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ABSTRACT

The shrinkage estimate of a quantitative trait locus (QTL) effect is the posterior mean of the QTL effect
when a normal prior distribution is assigned to the QTL. This note gives the derivation of the shrinkage
estimate under the multivariate linear model. An important lemma regarding the posterior mean of a
normal likelihood combined with a normal prior is introduced. The lemma is then used to derive the
Bayesian shrinkage estimates of the QTL effects.

THE Bayesian shrinkage estimation of quantitative
trait locus (QTL) effects was first introduced by Xu

(2003) and later formalized by Wang et al. (2005). The
multivariate version of the shrinkage estimation of QTL
effects was recently developed by Yang and Xu (2007).
The main purpose of the shrinkage estimation is to avoid
variable selection for mapping multiple QTL. Once a
normal prior distribution for each regression coefficient
is incorporated into the QTL mapping program, the
method can handle substantially more QTL effects than
the classical maximum-likelihood (ML) method. In
addition, the shrinkage method produces much clearer
signals of QTL on the genome than the ML method. As a
result, shrinkage mapping appears to have pointed to a
new direction for future research in QTL mapping.

The key issue of shrinkage estimation is the normal
prior distribution assigned to the regression coefficient
(QTL effect). More importantly, different regression
coefficients are assigned different normal priors. Be-
cause the variances in the prior distributions determine
the degrees of shrinkage, assigning different prior var-
iances to different regression coefficients allows the
method to differentially shrink regression coefficients. A
smaller prior variance will cause the regression coefficient
to shrink more while a larger prior variance will lead to
less shrinkage. This phenomenon is called selective
shrinkage.

After incorporating the normal prior distribution
into the likelihood function, we can derive the posterior
distribution of the regression coefficient, which remains
normal due to the conjugate nature of the normal prior.
The posterior mean and posterior variance are used to

generate a posterior sample of the regression coeffi-
cient. Formulas for the posterior mean and posterior
variance are mathematically attractive (see Xu 2003;
Wang et al. 2005; Yang and Xu 2007). However, due to
page limitations of these publications, derivation of the
formulas was not provided in these articles.

Derivation of the univariate shrinkage estimation closely
followed Box and Tiao’s (1973, Appendix A1.1) com-
bination of a univariate normal likelihood and a univar-
iate normal prior. Derivation of the multivariate shrinkage
estimation followed the general Bayesian linear model
of Lindley and Smith (1972) and the best linear un-
biased prediction (BLUP) of Robinson (1991). The der-
ivations presented by these authors were particularly
targeted to statisticians and often difficult to understand
by the audience of the genetics community. I have been
regularly receiving e-mails and calls from readers asking
for the derivation. These readers (almost all genetics
professionals and students) are often interested in ex-
tending the shrinkage method to handle QTL mapping
in different mapping populations. Understanding the
derivation of these formulas is crucial to the develop-
ment of new shrinkage methods. Simply pointing them
to the above references often does not help too much
because intermediate steps are needed to lead to the
shrinkage estimate presented by Xu (2003). By doing
this, I often give them an impression of irresponsibility.
Therefore, I prepared a short note for the derivation
and distributed the note to these interested readers. The
note briefly summarizes the derivation using a language
that is easy to understand by geneticists with basic sta-
tistical training. Given the increasing interest of the deri-
vation from the QTL mapping community, it is more
efficient to publish the note in Genetics where the very
first shrinkage method (Xu 2003) was published.
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THEORY AND MODEL

Shrinkage estimates: Let Yj be an m 3 1 vector for
the phenotypic values of m traits collected from the
jth individual for j ¼ 1; . . . ;n, where n is the sample size.
This vector is described by the following linear model,

Yj ¼ b0 1
Xp

k¼1

Xjkbk 1 ej ð j ¼ 1; . . . ; nÞ; ð1Þ

where b0 is an m 3 1 vector for the population means (or
intercept), Xjk is an m 3 q design matrix (determined
by the genotypes of the jth individual at the kth locus),
bk is a q 3 1 vector for the regression coefficients (QTL
effects) for locus k (k ¼ 1; . . . ; p), ej is an m 3 1 vector
of residual errors with an assumed N ð0;DÞ distribution,
and D is an m 3 m positive definite covariance matrix.
When the kth regression coefficient is considered, all
other regression coefficients are treated as constants
and thus model (1) can be rewritten as

Y *
j ¼ b0 1 Xjkbk 1 ej ð j ¼ 1; . . . ;nÞ; ð2Þ

where

Y *
j ¼ Yj �

Xp

k9 6¼k

Xjk9bk9 ð3Þ

is the phenotypic value adjusted by all other regression
coefficients that are not currently under consideration.
Let us describe bk by the following normal prior bk �
N ðhk ;GkÞ, where hk is a q 3 1 vector for the means and Gk

is a q 3 q prior variance–covariance matrix. The posterior
distribution of bk is multivariate normal with mean

Eðbk jY *; b0;D;hk ;GkÞ

¼
Xn

j¼1

X T
jk D�1Xjk 1 G�1

k

" #�1 Xn

j¼1

X T
jk D�1ðY *

j � b0Þ1 G�1
k hk

" #
ð4Þ

and variance–covariance matrix

varðbk jY *; b0;D;hk ;GkÞ ¼
Xn

j¼1

X T
jk D�1Xjk 1 G�1

k

" #�1

: ð5Þ

In shrinkage analysis, we often set hk ¼ 0 for k ¼ 1; . . . ; p;
as such the posterior mean becomes

Eðbk jY *; b0;D;GkÞ

¼
Xn

j¼1

X T
jk D�1Xjk 1 G�1

k

" #�1 Xn

j¼1

X T
jk D�1ðY *

j � b0Þ
" #

: ð6Þ

This posterior mean is called the shrinkage estimate of
the regression coefficient bk . When Gk/‘, the prior is
flat, leading to the usual least-squares estimate,

Eðbk jY *; b0;DÞ

¼
Xn

j¼1

X T
jk D�1Xjk

" #�1 Xn

j¼1

X T
jk D�1ðY *

j � b0Þ
" #

: ð7Þ

When Gk/0, we have G�1
k /‘, which leads to

Pn
j¼1 X T

jk

h
D�1Xjk 1 G�1

k

i�1

/0 and thus Eðbk jY *; b0;D;hk ;GkÞ/0,

an estimate shrunken to zero. Therefore, matrix Gk

serves as a factor to determine the degree of shrinkage
for the estimate of bk . Because Gk varies, the degree of
shrinkage also varies across k. To prove the shrinkage
estimate, I first introduce the following lemma:

Lemma. Assume that parameter b can be inferred from two
independent sources of information. Let b j I1 � N ðb1;S1Þ
and b j I2 � N ðb2;S2Þ be the distributions of the two sources of
information. When we combine I1 and I2, the distribution of
b remains multivariate normal b j I1; I2 � N ðb;SÞ with mean
b ¼ ðS�1

1 1 S
�1
2 Þ
�1ðS�1

1 b1 1 S
�1
2 b2Þ and variance–covari-

ance matrix S ¼ ðS�1
1 1 S

�1
2 Þ
�1.

Proof of the lemma. The distribution of b given the two
sources of information is described by

pðb j I1; I2Þ
¼ pðb j I1Þpðb j I2Þ

¼ C exp � 1

2

�
ðb � b1ÞT S�1

1 ðb � b1Þ1 ðb � b2ÞT S�1
2 ðb � b2Þ

�� �
;ð8Þ

where C is a constant with respect to b. When deriving
a distribution, we are interested only in the kernel of the
distribution. A kernel of a distribution is the central part
of the distribution function, the part that remains when
constants are disregarded. In the above distribution, the
logarithm of the kernel is

K ðbÞ ¼ � 1

2

�
ðb � b1ÞT S�1

1 ðb � b1Þ1 ðb � b2ÞT S�1
2 ðb � b2Þ

�
; ð9Þ

which is further expressed by

K ðbÞ ¼ � 1

2

�
bT ðS�1

1 1 S�1
2 Þb � 2bT ðS�1

1 b1 1 S�1
2 b2Þ

�

� 1

2
ðbT

1 S�1
1 b1 1 bT

2 S�1
2 b2Þ: ð10Þ

We can see that this kernel involves another constant,
�1

2ðb
T
1 S
�1
1 b1 1 bT

2 S
�1
2 b2Þ, which can be ignored also.

Therefore, the actual kernel that contains only the
linear and quadratic functions of b is

K ðbÞ ¼ � 1

2

�
bT ðS�1

1 1 S�1
2 Þb � 2bT ðS�1

1 1 S�1
2 ÞðS�1

1 1 S�1
2 Þ�1

3 ðS�1
1 b1 1 S�1

2 b2Þ
�
: ð11Þ

Let S ¼ ðS�1
1 1 S

�1
2 Þ
�1 and b ¼ ðS�1

1 1 S
�1
2 Þ
�1ðS�1

1 b11

S
�1
2 b2Þ. The kernel is simplified into

K ðbÞ ¼ � 1

2
ðbT S�1b � 2bT S�1bÞ; ð12Þ

which turns out to be the kernel of N ðb;SÞ. Therefore,
we conclude that b j I1; I2 � N ðb;SÞ.
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Derivation of the shrinkage estimates: We now use
the above lemma to derive the shrinkage estimate of bk .
The two sources of information for bk come from the
data (Y *) and the prior. Information from the data is
used to infer bk through the maximum-likelihood
method. The log-likelihood function is

LðbkÞ ¼ �
n

2
ln jD j � 1

2

3
Xn

j¼1

ðY *
j � b0 � XjkbkÞT D�1ðY *

j � b0 � XjkbkÞ: ð13Þ

The maximum-likelihood estimate of bk is

b̂k ¼
Xn

j¼1

X T
jk D�1Xjk

" #�1 Xn

j¼1

X T
jk D�1ðY *

j � b0Þ
" #

ð14Þ

and the variance of this estimate is

varðb̂kÞ ¼
Xn

j¼1

X T
jk D�1Xjk

" #�1

: ð15Þ

Let b1 ¼ b̂k and S1 ¼ varðb̂kÞ. After some algebraic
manipulation on the likelihood function, we find that
Equation 13 has the following normal kernel with
respect to bk ,

K1ðbkÞ ¼ �
1

2
ðbk � b1ÞT S�1

1 ðbk � b1Þ: ð16Þ

Therefore, the distribution of bk inferred from the
data is bk j I1 � N ðb1;S1Þ. The second source of infor-
mation for bk is the prior distribution N ðhk ;GkÞ. If we let
b2 ¼ hk and S2 ¼ Gk , the distribution of bk from the
second source of information is bk j I2 � N ðb2;S2Þ. Ac-
cording to the lemma, the posterior mean of bk is

Eðbk jY *; b0;D;hk ;GkÞ
¼ ½var�1ðb̂kÞ1 G�1

k ��1½var�1ðb̂kÞb̂k 1 G�1
k hk �

¼
Xn

j¼1

X T
jk D�1Xjk 1 G�1

k

" #�1 Xn

j¼1

X T
jk D�1ðY *

j � b0Þ1 G�1
k hk

" #
ð17Þ

and the posterior variance is

varðbk jY *; b0;D;hk ;GkÞ

¼ ½var�1ðb̂kÞ1 G�1
k ��1 ¼

Xn

j¼1

X T
jk D�1Xjk 1 G�1

k

" #�1

: ð18Þ

This concludes the derivation of the shrinkage estimate
of bk .

Univariate version of the shrinkage estimate: The
shrinkage estimate of the regression coefficient given by
Xu (2003) is a special case of the general shrinkage
estimate. The regression model of Xu (2003) is

yj ¼ b0 1
Xp

k¼1

xjkbk 1 ej ; ð19Þ

where every variable in the equation is a scalar rather
than a matrix. When focused on the kth regression
coefficient, the model is rewritten as

y*
j ¼ b0 1 xjkbk 1 ej ; ð20Þ

where y*
j ¼ yj �

Pp
k9 6¼k xjk9bk9 is the adjusted data. Let us

assume ej � N ð0;s2
0Þ, where s2

0 is the univariate version
of matrix D. Assume that the prior distribution for bk is
N ð0;s2

kÞ. Therefore, the univariate versions of hk and Gk

are hk ¼ 0 and Gk ¼ s2
k , respectively. Substituting all the

parameters of Equations 4 and 5 by their univariate
counterparts, we have

Eðbk j y*; b0;s
2
0;s

2
k Þ

¼
Xn

j¼1

x2
jk=s2

0 1 s�2
k

" #�1 Xn

j¼1

xjkðy*
j � b0Þ=s2

0

" #

¼
Xn

j¼1

x2
jk 1 s2

0=s2
k

" #�1 Xn

j¼1

xjkðyj � b0 �
Pp

k9 6¼k xjk9bk9Þ
" #

ð21Þ

and

varðbk j y*; b0;s
2
0;s

2
k Þ

¼
Xn

j¼1

x2
jk=s2

0 1 s�2
k

" #�1

¼
Xn

j¼1

x2
jk 1 s2

0=s2
k

" #�1

s2
0: ð22Þ

These equations are exactly the same as Equations 5 and
6 given by Xu (2003).

DISCUSSION

There are several alternative ways to prove the
shrinkage estimation, such as the conditional distribu-
tion of multivariate normal variables (Giri 1996). The
method presented in this note is a generalization of Box

and Tiao’s (1973, Appendix A1.1) combination of a
univariate normal likelihood and a univariate normal
prior. Using the method of Box and Tiao (1973), we
can extend the lemma to the situation of inferring b
from more than two independent sources of informa-
tion. Let m be the number of sources of information
(independent of each other) used to infer b and the
distribution from the ith source is N ðbi ;SiÞ for
i ¼ 1; . . . ;m. The posterior distribution of b combining
all the sources of information is b j I1; . . . ; Im � N ðb;SÞ,
where

b ¼ ðS�1
1 1 S�1

2 1 . . . 1 S�1
m Þ�1ðS�1

1 b1 1 S�1
2 b2 1 . . . 1 S�1

m bmÞ

ð23Þ
and

S ¼ ðS�1
1 1 S�1

2 1 . . . 1 S�1
m Þ�1: ð24Þ

One can use mathematical induction to prove Equa-
tions 23 and 24, starting from m ¼ 2 (given in the
lemma) and moving to m 1 1 and so on.

Bayesian shrinkage estimation refers to the biased
estimation of a regression coefficient toward zero using
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a prior variance as a factor to control the degree of
shrinkage. A normal prior is often selected because it
is a conjugate prior so that the posterior distribution
remains normal. A normal posterior simplifies the
MCMC sampling process because the Gibbs sampler
can be used to draw the regression coefficient. Other
prior distributions have been proposed, e.g., the mix-
ture prior of two normal distributions (George and
Mcmulloch 1993; Yi et al. 2003) and the spike and slab
model (Ishwaran and Rao 2005). A t-distribution may
also be used as a prior for the regression coefficient.
However, the posterior distribution using a nonnormal
prior rarely has an explicit form of a distribution, mak-
ing Gibbs sampling impossible and thus complicating
the MCMC sampling process.

The shrinkage method for regression analysis may
also be called the random model approach to regression
analysis, or simply random regression, because each reg-
ression coefficient is treated as a random effect with a
(prior) normal distribution. It is well known that there is
no limit in the number of random effects that can be
handled by a random model. The success of a random
linear model analysis, however, depends on the variance
components chosen for the random model. If a random
model contains an excessively large number of regres-
sion coefficients, most of them will be zero or close to
zero. The sparse nature of the regression coefficients
cannot be characterized by the random linear model
alone and it must be accompanied by an efficient
method to choose the variance components. In QTL
mapping, the number of variance components can be
extremely large, making subjective selection of the
variance components impossible. Therefore, the vari-
ance components must be estimated from the data.

The most convenient way to estimate the variance
components is to use the maximum-likelihood method.
The estimated variance components are used in place
of the prior variances to estimate the regression coeffi-
cients. The method is called the empirical Bayes method
as far as the estimation of regression coefficients is con-
cerned (Xu 2007). To reflect the sparse nature of the
regression coefficients, a prior distribution is often as-
signed to each variance component. This is called hier-
archical modeling (Gelman 2005). Furthermore, the
prior distribution should be highly concentrated around
zero. Many different prior distributions can be chosen
for the variance components, but the scaled inverse chi-
square distribution is the most convenient and flexible
prior with such a property (Lindley and Smith 1972).
Exponential distribution (Tibshirani 1996) and half t-
distribution (Gelman 2006) have also been used. The
prior choice for variance components of the random

regression analysis is a very active research area to ex-
plore. More efficient priors may be developed in the
future.

In the random regression analysis, the variance of a
regression coefficient is not the primary interest of the
investigator; rather, it is used only for the purpose of
controlling the magnitude of the shrinkage. If the reg-
ression coefficients are batched (clustered) so that reg-
ression coefficients in the same batches share the same
prior distribution, the variance may be estimated accu-
rately and the estimate of it may be meaningful (Gelman

2005). In this case, the primary interest has been shifted
from the regression coefficients to the variances of the
regression coefficients; the method is better called
the analysis of variances (ANOVA) (Gelman 2005). In
the usual shrinkage analysis, the regression coefficients
are not batched; i.e., every regression coefficient has its
own prior variance, and the estimated variance for a
regression coefficient may vary drastically across the
posterior sample. This problem may look very bad, but
will not seriously harm the Bayesian shrinkage estimates
of the regression coefficients. One can minimize the
variation of the sampled variance across the posterior
sample by using some proper prior distribution for the
variance (Gelman 2005).
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