemaker element we
gradually reduce the value of g* and observe the corre-

sponding trajectory in the (Ω, I) plane. Over a wide range
of g* (both at high and low values) this single pacemaker
element stands out in terms of these reconstructed values.
Only when g* is close to the values of the background ele-
ments, the pacemaker is within the cloud formed by the
other elements.

Application to D. discoideum pattern formation
The patterns of an early stage of the D. discoideum life
cycle, where cell-cell communication leads to propagating
waves, are an ideal field of application for the reconstruc-
tion methods of cell-cell variability described in the previ-
ous sections. As the dark-field images do not allow
observing individual cells directly, we apply the analysis
tools to each pixel and assume that the observables pro-

vide estimates valied as avarage for the cells residing at
this spot. Cell movement is neglected in this analysis. This
is not unrealistic, as at this stage of pattern formation
directed movement is small. Figure 9 shows snapshots of
corresponding experimental data sets. In order to see, if
the observables from Section 2 indeed yield reproducible
results, even though they essentially evaluate the system-
atics of neighborhood fluctuations behind the overall self-
organized dynamics in a spatiotemporal data set, we com-
pute Ωij and Iij for three different time intervals and then
see, if the reconstructed matrices correlate over time. Fig-
ure 10 summarizes the general scheme. Inspite of their
respective focus on small-scale fluctuations (cf. the defini-
tions of Iij and Ωij in Section 2) the two observables show
a very systematic result, which suggests that the individual
pixels possess a specific dynamic response, even though
the system as a whole displays a self-organized pattern
with a high spatial order on a larger scale (Figure 11): For
consecutive intervals (1, 2) and (2, 3) the correlation coef-
ficients are almost identical, while they are (in most cases)
systematically reduced for a larger time difference (1, 3).
The result from Figure 11 complements nicely the single-
cell observations from [16]. While these authors look at
individual D. discoideum cells under well-defined stimuli,
we analyze statistically a very large ensemble of cells in the
process of pattern formation. In this way, our result is a
cell-population variant of the findings in [16]. It is surpris-
ing that the individual cell properties contribute strongly
and systematically enough to show up in this analysis.

Conclusion and outlook
The aim of the paper is two-fold: First, we want to intro-
duce the general idea that spatial distributions of cellular

kB
2

Same as Figure 4, but for the spatiotemporal patterns under the influence of noise, as shown in Figure 5Figure 6
Same as Figure 4, but for the spatiotemporal patterns under the influence of noise, as shown in Figure 5.
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Correlation coefficients between the reconstructed matrices Obsij and the parameter distributions Parij as a function of the two variability strengths νg (at fixed νk = 20) and νk (at fixed νg = 0.6), both for the patterns without noise (left-hand side) and with noise (right-hand side)Figure 7
Correlation coefficients between the reconstructed matrices Obsij and the parameter distributions Parij as a function of the two 
variability strengths νg (at fixed νk = 20) and νk (at fixed νg = 0.6), both for the patterns without noise (left-hand side) and with 
noise (right-hand side). The curves are cross sections of the correlation arrays from Figures 4 and 6.
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properties may serve as a basis for predicting later stages
of a pattern formation process; second, we provide some
tools for reconstructing such distributions from spatio-
temporal data sets. The following results have been
shown: The fluctuation number and the mutual informa-
tion are adequate tools for extracting spatial variations in
cell properties from experimental data; different cell prop-
erties are picked up differently by these tools (a point we
discuss in detail for excitability and sensitivity); recon-
struction of such cell properties by the fluctuation number
is under certain conditions enhanced by noise; applying
these tools to experimental data of D. discoideum pattern
formation we find that, in agreement with the single-cell
results from [16], individual loci in the spatial pattern
possess systematic properties, which contribute to the pat-
tern formation process.

While we are, at this stage of the investigation, far from
explicitly formulating such a prediction scheme and
applying it to specific biological scenarii, we nevertheless
believe that this new view on pattern formation is of rele-
vance to many biological systems. We do not imply that
the techniques lined out here are the only means of recon-
structing variability distributions from data. In fact, the
choice of tools will strongly depend on the specific system
at hand. Criteria for selecting the analysis tools could be:
Is noise an important factor in the data? Which forms of
variability are expected to be relevant? Which is the dom-
inant form of dynamics; which types of patterns are
formed?

For generic models of excitable media and, to a certain
extent, for experimental data on D. discoideum pattern for-
mation we have shown that simple spatiotemporal

observables can be employed to reconstruct the spatial
distribution of biological properties involved the pattern
formation process. How does one pass from these meth-
odological findings to a practical application of the pre-
diction scheme lined out in the introduction? As long as
there is no general theory connecting such distribution
with the layout with later-stage patterns one has to rely on
heuristic protocols. It should be possible for some systems
where a large enough number of data sets is available to
train an artificial neural network or a system of self-organ-
izing maps to the task of linking distribution patterns with
properties of the later-stage self-organized state. Which
features of self-organized patterns can in principle be
thought of as predictees of early-stage distributions in cel-
lular properties? When one focuses on excitable media
clearly the specific locations of phase singularities (i.e. the
terminal points of spiral wave fronts) are a candidate for
such predictive schemes. Particularly because recent work
on D. discoideum relates the density of such phase singu-

Snapshots of experimental data sets analyzed on their spatial distribution in cell-cell differences (bar size 2 mm)Figure 9
Snapshots of experimental data sets analyzed on their spatial 
distribution in cell-cell differences (bar size 2 mm). Time 
points are indicated above the array of snapshots. In addition 
the spatial size the experimental data differ in their resolu-
tion: (A) and (B) 22.6 pixels/mm, (C) 68.2 pixels/mm, (D) 
68.0 pixels/mm, (E) 38.6 pixels/mm, (F) 53.3 pixels/mm. As a 
rule of thumb at a cell density of 6.172·105 cells/cm2 one can 
expect that 1 pixel contains approximately 12 cells in (A) and 
(B), 1 cell in (C) and (D), 4 cells in (E) and 2 cells in (F).
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Reconstruction of a single pacemaker element in the (Ω, I) plane as a function of its pacemaker strength g*, which was changed between g* = 60 and 10Figure 8
Reconstruction of a single pacemaker element in the (Ω, I) 
plane as a function of its pacemaker strength g*, which was 
changed between g* = 60 and 10. The excitability of the 
background elements was gB = 25. All other parameters are 

the same as in Figures 2 and 3 (at  =  = 2).
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Schematic view of the procedure of individual cell property extractionFigure 10
Schematic view of the procedure of individual cell property extraction. Data sets were devided into intervals of 200 images corresponding to 10 minutes 
in the experiments considered here. For each interval the observables Ωij and Iij were determined. For this particular data set (denoted (C) in Figure 9) the 
corresponding observables (for a particular image segment) are shown below the time axis: first row – Ωij, second row – Iij . One sees from these distribu-
tions that the two observables focus on small-scale fluctuations rather than the large-scale features of the original patterns. In the subsequent analysis the 
three correlation coefficients of the reconstructed matrices (first and second time interval, second and third, and first and third) are computed both for Ωij 
and Iij.
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Correlation coefficients of Ωij and Iij, respectively, between the different intervals of experimental dataFigure 11
Correlation coefficients of Ωij and Iij, respectively, between the different intervals of experimental data. On the left-hand side of each image segment one 
can see the absolute values of correlation coefficients between intervals one and two (Corr(1,2), cf. Figure 10). The columns on the right-hand image parts 
show correlation coefficients between the intervals normalized to Corr(1,2). The notation (A) to (F) corresponds to that of Figure 9.
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larities with the strength of a genetic feedback loop at the
single cell level [31], it would be of huge interest to under-
stand how a distribution of cell properties in this specific
scenario translates into a distribution of phase singulari-
ties.

The new view on biological pattern formation as a conse-
quence, beyond the general rules of the process, of distrib-
uted properties goes along with the potential of predicting
features of the later-stage patterns. It should be noted,
however, that such predictions will always be of statistical
nature and never one-to-one correspondences. Neverthe-
less, for the range of biological systems, for which such
predictions could be of interest (ranging from excitation
waves in heart tissue to calcium waves on cellular mem-
branes and waves of epidemic spreading of diseases), even
the possibility of assigning e.g. the probability of a phase
singularity to a particular position has interesting implica-
tions for intervention schemes and risk assessment.
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