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ABSTRACT

Populations often have very complex hierarchical structure. Therefore, it is crucial in genetic moni-
toring and conservation biology to have a reliable estimate of the pattern of population subdivision. FST’s
for pairs of sampled localities or subpopulations are crucial statistics for the exploratory analysis of
population structures, such as cluster analysis and multidimensional scaling. However, the estimation of
FST is not precise enough to reliably estimate the population structure and the extent of heterogeneity.
This article proposes an empirical Bayes procedure to estimate locus-specific pairwise FST’s. The posterior
mean of the pairwise FST can be interpreted as a shrinkage estimator, which reduces the variance of con-
ventional estimators largely at the expense of a small bias. The global FST of a population generally varies
among loci in the genome. Our maximum-likelihood estimates of global FST’s can be used as sufficient
statistics to estimate the distribution of FST in the genome. We demonstrate the efficacy and robustness of
our model by simulation and by an analysis of the microsatellite allele frequencies of the Pacific herring.
The heterogeneity of the global FST in the genome is discussed on the basis of the estimated distribution
of the global FST for the herring and examples of human single nucleotide polymorphisms (SNPs).

INFERRING genetic population structure has been a
major theme in population biology, ecology, and

human genetics. The fixation index FST, introduced by
Wright (1951), is a key parameter for such studies and
is most commonly used to measure genetic divergence
among subpopulations (Palsbøll et al. 2007). It is de-
fined as the correlation between random gametes drawn
from the same subpopulation relative to the total pop-
ulation. Another measure used frequently is Cockerham’s
(1969, 1973) coancestry coefficient, which is the prob-
ability that two random genes from different individ-
uals are identical by descent, and the average overall
pairs of individuals within the same subpopulation equal
Wright’s FST (Excoffier 2003). We use the notation
uWC for the average coancestry coefficient and uWC ¼
FST as shown by Weir and Cockerham (1984). Nei’s
(1973) GST is analogous to FST and identical to FST for
diploid random-mating populations (Excoffier 2003).

Nei and Chesser (1983) proposed an estimator for
FST and GST. The estimation of these parameters ac-
counts only for the sampling error within subpopu-
lations and therefore assumes that all subpopulations
have been sampled (Cockerham and Weir 1986;
Excoffier 2003). Weir and Cockerham (1984) de-
veloped the moment estimator ûWC for the coancestry

coefficient uWC, which takes the sampling error for the
subpopulations into account. Several moment estimators
with different weighting schemes have also been derived
(Robertson and Hill 1984; Weir and Cockerham

1984). An alternative estimation has been discussed
using the method of ordinary least squares (Reynolds

et al. 1983). Weir and Hill (2002) extended uWC to a
population-specific parameter to allow different levels
of coancestry for different populations. They also de-
rived an estimator for uWC with confidence intervals
using a normal theory approach.

Despite the development of methods for assigning in-
dividuals to populations (Paetkau et al. 1995; Pritchard

et al. 2000; Huelsenbeck and Andolfatto 2007), the
differentiation estimators remain the most commonly
used tools for describing population structure (Balloux

and Lugon-Moulin 2002). Weir and Cockerham (1984)
showed that their estimator ûWC provides the smallest
bias among the moment estimators. Goudet et al.
(1996) confirmed this using simulations and showed
that ûWC generates the least-biased estimate of FST but
has the largest variance when FST is small. Raufaste and
Bonhomme (2000) showed that ûWC is nearly unbiased,
with minimal variance for large FST, and that the esti-
mator of Robertson and Hill (1984) ûRH is negatively
biased, with minimal variance for small FST. They pro-
posed a correction for the bias of ûRH, but this cannot be
corrected properly in the range of ½0.05, 0.1�. Therefore,
a precise estimate of FST is crucial, especially for small
and moderate levels of genetic differentiation.
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In addition to the estimation of FST over all sub-
populations in a metapopulation (hereafter, we call this
global FST), FST’s for pairs of sampled localities or sub-
populations (pairwise FST) are usually estimated in con-
servation biology and ecology. In fact, the computer
programs Arlequin (Excoffier et al. 2005), FSTAT
(Goudet 1995), and Genepop (Raymond and Rousset

1995) estimate these parameters and are used widely in
ecological studies. These three software packages pro-
duce the same or similar values for pairwise FST esti-
mates and provide the basic statistics for exploratory
analyses of population structure, such as cluster analysis
and multidimensional scaling. They are also used as
a criterion for population differentiation (Waples and
Gaggiotti 2006; Palsbøll et al. 2007). However, the
estimation of FST’s is not precise enough to reliably es-
timate the population structure and the extent of het-
erogeneity, especially for large gene flow species.

Small numbers of individuals taken from each locality
should also affect the precision of FST

b . Populations often
have very complex hierarchical structures, and geo-
graphical samples are usually taken from many locali-
ties to include a wide area. Therefore, the numbers of
individuals from each locality are frequently limited by
the large number of sampling points. Small sample sizes
can result in biased estimates of the allele frequencies of
each subpopulation. This bias may be larger for cases
with larger numbers of alleles, such as microsatellite
DNA. Uncertainty in the estimates of allele frequencies
should affect the estimation of FST’s. The Bayesian ap-
proach provides better estimates of allele frequencies by
taking uncertainty into account (Lange 1995; Lockwood

et al. 2001). Posterior distributions of global FST were
simulated from posterior distributions of allele frequen-
cies, assuming common hyperparameters across all loci
(Holsinger 1999; Holsinger et al. 2002; Corander et al.
2003). However, accurate estimation of pairwise FST, the
essential parameter in ecological studies, has not been
fully investigated.

In this article, we propose an empirical Bayes pro-
cedure to estimate locus-specific pairwise FST’s, taking
into account the uncertainty of the allele frequencies of
subpopulations. The estimation procedure has two stages.
First, the hyperparameters of Dirichlet prior distribu-
tions for allele frequencies at each locus are estimated
from observed allele counts by a maximum-likelihood
method. The global FST is then estimated at each locus.
Second, on the basis of the estimates of the hyperpa-
rameters, and given the allele counts, posterior distri-
butions of the allele frequencies are generated for each
locus, from which the posterior distributions of locus-
specific pairwise FST’s are simulated. The posterior mean
of our empirical Bayes pairwise FST estimates can be in-
terpreted as a shrinkage estimator (Stein 1956; Maritz

and Lewin 1989) anchored to the average of the true
values among pairs. It performs better than conven-
tional differentiation estimators and robustly estimates

the population structure, even for non-Dirichlet cases,
as stepping-stone models. The posterior distribution of
pairwise FST’s can be used to calculate a criterion of
population differentiation. Our maximum-likelihood
estimates of the global FST’s can also be used as sufficient
statistics to estimate the distribution of FST among loci
in the genome. Our model assumes random mating or
random sampling of alleles at each locality and that
linkage equilibrium holds between loci. It also assumes
that allele counts at each locus, given the true allele
frequencies, are independent among populations. Our
method can be applied to frequency data for com-
mon genetic markers, including isozymes, mitochondrial
DNA, microsatellites, and single nucleotide polymor-
phisms (SNPs). We show the efficacy of our model by
simulation and by an analysis of microsatellite allele
frequencies of the Pacific herring. The heterogeneity of
FST in the genome is discussed on the basis of the
estimated distribution of global FST for the herring and
examples of human SNPs.

MODELS AND METHODS

The model: Consider a simple random sampling from
multiple localities in a metapopulation. Suppose that
K random-mating demes or subpopulations are drawn
from the metapopulation. Let pkl ¼ ðpkl1; . . . ; pklJl

Þ9
ðk ¼ 1; . . . ; K ; l ¼ 1; . . . ; LÞ be a vector of the true al-
lele frequencies at locus l in subpopulation k, where
Jl is the number of different alleles at the locus, andPJl

j¼1 pklj ¼ 1. We assume a Dirichlet distribution as the
prior distribution of pkl. The probability density func-
tion is

pðpkl jaljÞ ¼
GðulÞQJl

j¼1 GðaljÞ
YJl

j¼1

p
alj�1
klj ;

where al ¼ ðal1; . . . ; alJl
Þ9 are the hyperparameters

and ul ¼
PJl

j¼1 alj is a scale parameter that is specific
for the locus. This model describes well a metapopula-
tion that has a continuous structure and consists of an
infinite number of subpopulations or demes (Pannell

and Charlesworth 2000; Rousset 2003; Hanski and
Gaggiotti 2004). Let bl ¼ ðbl1; . . . ; blJl

Þ9 be the mean
allele frequency for the metapopulation at the locus
satisfying

PJl

j¼1 blj ¼ 1. Hence, we have the relation blj¼
alj/ul.

Under this model, the global FST (hereafter denoted
as F G

ST) at each locus is expressed simply by the scale
parameter, as

F G
ST;l ¼

1

1 1 ul
; ð1Þ

as given by Wright (1969), Rannala and Hartigan

(1996), Balding and Nichols (1997), Lockwood et al.
(2001), Balding (2003), and Kitada and Kishino (2004).
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In this model, the variance of the jth allele frequency for
the locus, pklj, is expressed by

V ½ pklj � ¼
1

1 1 ul
bljð1� bljÞ;

as given by Weir (1996), Holsinger et al. (2002), Balding

(2003), and Kitakado et al. (2006). The Dirichlet distri-
bution assumes an evolutionary equilibrium and an equal
mutation rate for all alleles (Weir and Hill 2002; Ewens

2004). Under this assumption, the scale parameter ul

refers to the rate of gene flow, as given by Rannala and
Hartigan (1996). We use the symbol u for the scale
parameter, following Rannala and Hartigan (1996) and
Balding and Nichols (1997). Weir and Cockerham

(1984) also used the same symbol u for the coancestry
coefficient (¼ FST), so we use uWC for their u. Our F G

ST is
equivalent to uWC (Weir 1996, pp. 47–48) and Holsinger’s
uB (Holsinger 1999; Holsinger et al. 2002).

Maximum-likelihood estimation of hyperparameters
and global FST: The maximum-likelihood estimation of
the hyperparameters has been discussed by Lange (1995),
Kitada et al. (2000), and Balding (2003). A pseudo-
likelihood approach was also taken by Rannala and
Hartigan (1996). In the maximum-likelihood frame-
work, a method for the simultaneous estimation of F G

ST

and the linkage disequilibrium coefficient between two
SNPs has been proposed (Kitada and Kishino 2004).
Kitakado et al. (2006) proposed an integrated-likelihood
approach to reduce the negative bias of F G

ST, particularly
for cases with few sampling points.

Suppose that Nk ðk ¼ 1; . . . ; K Þ alleles of diploid or-
ganisms (Nk/2 individuals) are counted at locus l and
nkl ¼ ðnkl1; . . . ; nklJl

Þ9 denotes a vector of observed al-
lele counts at the locus in subpopulation k. We assume
that all individuals are successfully genotyped at all loci,
so Nk ¼ Nkl ¼

PJl

j¼1 nklj . The marginal likelihood of the
observed allele counts at a locus nkl has a Dirichlet-
multinomial distribution (Lange 1995; Rannala and
Hartigan 1996; Weir 1996; Balding and Nichols

1997; Kitada et al. 2000; Balding 2003; Rousset 2003).
The parameters to be estimated are al ¼ ðal1; . . . ;alJl Þ9.
Because we assume the independence of subpopulations,
the overall likelihood for these parameters is given by
the product of the likelihood functions for K samples, as

Lðal jnklÞ ¼
YK
k¼1

Nk !QJl

j¼1 nklj !

Gðul Þ
GðNk 1 ulÞ

YJl

j¼1

Gðnklj 1 aljÞ
GðaljÞ

( )
:

ð2Þ
The hyperparameters al are estimated by maximizing
this marginal likelihood (Lange 1995; Kitada et al.
2000). Our method can be used for both allele and
haplotype counts without modification, but some nota-
tions differ slightly. For haploid organisms, Nk refers to
the individuals genotyped; and nkl should be nk and alj

should be aj. Henceforth, for simplicity, we focus on
diploid organisms.

The locus-specific F G
ST;l can be estimated by substituting

ûl ¼
PJl

j¼1 âlj

� �
for ul in Equation 1. The variance estimator

for ûl is calculated from the Fisher information matrix
for al, as V̂ðûlÞ ¼

PJl

j¼1 V̂ðâljÞ1 2
PJl

j , j9 Covbðâlj ; âlj9Þ.
The asymptotic variance for F G

ST;l
b is estimated using

the Delta method (Seber 1982) as

V̂ðF G
ST;l
bÞ � V̂ðûl Þ

ð1 1 ûl Þ4
: ð3Þ

In our metapopulation model or infinite-island model,
the sampled localities are regarded as a sample from all
possible demes or subpopulations, including those not
sampled. Hence, Equation 2 estimates the locus-specific
genetic differentiation under the random-effect model
of population sampling (Weir 1996). The average es-
timate of F G

ST for all loci is calculated as an arithmetic
mean across the loci.

Empirical Bayes estimation of pairwise FST: The pos-
terior distribution of allele frequencies pkl at locus l in
subpopulation k is again a Dirichlet distribution, with
parameters modified by the sample allele counts

f ðpkl jnklÞ ¼
Gðul 1 NkÞQJl

j¼1 Gðalj 1 nkljÞ
YJl

j¼1

p
alj 1 nklj�1
klj ð4Þ

(Lange 1995; Weir 1996). Given the estimates of the
hyperparameters and the sampled allele counts, ran-
dom numbers of pkl can be generated through this
posterior distribution. The posterior distributions for
any parametric functions of pkl can then be simulated by
the empirical Bayes procedure (Kitada et al. 2000).

When population differentiation between or among
specific subpopulations is of interest, the selected popu-
lations can be regarded as the entire set of populations.
Hence, applying the fixed-effect model of population
sampling (Weir 1996) is appropriate. Therefore, we use
Nei’s GST formula (Nei and Chesser 1983), which de-
fines quantities with respect to fixed extant populations
(Cockerham and Weir 1986), to estimate the posterior
distributions of pairwise FST’s (hereafter denoted as F P

ST),
as did Holsinger (1999) and Corander et al. (2003) in
estimating global FST. Nei’s gene diversity analysis com-
pares expected heterozygosities under Hardy–Weinberg
equilibrium (HWE), and the GST estimator is expressed
as a function of allele frequencies. Therefore the pos-
terior distribution of F P

ST at each locus can easily be gen-
erated on the basis of the GST estimator, without using
genotype frequencies. We set the number of each sim-
ulation to 10,000, so 10,000 F P

ST’s are calculated at each
locus from the 10,000 sets of allele frequencies pkl be-
tween a set of two populations. From the posterior dis-
tribution of F P

ST, the posterior mean and 95% credible
interval are calculated. We use the posterior mean as the
empirical Bayes estimator of locus-specific F P

ST. We can
also calculate the probability that F P

ST is smaller than an
arbitrary value ½e.g., P(F P

ST # c)�, which can be used as the
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criterion for population differentiation (Waples and
Gaggiotti 2006; Palsbøll et al. 2007). The average
estimate of F P

ST for overall loci is calculated as an arith-
metic mean across the loci.

Rosenberg et al. (2003) proposed a general measure
for determining the amount of information on indi-
vidual ancestry on the basis of the Kullback–Leibler in-
formation. The informativeness for assignment In is
defined as

In;l ¼
XJl

j¼1

��plj log �plj 1
XK

k¼1

pklj

K
log pklj

( )
; ð5Þ

where �plj ¼
PK

k¼1 pklj=K . The authors showed that In and
FST are very closely correlated but that In is more in-
formative than the standard SNP-specific pairwise FST.
In an additional analysis, we examine how our empirical
Bayes method works to measure this under the same
simulation protocol.

Inferring heterogeneity of global FST among loci: We
estimate locus-specific F P

ST’s on the basis of F G
ST estimated

at each locus. Evolutionary forces may differ among sites
in the genome. Therefore, it is important to investigate
the heterogeneity of FST among loci. One practical anal-
ysis is to test the null hypothesis H0, the homogeneity of
F G

ST among L loci, F G
ST;l ¼ F G

STðl ¼ 1; . . . ; L) against the
alternative hypothesis H1, the heterogeneity of F G

ST

among loci, on the basis of estimates of F G
ST;l . When a large

number of subpopulations are sampled, the maximum-
likelihood estimate F G

ST;l
b follows a normal distribution of

N ðF G
ST;l ; V ðF G

ST;l
bÞÞ. The maximum likelihood under H0 is

then given as L̂0 ¼
QL

l¼1ð1=
ffiffiffiffiffiffiffiffiffiffiffi
2pŝ2

l

p
Þe�ðF G

ST;l
b� �F G

STÞ
2=2, where

�F G
ST ¼

PL
l¼1 wl F

G
ST;l=

PL
l¼1 wl , wl ¼ ðŝ2

l Þ
�1, and ŝ2

l ¼
V̂ðF G

ST;l
bÞ. The maximum likelihood under H1 is L̂1 ¼QL

l¼1ð1=
ffiffiffiffiffiffiffiffiffiffiffi
2pŝ2

l

p
Þ, maximizing F G

ST;l by F G
ST;l
b. The negative

twice-log-likelihood ratio is then l ¼
PL

l¼1ðF G
ST;l
b �

�F G
STÞ

2=ŝ2
l , which follows the x2-distribution with (L �

1) d.f. under the null hypothesis. We can test the
heterogeneity of F G

ST on the basis of the test statistics.
The other approach to investigate the heterogeneity of

F G
ST is to estimate the distribution of F G

ST in the genome. In
recent years, the number of loci analyzed has been in-
creasing in ecological studies, but is still smaller than
those used for human SNPs. For such cases, it would be
difficult to directly estimate the specific distribution of
F G

ST from the data. Here, we estimate the distribution of
F G

ST in the genome from estimates of randomly selected
loci, F G

ST;l
bðl ¼ 1; . . . ; LÞ. When the distribution is ex-

pressed by the parametric model f ðF G
ST j rÞ, the unknown

parameter r, which defines the distribution of F G
ST, is

estimated by maximizing the log marginal likelihood

‘ r j F G
ST;1
b ; . . . ; F G

ST;L
b� �

¼
XL

l¼1

log

ð
p F G

ST;l
b j F G

ST;l

� �
f F G

ST;l j r
� �

dF G
ST;l ;

where pðF G
ST;l
b j F G

ST;lÞ is the distribution of F G
ST;l
b . Here, we

assume the independence of loci ðl ¼ 1; . . . ; LÞ. Be-

cause the maximum-likelihood estimator F G
ST;l
b is a

sufficient statistic, it is possible to estimate the distribu-
tion of F G

ST in the genome on the basis of the estimates
F G

ST;l
b for randomly sampled loci, instead of using a direct

estimation from the data.
For the preliminary discussion here, we assume that

F G
ST is normally distributed in the genome. When the

distribution of F G
ST is expected to be different from 0, a

simple approximation may be a normal distribution. We
then assume F G

ST follows N(m, s2) as a first step in es-
timating the distribution of F G

ST in the genome under
the limited number of loci analyzed. In this case, the
parameter vector r refers to m and s2. The general form
of the log marginal likelihood given above becomes

‘ m; s2 j F G
ST;1
b ; . . . ; F G

ST;L
b� �

¼ � 1

2

XL

l¼1

logðs2 1 s2
l Þ �

1

2

XL

l¼1

F G
ST;l
b � m

� �2

s2 1 s2
l

:

ð6Þ

Here, s2
l ðl ¼ 1; . . . ; LÞ is the variance of the estimates,

F G
ST;l
bðl ¼ 1; . . . ; LÞ. We estimate m and s2 numerically,

regarding ŝ2
l as s2

l . The distribution of F P
ST’s can also

be calculated with slight modifications to the above
procedure.

RESULTS

Improved precision of our empirical Bayes estimator
for pairwise FST: We investigated the performance of
our method of estimating pairwise F P

ST using numerical
simulations. Random vectors of allele frequencies at
locus l in subpopulation k, pkl’s, were generated in-
dependently from the Dirichlet distribution with the
parameter al(¼ ul bl). Here, the number of sampling
localities (K) was set at 5, 10, and 50, and the mean allele
frequencies at a locus were assumed bl ¼ ð1; 2; . . . ; Jl Þ=
ð Jl ð Jl 1 1Þ=2Þwith Jl¼ 50. As the true values of the global
FST,l’s (¼ 1/(1 1 ul)), we chose four different levels: F G

ST;l

¼ 0.01, 0.05, 0.1, and 0.2. The sample size (Nk/2) was
deemed to be common to all the localities and was set at
20, 30, and 50 individuals. Then, allele counts nkl’s were
drawn independently from the multinomial distribution
Multi(Nk, pkl) for K localities. The pairwise F P

ST values
between the first and second localities were evaluated by
the conventional Nei’s GST estimator and the empirical
Bayes method. In the latter procedure, 500 F P

ST’s were
simulated on the basis of Nei’s GST formula to save com-
putation time, and the posterior mean was calculated as
the estimator of the pairwise FST. The point estimate for
the conventional GST estimator and the posterior mean
of the empirical Bayes estimates were compared with the
true F P

ST. These procedures were iterated R¼ 1000 times.
Figure 1 and supplemental Figure S1 at http://www.

genetics.org/supplemental/ show the general features
of the empirical Bayes estimator compared with those
of the conventional GSTestimator. The former examines
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the case of a relatively large number of sampling points
and a limited sample size from each sampling point
(K ¼ 50, Nk/2 ¼ 20). The latter investigates the case of
moderately large samples from a small number of sam-
pling points (K ¼ 10, Nk/2 ¼ 50), which is common in
ecological studies. It is clearly apparent that the con-
ventional GST estimator greatly overestimates the true
values and has a large variance, especially for small F G

ST.
In contrast, the empirical Bayes estimates of F P

ST’s shrink
toward the average of the true F P

ST and reduce the posi-
tive bias of the conventional estimator. This is reasonable
because our empirical Bayes estimator can be interpreted
as a shrinkage estimator (Stein 1956; Maritz and Lewin

1989).
The effects of the number of sampling points K

and sampled individuals Nk/2 are also shown in the
supplemental material at http://www.genetics.org/
supplemental/. The numbers of sampling points did
not affect the positive bias of the conventional GST es-
timator because K was fixed at 2. The empirical Bayes
procedure provided larger variation for smaller num-
bers of subpopulations, especially for small F G

ST values,
and vice versa (supplemental Figure S2 at http://www.
genetics.org/supplemental/). Conversely, larger num-
bers of sampled individuals reduced the positive bias of
the conventional GST estimator and the variation of the
empirical Bayes estimator (supplemental Figure S3 at
http://www.genetics.org/supplemental/).

For a quantitative comparison of the two estimators,
we used the following two measures: ð1=RÞ

PR
r¼1

ðF P
ST;r
b � F P

ST;r Þ=F P
ST;r (relative mean bias) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=RÞ
PR

r¼1ððF P
ST;r
b � F P

ST;r Þ=F P
ST;r Þ2

q
(root relative mean

squared error), where F P
ST;r
b and F P

ST;r are an estimate and
the true value, respectively, for pairwise F P

ST in the r th
iteration. As shown in Table 1, smaller K and sample
sizes (Nk/2) resulted in larger positive biases for the con-
ventional estimator for various levels of true F G

ST values.
The bias and variation became smaller as F G

ST became
larger. In contrast, the empirical Bayes estimator pro-
vided smaller biases and variations for all cases of F G

ST,
although smaller K and sample sizes resulted in a slight
negative bias.

The negative bias of the empirical Bayes estimator of
pairwise FST is large, especially when gene flow is large
and the estimation is based on a sample from a few
sampling points. Underestimation of population differ-
ences should lead to optimistic management strategies.
Therefore, it is recommended in the conservation ge-
netics of birds and fish that samples be collected from as
many sampling points as possible. It is noted that the
bias of the empirical Bayes estimator is reduced by in-
creasing the number of sampling points, whereas the
bias of the conventional GST estimator is not.

We estimated Rosenberg et al.’s informativeness of
assignment In between the first and second localities

Figure 1.—The conventional GST (A) and em-
pirical Bayes (B) estimates of pairwise F P

ST from
1000 simulations under the infinite-island model
at various levels of F G

ST (0.01, 0.05, 0.1, 0.2) over
subpopulations. The mean allele frequencies as-
sumed were b ¼ ð1; 2; . . . ; J Þ=ð J ð J 1 1Þ=2Þ with
J ¼ 50. The number of sampling localities (K)
was set at 50. The sample size Nk/2 (individuals)
was common to all localities and was set at 20
individuals.
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using Equation 5 (K ¼ 2) and the empirical Bayes
method based on the In estimator for the case of F G

ST ¼
0.01. The mean allele frequencies were assumed to be
b ¼ ð1; 2; . . . ; J Þ=ð J ð J 1 1Þ=2Þ with J ¼ 50. The number
of sampling localities (K) was set at 50 and the sample
size (Nk/2 individuals) was set at 20 individuals for each
sampling point. Figure 2 shows that the conventional
estimator for In was positively biased, whereas the em-
pirical Bayes estimator of In performed much better,
consistent with the fact that In produces upwardly biased
estimates in small samples (Rosenberg et al. 2003).

Robustness of our shrinkage estimator for pairwise
FST: The robustness of our F P

ST estimator was explored
using numerical simulations for non-Dirichlet distribu-
tions of the allele frequencies. We considered cases in

which genetic differentiation becomes larger with geo-
graphic distance. Such a stepping-stone model is bio-
logically realistic and may be common (Palsbøll et al.
2007). We set the number of sampled subpopulations
(K) to 15 and the F P

ST between two adjacent populations
to 0.001 (case 1) or 0.0005 (case 2). We considered bi-
allelic cases and set the allele frequencies to (0.5, 0.5) at
a locus for the middle population. We then calculated
the allele frequencies pkl’s at the locus for another 14
subpopulations by numerical optimization. The sample
size (Nk/2) was deemed to be common to all localities
and was set at 20 individuals. Then, allele counts nk’s
were drawn independently from the multinomial distri-
bution Multi(Nk, pkl) for 15 localities. A total of 105
pairwise FST values between all sets of the two localities
were evaluated by the conventional GST and the empir-
ical Bayes estimator following the simulation protocol
described above.

As shown in Figure 3 (case 1) and supplemental Fig-
ure S4 at http://www.genetics.org/supplemental/ (case
2, top left), our empirical Bayes procedure provided bet-
ter estimates than those of the conventional GST esti-
mator for smaller F P

ST’s (�,0.06 for case 1 and 0.04 for
case 2). In conservation, management units should be
defined among subpopulations with little genetic dif-
ferentiation. Palsbøll et al. (2007) concluded that F P

ST ¼
0.0025 could be used as the criterion for deciding the

Figure 2.—The conventional informativeness of assign-
ment In (Rosenberg et al. 2003) (A) and empirical Bayes
(B) estimates of In from 1000 simulations for the case of
F G

ST ¼ 0.01. The mean allele frequencies assumed were
b ¼ ð1; 2; . . . ; J Þ=ð J ð J 1 1Þ=2Þ with J ¼ 50. The number of
sampling localities (K) was set at 50 and the sample size
Nk/2 (individuals) was common to all localities and was set
at 20 individuals.

TABLE 1

Relative mean bias and root relative mean squared error (in
parentheses) of the conventional GST and empirical

Bayes estimators of pairwise FST from 1000 simulations
at various levels of global FST (see text)

F G
ST K Nk/2 Conventional Empirical Bayes

0.01 5 20 2.770 (3.019) �0.726 (0.815)
30 1.769 (1.942) �0.541 (0.630)
50 1.069 (1.192) �0.330 (0.412)

10 20 2.666 (2.880) �0.325 (0.464)
30 1.791 (1.955) �0.205 (0.345)
50 1.081 (1.214) �0.122 (0.270)

50 20 2.728 (2.972) 0.003 (0.294)
30 1.784 (1.967) 0.010 (0.272)
50 1.085 (1.217) 0.033 (0.251)

0.05 5 20 0.561 (0.685) �0.136 (0.283)
30 0.363 (0.478) �0.097 (0.233)
50 0.218 (0.304) �0.056 (0.175)

10 20 0.538 (0.662) �0.039 (0.242)
30 0.367 (0.475) �0.015 (0.216)
50 0.233 (0.317) 0.004 (0.169)

50 20 0.557 (0.680) 0.047 (0.253)
30 0.366 (0.480) 0.031 (0.226)
50 0.206 (0.304) 0.015 (0.181)

0.1 5 20 0.273 (0.418) �0.053 (0.242)
30 0.176 (0.284) �0.036 (0.189)
50 0.106 (0.194) �0.019 (0.149)

10 20 0.255 (0.375) �0.006 (0.215)
30 0.183 (0.289) 0.009 (0.186)
50 0.098 (0.195) �0.001 (0.151)

50 20 0.247 (0.373) 0.019 (0.215)
30 0.182 (0.287) 0.027 (0.183)
50 0.109 (0.192) 0.020 (0.147)

0.2 5 20 0.125 (0.250) �0.017 (0.192)
30 0.083 (0.195) �0.007 (0.161)
50 0.051 (0.134) �0.003 (0.118)

10 20 0.123 (0.246) 0.009 (0.192)
30 0.092 (0.197) 0.018 (0.165)
50 0.049 (0.138) 0.004 (0.122)

50 20 0.127 (0.267) 0.027 (0.220)
30 0.087 (0.188) 0.020 (0.155)
50 0.058 (0.144) 0.018 (0.128)
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separate management units of sockeye salmon spawning
sites. For such cases with very small genetic differentiation,
our method performs more efficiently, even for step-
ping-stone models. On the contrary, the conventional
GST estimator displayed a positive bias for the whole
range of F P

ST’s in both cases. Our method reduced the
positive bias for small F P

ST’s and the bias became negative
for larger F P

ST’s. Reflecting the characteristics of the
shrinkage estimator, the relative mean bias of the em-
pirical Bayes estimator, which was the average of the 105
pairwise FST estimates, was slightly (1.06 times) larger

than that of the conventional estimator for case 1 (Table
2). The precision of our estimates was much better for
the whole range of F P

ST ½Figure 3, top right (case 1) and
supplemental Figure S4 (case 2)�.

We also investigated the robustness of estimating pop-
ulation structure on the basis of estimated F P

ST’s. The re-
sults of the multidimensional scaling (MDS) (Torgerson

1952; Young and Hamer 1987) analysis of two data sets in
the simulation showed that our method describes the true
population structure well. The conventional GSTestimator
also worked, despite the larger positive bias and variance
(Figure 3, bottom).

The case of Pacific herring: We analyzed six geo-
graphical samples of the Pacific herring Clupea pallasii
from spawning areas in Lake Akkeshi (AK), Yudonuma
Lake (YD), and Funka Bay (FK), which are located off
the east coast of Hokkaido in Japan, and Obuchinuma
Lake (OB), Miyako Bay (MY), and Matsushima Bay (MT),
located off the northern Pacific coast of Honshu.
Hatchery fish, released and recaptured in Lake Akkeshi
(AKH) and Miyako Bay (MYH), were also distinguished
from wild fish on the basis of otoliths stained with aliz-
arin complexon. A total of 2055 mature individuals were
genotyped at five microsatellite loci. Allele frequencies
are given in supplemental Tables S1–S5 at http://www.
genetics.org/supplemental/. HWE was satisfied in each
sample except at four localities for three loci, and the
assumption of our metapopulation model was consid-
ered to be satisfied (supplemental Figure S5). On the
basis of the estimates of the hyperparameters (supple-
mental Figure S6), the scale parameter ul and F G

ST;l were
estimated over all subpopulations (Table 3).

We estimated the posterior distributions of F P
ST for all

sets of subpopulations at all loci. As an example, the
posterior distributions between FK and MY at the five
loci are shown in Figure 4. The posterior means of F P

ST

varied from 0.0064 to 0.0245, with the 95% credible
intervals in parentheses (Table 4). The P-values in Fig-
ures 4 and 5 are for the homogeneity contingency test
performed with Genepop (Raymond and Rousset 1995).
At all loci, the allelic differences between FK and MY
were highly significant (P , 0.0000). We used F P

ST of 0.01
as a population criterion and defined the probability of

Figure 3.—Mean (top left) and root relative mean squared
error (top right) of the conventional GST (red circle) and em-
pirical Bayes estimators (blue circle) of pairwise F P

ST from 1000
simulations under the stepping-stone models. Means and root
MSEs were plotted on the true F P

ST’s which fluctuated very
slightly when small uniform random variables were added
to prevent the points overlapping heavily. The number of sub-
populations (K) was set at 15 and the pairwise F P

ST between two
adjacent populations was set at 0.001 (case 1) and 0.0005
(case 2). The sample size Nk/2 (individuals) was common
to all localities and set at 20 individuals. Only the results
for case 1 are shown. The results of the MDS analysis of
two data sets are given in the bottom section; black circles
show the true population structure, and the estimated popu-
lation structure based on the conventional (red ‘‘*’’) and em-
pirical Bayes estimates (blue ‘‘1’’) of F P

ST is shown.

TABLE 2

Relative mean bias and root relative mean squared error of the conventional GST and
empirical Bayes estimators of pairwise FST from 1000 simulations under the

stepping-stone models (see text)

F P
ST

Relative mean bias Root relative MSE

Conventional Empirical Bayes Conventional Empirical Bayes

0.001 (case 1) 1.165 1.239 2.352 1.817
0.0005 (case 2) 2.296 1.718 4.362 2.527

The number of subpopulations (K) was set at 15 and the pairwise FST between two adjacent populations was
set at 0.001 (case 1) and 0.0005 (case 2). The sample size Nk/2 (individuals) was common to the localities and
set at 20 individuals.

Inferring FST and Its Distribution 867



F P
ST # 0.01 as P*. Here, F P

ST ¼ 0.01 refers to Nem ’ 25,
which means that the effective number of migrants is 25
individuals per generation (Waples and Gaggiotti

2006), where Ne is the effective population size and m is
the migration rate. The P*-value was near 1.0 for Cha 63,
indicating that the genetic differentiation at the locus
was small. In contrast, P*-values were 0 or near 0 for Cha
17, Cha 113, and Cha 123 and 0.5318 for Cha 20 (Figure
4). The posterior distribution of the average F P

ST over all
the loci was calculated as the mean of the posterior

distributions at five loci (Figure 4, bottom right). Both
the P- and P*-values coincided at 0, showing significant
genetic differentiation between Funka Bay and Miyako
Bay.

The posterior distributions of average F P
ST over all loci

for all pairs of wild subpopulations were also simulated
as simple means of the posterior distributions at five loci
(Figure 5). The allelic differences were highly signifi-
cant with P ¼ 0.0000, except between MY and MT. The
criterion P* resulted in a very different evaluation of

TABLE 3

Estimated locus-specific scale parameters u and FG
ST over

subpopulations of the Pacific herring, with standard
errors in parentheses

Locus No. alleles u F G
ST

Cha17 48 63.98 (7.88) 0.0154 (0.0019)
Cha20 30 77.26 (13.13) 0.0128 (0.0021)
Cha63 35 58.21 (8.60) 0.0169 (0.0025)
Cha113 29 41.68 (6.59) 0.0234 (0.0036)
Cha123 50 58.78 (6.68) 0.0167 (0.0018)
Meana 38.4 59.98 (3.98) 0.0170 (0.0011)
Meanb 0.0160 (0.0010)

a Simple mean over all loci.
b Weighted mean over all loci, which was equal to the MLE

obtained by Equation 3.

Figure 4.—Posterior distributions of F P
ST for the

Pacific herring between Funka Bay and Miyako Bay
at each locus, and over all loci, which were aver-
aged over F P

ST at five loci.

TABLE 4

Posterior means and 95% credible and confidence intervals
for pairwise FST of the Pacific herring between Funka Bay

and Miyako Bay at each locus

Locus d.f.
Posterior

mean Empirical Bayes Weir and Hilla

Cha17 47 0.0193 ½0.0137, 0.0258� ½0.0133, 0.0302�
Cha20 29 0.0100 ½0.0063, 0.0146� ½0.0063, 0.0180�
Cha63 34 0.0064 ½0.0046, 0.0086� ½0.0042, 0.0111�
Cha113 28 0.0245 ½0.0162, 0.0349� ½0.0154, 0.0448�
Cha123 49 0.0213 ½0.0158, 0.0279� ½0.0149, 0.0331�
Mean 1309 0.0163 ½0.0138, 0.0191� ½0.0151, 0.0176�

a Estimated by Weir and Hill’s (2002) normal theory
approach.
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population differentiation, even for the same P-value of
0.0000. This result clearly shows the difficulty in the
hypothesis-testing framework in evaluating the genetic
differentiation between subpopulations (e.g., Dizon

et al. 1995; Ryman and Jorde 2001; Ryman et al. 2006).
The P*-based criterion works well in this case and is
recommended for use in hypothesis testing.

The variation in F G
ST;l
b over five loci was not trivial, with

a coefficient of variation (CV) of 23% (Table 3). How-
ever, the negative twice log-likelihood ratio l was calcu-
lated to be 6.9264 and the hypothesis of constant F G

ST for
all loci was not rejected (P ¼ 0.8602, d.f. ¼ 4). We es-
timated the distribution of F G

ST in the genome, assuming
normality based on Equation 6. The maximum-likelihood
estimates (MLEs) for m and s were obtained with 90, 95,
and 99% confidence intervals, which define the distri-
bution of F G

ST in the genome via the likelihood profile
(Figure 6A). The MLE for m, with the 95% confidence
interval, was 0.0160 (0.0128, 0.0206) ½Figure 6A (a, e)�
and for s was 0 (0, 0.00716) ½Figure 6A (0, c)�. The

weighted mean �F G
ST coincided with the MLE of m (Table 3)

and the distribution of the weighted mean N ð �F G
ST;

V̂ð �F G
STÞÞ, shown as the blue line in Figure 6B, described

well the 95% confidence interval of m ½Figure 6A (a,
e)�. Here, V̂ð �F G

STÞ ¼ 1=
PL

l¼1 wi

� �2PL
l¼1 w2

i V̂ðF G
ST;l
bÞ and

V ðF G
ST;l
bÞ were estimated with Equation 3. The log-

likelihood profile for s was monotonic and decreas-
ing, indicating that the point estimate of s was 0
(supplemental Figure S7 at http://www.genetics.org/
supplemental/). Hence, the point estimate of the dis-
tribution of F G

ST for the Pacific herring is constant, sup-
porting the hypothesis of constant F G

ST throughout the
genome. However, the distribution of F G

ST has uncer-
tainty, which accounts for the confidence regions of m

and s (Figure 6B).

DISCUSSION

Our empirical Bayes estimator of F P
ST performed

better than the conventional GST estimator for various

Figure 5.—Posterior distributions of
F P

ST for the Pacific herring over all loci,
which were averaged over F P

ST for five
loci: AK, Lake Akkeshi; YD, Yudonuma
Lake; FK, Funka Bay; OB, Obuchinuma
Lake;MY,MiyakoBay;andMT,Matsushima
Bay.
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levels of F G
ST and various sampling conditions under the

infinite-island model. Even for non-Dirichlet distributions
of allele frequencies, such as stepping-stone models, our
method provided better estimates of F P

ST than did the
conventional GST, especially for cases with large gene
flow.

Integrated likelihood method: The empirical Bayes
estimator of F P

ST’s is negatively biased, especially when
the population has large gene flow and the estimation is
based on a sample from only a few sampling points
(Table 1, supplemental Figure S2 at http://www.genetics.
org/supplemental/). With a small number of sampling
points, the MLE of u is not precise. Therefore, it is

recommended in the conservation genetic analysis of
such a population that the samples be collected from as
many sampling points as possible. When sampling from
many localities is not feasible, the integrated-likelihood
method (Kitakado et al. 2006) can reduce the negative
bias of F G

ST. We estimated pairwise F P
ST’s by the empirical

Bayes method based on integrated-likelihood estimates
(ILEs) of u for cases with F G

ST ¼ 0.01, K ¼ 5, and Nk/2 ¼
20, 30, or 50 with the same simulation protocol used for
Table 1 (supplemental Figure S8 at http://www.genetics.
org/supplemental/). The relative mean biases of the
F P

ST estimates, with root relative mean squared errors in
parentheses, were �0.238 (0.506), �0.132 (0.365), and
�0.060 (0.272), respectively. These values were much
smaller than those estimated on the basis of the MLE of
u, given in Table 1 (top three rows). The negative bias of
F P

ST
b’s based on the MLE was reduced to 32.8, 24.4, and
18.2% for Nk/2 ¼ 20, 30, and 50, respectively. The
integrated-likelihood method uses a uniform prior for
the mean allele frequency bl and eliminates bl by inte-
gration regarding it as a nuisance parameter. By using
the ILE of u instead of the MLE, the empirical Bayes
method proposed here provides nearly unbiased esti-
mates of F P

ST’s when the sample sizes (Nk/2 individuals)
are large and works more efficiently, even for cases with
a small number of sampling points (supplemental Fig-
ure S8).

Weir and Cockerham’s ûWC: When we estimate ge-
netic differentiation between two specific subpopulations,
selected subpopulations can be regarded as the entire
set of populations. Nei’s GST formula defines quantities
with respect to fixed extant populations (Cockerham

and Weir 1986). In addition, GST is a function of allele
frequencies under HWE, and the posterior distribution
can easily be simulated from only allele frequencies.
Therefore, we used the GSTestimator to estimate the pos-
terior distribution of pairwise FST.

The citation record suggests that the most widely used
estimator for Wright’s FST is Weir and Cockerham’s ûWC

(Weir and Hill 2002). This moment estimator takes
the sampling error for subpopulations into account and
essentially estimates the global FST, F G

ST. The estimator is
also widely used to estimate pairwise FST’s among fixed
pairs of populations. With the assumption of no local
inbreeding, uWC is estimated only from sample allele
frequencies, but these need to be inferred from sample
genotype frequencies (Weir and Hill 2002). With J al-
leles at a locus, the number of possible genotypes is J( J 1

1)/2. In microsatellite DNA analyses, J is generally large.
If J ¼ 50, the number of genotypes is 1225. Such a sit-
uation makes our simulation more complicated and the
uncertainty of the genotype counts becomes large under
small or moderate sample sizes.

Here, we investigated the properties of ûWC on esti-
mating pairwise FST on the basis of the relationship be-
tween GSTand uWC. Weir and Cockerham’s estimates ûWC

can be approximated as a function of GST by Equation 2

Figure 6.—Confidence regions of the distribution of F G
ST in

the genome of the Pacific herring, assuming a normal distribu-
tion (see the text). (A) The confidence regions of m and s2,
which specify the distribution. (B) The MLE distribution
(red line, the delta distribution) and the representative distri-
butions on the boundary of the confidence regions (a–e),
which correspond to the points in A. The distribution of the
weighted mean of F G

ST
b is superimposed (blue line).
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in Weicker et al. (2001): uWC ¼ fGSTðK 1 ðK � 1Þ=
ðNk � 1ÞÞ � ðK � 1Þ=ðNk � 1Þg=ðGST 1 K � 1Þ.Usingthis
equation, we calculated the conventional estimates
of pairwise Weir and Cockerham’s uWC from GST esti-
mates with the simulation protocol described in results.
We examined cases with a global FST of F G

ST ¼ 0.01,
0.05, 0.1, and 0.2. The mean allele frequencies were as-
sumed b ¼ ð1; 2; . . . ; J Þ=ð J ð J 1 1Þ=2Þ with J ¼ 50. The
number of sampling localities K was set at 10 and the
sample size Nk/2 (individuals) was deemed to be com-
mon to all the localities and was set at 50 individuals. As
shown in supplemental Figure S9 at http://www.genetics.
org/supplemental/, the two estimators have linear re-
lationships. Hence, our simulation results on the conven-
tional GST estimator can be extended straightforwardly
to pairwise uWC. In fact, the pairwise ûWC-values calcu-
lated for the Pacific herring with Genepop (Raymond

and Rousset 1995) were 1.93 6 0.47 times larger than
the posterior means of F P

ST (supplemental Figure S10 at
http://www.genetics.org/supplemental/), which coin-
cides with our simulations for small F G

ST’s (Figure 1, sup-
plemental Figures S1 and S11).

Weir and Cockerham’s estimator ûWC is nearly unbiased
(Raufaste and Bonhomme 2000), although it has a neg-
ative bias for the two-allele case (Weir and Hill 2002).
Nevertheless, when estimating the pairwise FST, ûWC is con-
sidered to have a large positive bias, especially for species
with large gene flows. Nei’s GST and Rosenberg et al.’s
informativeness of assignment In also showed the same
phenomenon, suggesting the positive bias is irrelevant to
the estimators. This positive bias of the conventional es-
timators was larger for smaller genetic differentiation. This
might be caused by the large variation in the sample allele
frequencies, which is larger for smaller sample sizes (in-
dividuals) and largely exceeded the real variation between
subpopulations. The shrinkage estimator stabilizes such
variation and provides better estimates.

Weir and Hill’s normal theory: Weir and Hill’s
(2002) normal theory approach has the same variance
as a Dirichlet distribution when i 6¼ i9 in their notation.
Hence, their estimator ûN is equivalent to our F G

ST
b. F G

ST is
the variance of the allele frequencies among subpopu-
lations relative to the total population. Hence, F G

ST
b refers

to a sample variance of allele frequencies, and therefore
d:f : � F G

ST
b=F G

ST follows a x2-distribution when the number
of sampling points K is sufficiently large, as shown by
Weir and Hill (2002). The shape of the posterior dis-
tribution of F P

ST at each locus was unimodal and slightly
right tailed, which reminded us of x2-distributions (Fig-
ure 4). We estimated Weir and Hill’s confidence in-
tervals by substituting the posterior mean of F P

ST with
ûN as ½d:f : F P

ST
b=x2

ðd;0:975Þ; d:f : F P
ST
b=x2

ðd;0:025Þ�, where d.f. ¼
(K � 1)( J � 1) is the degrees of freedom. The confi-
dence intervals of F P

ST obtained with the x2-approximation
coincided well with the credible intervals calculated
from the posterior distributions, although our credible
intervals were narrower than the confidence intervals of

the x2-approximation, which were slightly right tailed
(Table 4). The slight difference in the intervals might
have been the effect of the small K(¼ 8) on the x2-
approximation, although it was not substantial. On the
contrary, the confidence interval for the sample mean
over all loci was narrower than our credible interval
(Table 4). The distribution of a sample mean is normal
when the sample size is large with the variance reduced
by the central limit theorem. A x2-distribution approaches
a normal distribution as the degrees of freedom become
larger. For our case of 1309 d.f. ½d:f : ¼ ðK � 1Þ

Pn
i¼1ð Ji �

1Þ as given in Weir and Hill 2002�, the two distributions
are equal. The property of the sample mean should
cause the narrower confidence interval of the normal
theory approach. The result shows that the posterior
distribution of F P

ST describes the distribution of F P
ST
b well,

both for each locus and for the average over all loci.
LD among loci: The case study of the Pacific herring,

based on a few microsatellite markers, did not detect
significant variation in F G

ST among loci in the genome
(Figure 6). The assumption of normality for the MLE of
F G

ST is valid when more than a few sampling points are
surveyed. This assumption might be violated when the
data are collected from only a few sampling points or F G

ST

is close to 0 or 1.0. We also assumed the independence
of loci ðl ¼ 1; . . . ; LÞ. However, it is necessary to take
into account the linkage disequilibrium (LD) among
loci, when the molecular markers are tightly linked.

Recent progress in whole-genome analysis of human
populations provides a new perspective on the infer-
ence of FST and its distribution in genomes (Garte

2003; Hinds et al. 2005; Weir et al. 2005; Walsh et al.
2006). In their Figure 1, Weir et al. (2005) showed that
values for the single-locus marker F G

ST;l
b over the whole

human genome for three (Perlegen) or four (HapMap)
populations had a distribution very much like the x2-
distributions with 2 or 3 d.f. and suggested that values of
F G

ST are genome-region specific. However, F G
ST
b follows a

x2-distribution under constant F G
ST, as reported by Weir

and Hill (2002) and as demonstrated in our analysis of
the Pacific herring. Therefore, the distributions of the
values for the single-locus marker F G

ST;l
b in Weir et al.

(2005) do not necessarily support the genome-region-
specific FST hypothesis in the human genome.

Weir et al.’s 5-Mb window average values for F G
ST
b were

close to normal because of the property of the sample
mean. The standard deviations (SDs) of the 5-Mb win-
dow average values of F G

ST
b decreased substantially from

single-locus estimates of 0.12 to 0.02 for HapMap and
from 0.11 to 0.02 for Perlegen (Tables 2 and 3 in Weir

et al. 2005). The average number of markers in a 5-Mb
window was 1114 for HapMap and 1834 for Perlegen
(calculated from Table 1 in Weir et al. 2005). Hence,
these SDs are expected to be 0:00360ð¼ 0:12=

ffiffiffiffiffiffiffiffiffiffiffi
1114
p

Þ
and 0:00257ð¼ 0:11=

ffiffiffiffiffiffiffiffiffiffiffi
1834
p

Þ, if all SNPs are indepen-
dent and distributed identically in the genome. The
effective sample size (Kish 1965, p. 259) could be much
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smaller than the real number of SNPs in the 5-Mb
windows if the F G

ST’s are correlated, because of LD be-
tween the SNPs. A coalescent simulation of human pop-
ulation history implies that linkage equilibrium holds
for SNPs separated by .10–100 kb (Figure 1 in Kruglyak

1999). Therefore, we can estimate the effective number of
human SNPs per 100-kb window to be �1–20. If we as-
sumed it to be�10, the effective number of SNPs per 5-Mb
window becomes 500. Therefore, the SDs of the 5-Mb
window F G

ST
b are expected to be 0:00537ð¼ 0:12=

ffiffiffiffiffiffiffiffi
500
p

Þ for
HapMap and 0:00492ð¼ 0:11=

ffiffiffiffiffiffiffiffi
500
p

Þ for Perlegen. The
actual value (0.02) is much larger than these, even when
the LD among the SNPs is taken into account. This dis-
crepancy can be explained by the large-scale heterogeneity
of FST between the 5-Mb windows. New data show that LD
is highly structured into discrete blocks of sequences
separated by hot spots of recombination (Goldstein

2001; McVean et al. 2004) and differs among species
(Hernandez et al. 2007). The simultaneous estimation of
FST’s of SNPs and the LD between the SNPs should give us
an accurate picture of the distribution of FST in genomes.
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