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ABSTRACT

Gene conversion plays an important part in shaping genetic diversity in populations, yet estimating the
rate at which it occurs is difficult because of the short lengths of DNA involved. We have developed a new
statistical approach to estimating gene conversion rates from genetic variation, by extending an existing
model for haplotype data in the presence of crossover events. We show, by simulation, that when the rate of
gene conversion events is at least comparable to the rate of crossover events, the method provides a powerful
approach to the detection of gene conversion and estimation of its rate. Application of the method to data
from the telomeric X chromosome of Drosophila melanogaster, in which crossover activity is suppressed, indicates
that gene conversion occurs �400 times more often than crossover events. We also extend the method to
estimating variable crossover and gene conversion rates and estimate the rate of gene conversion to be �1.5
times higher than the crossover rate in a region of human chromosome 1 with known recombination hotspots.

AN important concept in the description of genetic
variation is linkage disequilibrium (LD), the non-

random association of alleles at different locations along
the genome. Disease association studies rely heavily on
knowledge of patterns of LD, both in pinpointing com-
plex disease genes precisely and in performing geno-
mewide studies (Pritchard and Przeworski 2001).
Over long ranges, LD is mainly affected by crossover,
which has been studied and modeled by many authors
and is reviewed by Stumpf and Mcvean (2003). A less
well-known form of recombination is homologous gene
conversion, a nonreciprocal process acting on short
lengths of DNA, where genetic material from one pa-
rental chromosome is incorporated into the alternate
chromosome during meiotic exchange (Szostak et al.
1983). Crossover events in fact include a gene conver-
sion tract but this cannot be detected using population-
based methods, and we therefore use the term gene
conversion only to refer to gene conversion events that
are not accompanied by crossover.

In humans, gene conversion is thought to occur �4–
15 times as frequently as crossover ( Jeffreys and May

2004), but is more difficult to detect due to the short
lengths of DNA transferred. Estimates of the tract length
vary between studies and between organisms/regions
but tend to lie between 50 and 2000 bp (e.g., Borts and
Haber 1989; Hilliker et al. 1994; Jeffreys and May

2004). For a full description of the gene conversion
process see Stahl (1994) and references therein.

Patterns of linkage disequilibrium in humans can be
satisfactorily explained only by models including gene
conversion (Frisse et al. 2001). Simulations show that in
genomic regions that have been subject to gene con-
version, estimates of the crossover rate are inflated when
gene conversion is ignored (Smith and Fearnhead 2005).
Przeworski and Wall (2001) showed, using human
population genetic data, that gene conversion is likely
to be an important factor in explaining a marked dif-
ference between estimates of the population recombi-
nation rate obtained through comparing genetic and
physical maps and those found through analysis of nu-
cleotide sequence polymorphism data. These factors
have made gene conversion the subject of much inves-
tigation in recent years.

Although highly localized, the effects of gene conver-
sion may also have a significant impact on association
studies, which seek a genotyped marker that is in strong
LD with an untyped allele responsible for the phenotype
of interest. If gene conversion is ignored, the extent of
LD over short distances is likely to be overestimated,
while LD at longer distances will be underestimated due
to the inflated rate of crossover needed to explain the
short-range LD (Frisse et al. 2001). These two influen-
ces on LD may affect the choice of the number of mark-
ers to genotype for a study (Schork 2002).

Gene conversion also affects our ability to detect the
effects of natural selection on a population (Andolfatto

and Nordborg 1998). Tests for deviation from the null
model typically rely on an estimate of the recombination
rate in a region, and ignoring the effects of gene con-
version will reduce the power of tests for selection and can
also increase the false positive rate of such tests.
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Finally, learning about gene conversion could help
us to gain biological and mechanistic insights into
recombination.

It is therefore desirable to be able to estimate the fre-
quency at which gene conversion events occur, at a fine
scale, over genomic regions many megabases in length
and to detect variation in gene conversion rates within
such a genomic region.

Rates of both crossover and gene conversion can be
estimated directly using sperm-typing experiments such
as those of Jeffreys and May (2004) that give highly
accurate fine-scale rates, but cannot be performed on a
genomic scale or on the X chromosome or in females.

Pedigree studies (e.g., Kong et al. 2002) can give fur-
ther information such as sex-specific differences in cross-
over rates, but because of the infrequency of events,
cannot give accurate fine-scale maps.

For genomewide fine-scale characterization of recom-
bination rates a practical solution is statistical modeling
of genetic data, based on simplified assumptions about
the historical processes that resulted in the population
genetic data seen today. Methods of inference can be
performed in many different ways:

Summary statistics (e.g., Wiehe et al. 2000; Padhukasa-

hasram et al. 2006) can sometimes be quick to
calculate but make use of partial information only
and are not able to detect fine-scale variation.

Composite likelihoods calculated using pairs or triplets
of segregating sites (e.g., Frisse et al. 2001; Ptak et al.
2004) can provide a ‘‘reasonable’’ estimate of the gene
conversion rate (i.e., within a factor of 2 of the truth)
given sufficient data (Wall 2004). Fearnhead et al.
(2005) applied one such method (Hudson 2001) to
bacterial data sets and obtained some interesting re-
sults, including tract length estimates. However, for
densely typed SNP data where there are likely to be
high levels of LD, composite-likelihood methods may
be unsuitable as they ignore the dependency between
nearby pairs/triplets of SNPs.

Full-likelihood methods approximate the probability of
the data under the assumed population genetic model
(exact probabilities are not available due to the un-
known history of the sample). Some use techniques
such as importance sampling (Fearnhead and
Donnelly 2001) to make the approximation, while
others use a simplified model under which exact prob-
abilities can be found (e.g., Li and Stephens 2003;
Hellenthal 2006). The main benefit of the full-
likelihood approach is to make use of as much of the
information in the data as possible, and in the case of
gene conversion we expect this to be important.

In this article we describe a statistical model of pop-
ulation genetic data that includes both crossover and
gene conversion, where a gene conversion tract can in-
clude any number of markers. The model can be used to
estimate the rates of crossover and/or gene conversion

in a given region using maximum-likelihood techniques
or could be implemented in a Bayesian framework. The
model does not require that either rate be constant
across the region of interest and could, for example, be
used to obtain an estimate of the gene conversion rate in
a region known to include a crossover hotspot. As well as
performing tests on simulated data, we examine single-
nucleotide polymorphism (SNP) data from a genomic
region thought to be free from crossover hotspots and
then consider a region of the human genome that con-
tains several crossover hotspots ( Jeffreys et al. 2005).

Our results on simulated data show that gene conver-
sion rates can be estimated fairly accurately from popu-
lation genetic data, and the inclusion of gene conversion
in our model results in improved estimates of the cross-
over rate, particularly when gene conversion is pres-
ent at high levels. In a region near the telomere of the
X chromosome of Drosophila melanogaster we find that
gene conversion events occur .400 times as frequently
as crossovers, while in a region of human chromosome 1,
there is only 1.5 times as much gene conversion activity
as crossover.

MODEL

Our model is an extension of the coalescent-based
model of Li and Stephens (2003) (henceforth abbre-
viated to LS model) to include gene conversion as well
as crossover. Li and Stephens modeled the probability of
seeing a particular chromosomal segment, given any
other homologous segments already seen, and given the
rates of mutation u and crossover r ¼ 4Nec, where Ne is
the effective population size and c is the per-generation
probability of crossover between adjacent base pairs.
We use the terms haplotype and chromosome interchange-
ably to refer to a chromosomal segment and assume the
method will be applied to resequenced or densely ge-
notyped SNP data, although it could also be applied
to microsatellite data with a suitably adjusted emission
probability.

Our approach has the following properties, some of
which are novel:

Gene conversion tract lengths may be arbitrarily long.
SNPs can be arbitrarily densely situated in the region of

interest, allowing for multiple-SNP gene conversion
tracts.

Crossover and gene conversion rates may vary across the
region of interest.

Estimates can be obtained jointly for the crossover rate
and the gene conversion rate (and in theory, also for
the gene conversion tract length, but in settings where
the tract length is short relative to the average SNP spac-
ing there is little information in the data to pinpoint
this).

It is model-based and calculates (an approximation to)
the likelihood, so can provide estimates of uncertainty.
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We chose the LS model because it does not rely on
summary statistics, but attempts to use all the available
information, albeit under an approximation to the
likelihood, making it an ideal candidate for extension
to the gene conversion model. We expect the trace of
gene conversion to be difficult to detect and therefore
wish to use the maximum information that can be ex-
tracted from the data.

We first introduce briefly the LS model for crossover
alone and then describe the addition of gene conver-
sion to this model. We validate our method using tests
on data simulated with a range of parameter values and
evaluate its robustness to deviations from our assump-
tions about population demographics. Finally we gen-
eralize the model to allow for variation in the rate of
gene conversion.

Modeling crossover using a likelihood-based ap-
proach: The objective of maximum-likelihood methods
is to maximize the function L(Q) ¼ Pr(H j Q), i.e., the
likelihood of a set of model parameters Q given the
sampled data (haplotypes) H ¼ h1, h2, . . . , hn.

If we knew the underlying genealogy of the sampled
individuals, this could be calculated directly. However,
this information, in a population genetic sample of
unrelated individuals, is not available. In the presence of
recombination, the individuals sampled may be related
by a different (correlated) phylogenetic tree at each poly-
morphic site along the sequence ½which, together, form
the ancestral recombination graph (ARG) of Griffiths

and Marjoram 1997�, and phylogenetic methods are
unreliable under these circumstances (Schierup and
Hein 2000). It is therefore useful to develop an approx-
imation to L that is not conditional on the ARG G re-
lating the sampled individuals, using

PrðH jQÞ ¼
ð

PrðH jG ;QÞPrðGÞdG ; ð1Þ

where Pr(G) is the probability density function of the
ARG relating the haplotypes H. One highly robust and
flexible way to model Pr(G) is the coalescent with re-
combination (Kingman 1982; Hudson 1983; Griffiths

and Marjoram 1997). This assumes a panmictic pop-
ulation of constant size, undergoing only neutral evol-
ution. We base our model and the majority of our
simulations on the standard coalescent, but we also in-
vestigate the accuracy of our method when it is applied
to data that deviate from the assumed coalescent model.

Li and Stephens (2003) noted that

Prðh1; . . . ; hn j rÞ
¼ Prðh1 j rÞPrðh2 j h1; rÞ . . . Prðhn j h1; . . . ; hn�1; rÞ;

ð2Þ

where hi denotes the ith haplotype in the data set of n
haplotypes, and r ¼ 4Nec is the population crossover
rate. By approximating each of the terms on the right-

hand side in turn, they arrived at an approximation to
the likelihood known as a product of approximate condi-
tionals (PAC) model.

Their approximation p̂Aðk 1 1Þ to the conditional
probability Pr(hk11 j h1, . . . , hk, r) is a modification of the
imperfect mosaic model of Fearnhead and Donnelly

(2001). Haplotype k 1 1 is considered to be made up of
segments copied from any or all of the preceding k
haplotypes, and at marker l the haplotype being copied
from is known as the ‘‘nearest neighbor.’’ The copying
process can also be imperfect, giving rise to a difference
between the new haplotype and its nearest neighbor;
this is considered to be a mutation. When the nearest
neighbor changes between marker i and marker i 1 1
this is considered to be a crossover. The sequence of
nearest neighbors taken when traversing the (k 1 1)th
haplotype from one end to the other can be modeled as
a Markov chain where the nearest neighbor at a given
marker is dependent only on that at the previous marker
and on the crossover probability. The likelihood given
a particular value of the parameter r (which may vary
across the region) is then calculated by summing over
all possible mosaic structures and a maximum-likelihood
estimate r̂ can therefore be found.

It is worth noting that this approximation to the like-
lihood is dependent on the order in which the haplo-
types are observed. This unwelcome influence can be
greatly reduced by averaging the likelihood over a
number of different random orders. We find 20 orders
sufficient to ensure that our estimates were consistent
between different runs of the program and .20 to be
cumbersome in terms of computational time. All results
shown in this article are based on 20 orders chosen uni-
formly at random except where stated otherwise.

The LS model was previously extended by Hellenthal

(2006) to include gene conversion, assuming each gene
conversion tract includes only one SNP. In essence, the
emission probability for the Markov chain is modified to
mimic a gene conversion. This has the benefit of keep-
ing the computational cost the same (O(N 2)), but suf-
fers from a difficulty in distinguishing gene conversion
and genotyping error. Our adaptation of the LS model
is much more computationally intensive but can be ap-
plied to more densely typed SNP data.

Modeling gene conversion: We now consider our sam-
ple to have been affected both by crossover and by gene
conversion events throughout its history. This scenario
is well modeled by the coalescent model with gene
conversion developed by Wiuf and Hein (2000). The
imperfect mosaic model can be easily adapted to allow
for gene conversion, by allowing a second process to
alter our nearest neighbor from x to x9, with the proviso
that we must eventually return to copying from x. See
Figure 1 for an illustration of this. The distribution of
lengths of gene conversion tracts can be approximated
by a geometric distribution (Hilliker et al. 1994), giv-
ing a constant probability of ending the tract at any
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particular position and returning to copy from x, irre-
spective of the length of the tract so far. This lack of
memory property allows us to use a Markov chain im-
plementation of the model as above.

We make the following additional assumptions:

1. Crossover events occur independently of gene con-
version events.

2. Gene conversion events cannot overlap or be nested.
3. The gene conversion rate may change instantane-

ously at each typed marker but cannot change within
the interval between adjacent SNPs.

The first of these assumptions allows us to separate
the gene conversion and crossover processes in our
model, which simplifies the calculation of the transition
probabilities in our Markov chain. It is also biologically
reasonable in that we would not expect that the fact that
a crossover had once occurred in a particular region to
influence the probability that a gene conversion occurs
in any given meiosis in that region, except in that a
higher rate of crossover might point to a potentially
higher rate of gene conversion. Our assumption does
not disallow dependence between rates of gene conver-
sion and crossover, only between events.

In our second assumption, we specify the conditions
on entering and exiting a gene conversion event. We
may begin a new gene conversion tract only when we are
not already in a tract, and we may end a tract only by
returning to copy from the haplotype we were copying
from before the tract began. Allowing tracts to be nested
and/or to overlap would violate the Markovian property
of our model or necessitate the addition of one or more
further dimensions to the model. There is no clear bio-
logical interpretation of this assumption. It is certainly
reasonable to state that any gene conversion event tak-
ing place during a particular meiosis cannot overlap
with or be nested within another tract occurring in the
same meiosis. The trace left in population genetic data
by many independent gene conversion events over a
long period of time, perhaps occurring in hotspots and

likely to overlap with previous events, is less obvious.
When tract lengths are short compared to SNP spacing,
we do not expect this assumption to have any effect (two
or more SNPs must be in a gene conversion tract for
overlapping or nesting to be detectable). When tract
lengths are long, we might expect to miss some over-
lapping gene conversion tracts or see them as cross-
overs, thus giving a slight underestimate of the gene
conversion rate and overestimate of the crossover rate.

Our final assumption is also one of convenience. We
have no information about any variation in the rates of
gene conversion and crossover in the gap between any
pair of adjacent typed SNPs, and we therefore assume
the rate is constant. In this article we are mainly con-
sidering regions where the rates of crossover and gene
conversion are considered to be uniform, but the method
also allows for rate variation. When rate variation exists,
in this model the rate is permitted to change instanta-
neously only at a typed marker, and the rate in an
interval will correspond to the average rate over the gap
between the SNPs.

Details of our implementation of this model are in the
appendix. In the next section we describe the results of
applying this model to simulated data with the aim of
jointly estimating g ¼ 4Neg and r ¼ 4Nec, where g
denotes the gene conversion rate per meiosis per unit
distance.

RESULTS

Simulation study: To test the performance of our
method we undertook a simulation study. Data sets were
simulated using the program ms (Hudson 2002). Each
data set contains 50 haplotypes of length 20 kb, simu-
lated with mutation rate u¼ 0.5, 1, or 2.5; crossover rate
r¼ 0, 0.5, 1 or 2.5; and gene conversion rate g¼ 0, 1, or
10 (per kilobase). We focus on the data sets with u¼ 1 as
this corresponds to the human population-scaled mu-
tation rate of�0.7–1.0/kb (Ptak et al. 2004). The mean
gene conversion tract length, 1=l, was fixed at 500 bp
(cf. Frisse et al. 2001) for the simulations and during
estimation of parameters. The number of SNPs in each
data set varied with the mutation rate and, when u ¼ 1,
averaged 89 SNPs per simulated data set.

Our estimates r̂ and ĝ are shown in Figures 2a and 3
and summarized in Table 1. In each case we fixed the
gene conversion tract length parameter at the value
used to simulate data.

Estimation of r: The distributions of our estimates r̂ for
data sets simulated with no gene conversion, equal rates
of gene conversion and crossover ( f ¼ 1), and more
gene conversion than crossover ( f ¼ 10) are shown in
Figure 2a. The presence of gene conversion does not
seem to have a detrimental effect on our ability to
estimate r, and estimates of r are within a factor of 2 of
the truth .90% of the time for each value of f. All the
simulations shown used r ¼ 1/kb, and simulations with

Figure 1.—Illustration of the imperfect mosaic model with
gene conversion. We construct the new haplotype h4 as a mo-
saic of pieces copied from existing haplotypes h1–h3. The
haplotype copied at a particular point is known as the nearest
neighbor at that point, and the nearest neighbor can change
when we encounter a gene conversion event, such as the
one between a and b, or a crossover event (c).
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r ¼ 0.5 and r ¼ 2.5/kb had similar results with slightly
reduced accuracy. For comparison, estimates for r

obtained using the LS model (without bias correction)
on the same data sets are shown in Figure 2b. In the case
where f ¼ 10, these estimates are highly inflated, not
surprisingly since this method is not intended for data
sets where gene conversion is present. However, the fact
that for all 1000 data sets with f ¼ 10 this method gives
an estimate for r that is more than twice the true value
serves as a reminder of the effect that undetected gene
conversion can have on estimates of the crossover rate.

Estimation of g: The distributions of our estimates ĝ

for the same data sets as those above are shown in Figure
3. In the case where f ¼ 10, our estimated g was within a
factor of 2 of the value used to simulate data, for 999 of
the 1000 simulated data sets. Results are summarized in
Table 1.

Estimation of f: We used our estimates of r and g for
each data set to obtain an estimate f̂ ¼ ĝ=r̂. These es-
timates were also generally close to the truth but suf-
fered slightly from being a ratio of two other estimates
with uncertainty in both. For data sets simulated with

Figure 2.—Comparison of maximum-likelihood estimates of r on data simulated with different values of f (all data simulated
with r¼ u¼ 1/kb) using our model (a) as compared to the LS model without bias correction (b). Our model gives good estimates
of the crossover rate regardless of the amount of gene conversion present. It shows little bias, and when gene conversion is present
(at least in simulated data), estimates of crossover rates can be inflated when gene conversion is not taken into account.

Figure 3.—Maximum-likelihood estimates of g on data simulated with r ¼ u ¼ 1/kb using our model. Estimates obtained for
data with high levels of gene conversion activity are very encouraging (999 of 1000 within a factor of 2 of the truth), but we tend to
overestimate the level of gene conversion present when it is low or nonexistent. This is inevitable due to the true value being at the
boundary of the range of possible values.
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u ¼ 1 our median estimates of f were 0.55, 1.45, and
9.54 for data sets simulated with true f 0, 1, and 10,
respectively.

Robustness to deviation from assumed demography:
Here we use additional simulated data to evaluate the
robustness of our model to deviations from the assumed
neutral model. We consider our three major demographic
assumptions: constant population size, panmixia (ran-
dom mating), and neutral evolution. In each case, we
simulated 100 data sets with 50 haplotypes, 20 kb in
length, with mutation and crossover rates of 1/kb, and
with various gene conversion rates.

Variation in population size: To test our model in the
presence of population size variation, we simulated 100
data sets with a bottleneck 0.15 Ne generations ago that
reduced diversity to 85% of that expected without the
bottleneck and a further 100 data sets with scaled ex-
ponential population growth parameter 1 (cf. McVean

et al. 2004). Results under these demographic variations
(summarized in Table 1) do not deviate far from those
obtained on data simulated under the standard model,
although we see a slight increase in our underestimation
of the gene conversion rate when f is high.

Population structure: To test our model in a nonran-
dom mating scenario, we simulated 100 data sets, where
25 of the 50 chromosomes were sampled from each of
two subpopulations corresponding to a level of popula-
tion differentiation of FST � 0.2 (cf. Pritchard and
Przeworski 2001). Properties of the resulting estimates
for ĝ are shown in Table 1. Although in each simulation,
the variance (not shown) of ĝ was higher than that for a
single-population data set, this did not have a big effect

on the median estimate or the proportion of results
within a factor of 2 of the truth. The estimates for r̂ were
similarly affected.

Selection: As a final test we simulated 100 data sets
where a positive selective sweep had just finished. These
data were generated using the program SelSim (Spencer

and Coop 2004). The strength of selection was chosen
to be s ¼ 2Nes ¼ 50, where s is the selective coefficient
between homozygotes (cf. Smith and Fearnhead 2005),
and was applied to a single site in the center of the 20-kb
region. Again we saw no major difference in our results,
implying that this method is robust to low to moderate
levels of selection (see Table 1).

Genotype data: To use our method on genotype data it
is necessary to first phase the data. Currently available
programs to phase genotype data do not take gene
conversion into account, so we investigated the effect of
performing this preprocessing of the data. For 100 of
the above data sets simulated with f ¼ 10, we randomly
paired the 50 haplotypes into 25 individuals and then
used the program PHASE (Stephens et al. 2001; Stephens

and Scheet 2005) to rephase the data. We then obtained
estimates for the gene conversion and crossover rates on
these data sets, which are summarized in Table 1. We
found that our method overestimates the crossover rate
under these circumstances, as well as underestimating the
gene conversion rate, which leads to an underestimate of f.

Comparison with other methods: We now compare
our results with two other methods: Hudson’s pairwise
composite-likelihood method (Hudson 2001) and a
method based on the summary statistics method of
Padhukasahasram et al. (2006). For the former, we used

TABLE 1

Summary of results of testing done on simulated data

Simulated parameters
Deviation from

model Median ĝ Median r̂ Median f̂

g ¼ 0, r ¼ 1 (f ¼ 0) None 0.5332 (11.5) 0.9706 (96.9) 0.55 (11.5)
Growth 0.5863 (16) 0.9045 (89) 0.586 (16)
Bottleneck 0.4777 (18) 0.8678 (95) 0.516 (18)
Structure 0.5472 (5) 0.9415 (97) 0.634 (5)
Selection 0.6031 (8) 0.9464 (98) 0.667 (8)

g ¼ 1, r ¼ 1 (f ¼ 1) None 1.348 (77.3) 0.9323 (95.8) 1.45 (62.9)
Growth 1.344 (71) 0.8907 (94) 1.36 (55)
Bottleneck 1.286 (75) 0.8868 (97) 1.43 (64)
Structure 1.401 (84) 0.9077 (98) 1.48 (67)

g ¼ 10, r ¼ 1 (f ¼ 10) None 9.428 (99.9) 0.9708 (94.0) 9.54 (90.1)
Growth 7.805 (97) 0.8738 (92) 9.08 (87)
Bottleneck 8.315 (97) 0.8997 (94) 8.91 (82)
Structure 8.455 (99) 0.8927 (93) 9.50 (89)
Genotype 7.49 (97) 1.21 (93) 6.24 (68)

We first simulated data sets according to standard model assumptions (constant sized, panmictic population
with neutral evolution), with u¼ 1, and a variety of values of f. For each set of parameters ĝ, r̂, and f̂, the median
estimate for 1000 independent simulations is given, with the proportion of data sets for which the estimate lies
within the range (truth/2, truth 3 2) in parentheses. In the case f ¼ 0, we see that in 11.5% of cases we found
ĝ ¼ 0. However, for 82.8% of these data sets, ĝ , 1/kb. We also show the corresponding results for 100 data sets
simulated with a range of deviations from the above assumptions (see text). These results are broadly similar to
those with no deviation, except in the case of rephased data where the crossover rate is overestimated.
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the program maxHap, freely available from the author’s
website. For the latter, we adapted a program (also
available on the author’s website). Our implementation
differs from that described in Padhukasahasram et al.
(2006) only in that we do not fix the positions of the
segregating sites in our simulations. Results are shown
in Table 2. For these calculations, maxHap took�1.7 sec
per data set, summStat between 5 and 24 hr (depending
on f ), and GenCo just under 1 hr on a standard desktop
computer.

D. melanogaster: A particularly interesting organism in
the study of LD is D. melanogaster, because of its unusual
patterns of recombination. We applied our method to
SNP data from two genes near the telomere of the X
chromosome of African D. melanogaster (Langley et al.
2000). This data set consists of 87 SNPs within the su(s)
and su(w) genes, which are involved in the regulation
of gene expression (Fridell and Searles 1994). The
genes are �4 and 2.5 kb long, respectively, and are
separated by a region of 400 kb in which no SNPs were
typed. Like chromosome 4 in Drosophila (Hochman

1976), the region near the X chromosome telomere is
subject to a severely reduced level of crossover per phy-
sical length (Aguade and Langley 1994) compared to
the genomewide average rate of 1.5 cM/Mb (Nachman

2002), perhaps due to regulation of double-strand-break
repair mechanisms (McKim et al. 2002).

In addition to obtaining maximum-likelihood esti-
mates for r and g for this data set we also constructed a
likelihood surface over a grid of values of r and g, shown
in Figure 4. We fixed the mean gene conversion tract
length at 352 bp (Hilliker et al. 1994) and obtained
r̂ ¼ 0:067 and ĝ ¼ 26:9/kb ( f ¼ 432). Such a strong
signal is unlikely to be explained by repeat mutation or

genotyping error. These estimates support the conclu-
sion of Langley et al. (2000) that while crossover is sup-
pressed in the region, gene conversion is not. This could
indicate that gene conversion and crossover are com-
pletely separate processes or, if both are initiated by the
same process, that in this region of D. melanogaster there
is a strong tendency for recombination events to be re-
solved as gene conversion rather than crossover. Whether
this is the cause of or a consequence of the suppression
of crossover is as yet unknown.

Variation in the rate of gene conversion: To date
there are few data regarding fine-scale variation in gene
conversion rates. The clearest examples of such variation
are the gene conversion hotspots experimentally identi-
fied in the center of two crossover hotspots by Jeffreys

and May (2004). Padhukasahasram et al. (2006) esti-
mated nonuniform gene conversion rates in simulated
data and found that their method underestimates the
gene conversion rate under these circumstances. Their
method produces a single estimate of the total amount of
gene conversion in a given region and does not attempt to
pinpoint hotspots or to measure their intensity.

Our model allows for a different rate of gene con-
version between each pair of adjacent SNPs, so it was
possible to implement an expectation-maximization
algorithm to determine ĝi for each interval i. It should
be noted that to reflect biological reality and maintain
symmetry we would prefer to model the rate at which
gene conversion initiation sites are encountered (i.e.,
somewhere around the middle of the tract), but due to
the way the model is implemented we are in fact mod-
eling the rate at which the left-hand sides of gene con-
version tracts are encountered. It would be preferable
to model a gene conversion tract extending in both di-
rections from an initiation point (Hellenthal and
Stephens 2007), but this would greatly increase the com-
plexity and hence the computation time of our method.

Instead, we map our estimates to the gene conversion
rate by assuming the initiation is in the exact center of
the gene conversion tract, according to the equation

TABLE 2

Comparison with other methods

Parameters Method g r f

g ¼ 1, r ¼ 1 (f ¼ 1) SummStat 0.58 0.76 0.49
MaxHap 0.63 0.89 0.52
GenCo 0.77 0.96 0.63

g ¼ 10, r ¼ 1 (f ¼ 10) SummStat 0.83 0.77 0.57
MaxHap 0.99 0.81 0.77
GenCo 1 0.94 0.9

For 1000 data sets simulated with r ¼ 1 and g 2 (1, 10), we
compare our results (GenCo) with those from maxHap
(Hudson 2001), and for 100 of the same data sets we also
show results obtained using a third method (summStat) based
on that of Padhukasahasram et al. (2006) (see text). Max-
Hap was run over a grid of 11 f values ranging from 0 to
2.5 or 25 (inclusive) for the simulated data sets with f ¼ 1
and f ¼ 10, respectively. SummStat was run on a coarse grid
of r 2 (8, 10, 20, 40, 45), and g 2 (8, 10, 20, 40, 45) for
the first test and g 2 (80, 100, 200, 400, 450) for the second
test. For each parameter g, r, and f we present the proportion
of data sets for which the estimated value was within a factor of
2 of the value used to simulate data.

Figure 4.—Likelihood surface for D. melanogaster data set.
The maximum-likelihood point on the surface is g¼ 26.8, r¼
0.062/kb. The surface is fairly flat around this region but drops
off steeply when r gets close to zero or g drops below �15.

Estimating Gene Conversion Rates 887



g9ðxÞ ¼
ð‘

0
2lĝðx � yÞe�2lydy; ð3Þ

where ĝðxÞ is our maximum-likelihood estimate (MLE)
of the gene conversion rate at distance x from the be-
ginning of the observed region, and a constant rate g0 is
assumed for all x , 0.

When the distances between markers are long com-
pared to the length of a gene conversion tract, or when
rates change only gradually between intervals, the dif-
ference between modeling the center and modeling the
end of a gene conversion tract will be negligible. How-
ever, if very narrow hotspots of gene conversion are found,
it may be necessary to convert the rate of encountering
the left-hand side into the rate of gene conversion tract ini-
tiation to provide a useful gene conversion rate estimation.

To examine the power and reliability of our method
when recombination rates vary, we used the program
msHOT (Hellenthal and Stephens 2007) to simulate
100 data sets containing a hotspot for both gene con-
version and crossover. Each data set consisted of 50
haplotypes, 20 kb in length, with u ¼ 1/kb, mean tract
length 500 bp, and g ¼ 0.5 and r ¼ 0.05/kb ( f ¼ 10),
except in a ‘‘hotspot’’ 2 kb wide in the center of the
region, where g ¼ 50 and r ¼ 5/kb ( f ¼ 10).

Assuming that f was constant across the region, we
obtained maximum-likelihood estimates for g and f for
each simulated data set. The estimates for g and their
median (sampled every 100 bp) are shown in Figure 5.

Individual estimates of g show high levels of variance,
but on average, the position, width, and heat of the es-
timated hotspot are close to the values used to simulate
data, and there is little bias in our estimates of g. How-
ever, estimates of r are downwardly biased, resulting in
an overestimate of f (median 25.1). More work is needed
to develop a method that can produce a less biased
estimate of f in this variable-rate scenario, even under
the restriction that f is constant. To obtain a more reli-
able gene conversion rate estimate on a single data set, a
hotspot model would be needed, such as the reversible-
jump MCMC crossover model of Auton and McVean

(2007). However, accurate estimation of the strength of
a crossover hotspot is problematic in general, because
the regions on opposite sides of any hotspot above a
certain size are in near-complete linkage equilibrium
with each other (Auton and McVean 2007).

Despite some evidence that f may vary between re-
gions in humans (Hellenthal and Stephens 2006;
Padhukasahasram et al. 2006), we do not consider this
scenario, mainly because population genetic data are
unlikely to contain sufficient information to obtain an
accurate fine-scale map of gene conversion rates in-
dependently of crossover rates, but also because the
existence of gene conversion hotspots within crossover
hotspots implies some correlation between the two
rates, and finally because the processing time needed
to maximize such a likelihood would be immense.

Human chromosome 1: Many crossover hotspots have
been identified in the human genome, but of particular
interest is the MS32 hotspot on chromosome 1, the exis-
tence of which is supported by strong experimental
evidence, but has not left a significant imprint on LD
( Jeffreys et al. 2005). We applied our method to a 206-kb
region, including this hotspot and several others. The
SNP data ( Jeffreys et al. 2005) consist of 214 SNPs on 80
genotypes; we used PHASE v2.1.1 (Stephens et al. 2001;
Stephens and Scheet 2005) to infer the haplotypes and
missing data and averaged our results over 20 indepen-
dent random subsamples of 50 haplotypes, each taken in
10 random orders. For comparison, the crossover rate for
this region, estimated using LDhat (Mcvean et al. 2002),
is shown below. LDhat was run for 108 iterations with
block penalty 5, results were sampled every 104 iterations,
and the first 100 samples discarded. To reflect the idea
that crossover and gene conversion hotspots tend to coin-
cide ( Jeffreys and May 2004), we allowed gene conver-
sion rates to vary independently in each interval between
SNPs while keeping f constant everywhere in the region.
Our median estimated gene conversion rate is shown in
Figure 6. Our median estimate of f for this region was 1.5.
This estimate is strongly influenced by the gene conver-
sion tract length parameter. In this study we assumed the
mean tract length was 100 bp, but note that a longer
mean tract length would lead to a lower ĝ and a corre-
spondingly lower f̂.

For comparison, we also analyzed the TAP2 region of
the human MHC and found f to be higher in this region,
�9. This lies centrally within the range of 4–15 suggested
by Jeffreys and May (2004) although as above, is depend-
ent on the gene conversion tract length. The difference
between this estimate and the one for the MS32 region
could reflect variation in f between different regions of

Figure 5.—Variable rate simulations: we estimated gene
conversion and crossover rates for 100 data sets, simulated
with a hotspot in which the gene conversion and crossover
rates are 100 times the background rate (simulated gene con-
version rate shown in red). To estimate the gene conversion
rate for each of these data sets, we assume the ratio f of gene
conversion to crossover is fixed throughout the region and
run our program 20 times with one independent random or-
dering each time. The results from each run are transformed
using Equation 3 and we use the median as our best estimate
for that data set. Here we show (in black) the median of these
100 estimates and the 5th and 95th percentiles (gray).
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the human genome, also reported by Hellenthal and
Stephens (2006).

DISCUSSION

We have developed a powerful and robust method for
estimating gene conversion rates from population ge-
netic data. Our accuracy is at its best when analyzing
data that have been affected by fairly high levels of gene
conversion and where the mean tract length is at least
comparable to the mean SNP spacing. Our model also
provides a reliable estimate of the rate of crossover in
a region, regardless of the gene conversion rate. Our
results are not seriously damaged by the most common
deviations from standard model assumptions: nonran-
dom mating, changing population size, and nonneutral
evolution.

Our model allows multiple SNPs to be included in
a gene conversion tract. SNP density varies widely be-
tween data sets, but also within data sets: for example, in
the MS32 data set analyzed above there are 214 SNPs in
a 206-kb region, giving an average interval of 967 bp be-
tween adjacent markers. However, 45 intervals (21%) are
,100 bp long and 133 (62%) are ,500 bp long. Our sim-
ulations show that when the mean tract length is 100 bp,
9% of gene conversion tracts that initiate within this re-
gion will encompass the positions of two or more markers.
With 500-bp tracts, this rises to 38%.

When applied to data with little or no history of gene
conversion, our model tends to overestimate the gene
conversion rate. This is mainly due to the true value
lying on or near the boundary of the parameter space.
Simulation results (Figure 2, first column) demonstrate
that including gene conversion in the model results in
improved estimation of the recombination rate, sug-
gesting that modeling errors are preferentially inter-
preted as gene conversion events. This implies that the

use of our model could result in improvements to the
estimation of the underlying crossover rate, even in the
case where gene conversion is not occurring.

Estimates of uncertainty cannot be obtained directly
from this method, due to the approximate likelihood
used. To obtain confidence intervals it is necessary to
perform a simulation study tailored to the specifics of a
given data set (such as the number of haplotypes and
rate of mutation).

We analyzed a region of the X chromosome in D.
melanogaster and found that, under the assumption that
the rates of crossover and gene conversion are constant
across the region, gene conversion events occur .400
times as often as crossovers. Application of this model to
additional regions of the Drosophila genome could
enhance our understanding of the unusual patterns of
recombination in this species.

We also analyzed a region of human chromosome 1,
around the MS32 gene, a region containing several
known crossover hotspots. Our analysis, allowing the
rates of crossover and gene conversion to vary across the
region while keeping their ratio f constant, shows that
the MS32 hotspot, previously difficult to detect using
population genetic methods, appears highly active un-
der a gene conversion model. This could indicate that
this hotspot is more active in gene conversion than in
crossover, but it seems to contradict conclusions that the
hotspot has only recently emerged ( Jeffreys et al.
2005).

The maximum-likelihood estimate f̂ ¼ 1:5 for this
region should be treated with caution for two reasons:
simulations show that this is a biased estimator (see above),
but also f̂ is highly dependent on the accuracy of our
tract length estimate (here 100 bp). As with the method
of Ptak et al. (2004), experiments with our method have
shown that there is a strong correlation between the
estimated values of l and g (data not shown).

Figure 6.—Median maximum-likelihood estimate for the gene conversion rate (blue) in the 206-kb region around the MS32
gene. For comparison, the crossover rate for the same region is shown in green. The gene conversion rate estimate assumes that f
is constant throughout the region, and the mean tract length is 100 bp. Red triangles at the top and bottom show the centers
of hotspots identified experimentally. Assuming no gene conversion, the hotspot found experimentally at MS32 (Jeffreys et al.
2005) shows little signal in population genetic data. However, under the gene conversion model this hotspot can clearly be seen.
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For this reason, we do not attempt to estimate the
gene conversion tract length from the data. By mis-
specifying the mean tract length parameter for data sets
simulated with known tract length t0, we find that using
a mean tract length estimate t * that is double that simu-
lated (t* ¼ 2t0) results in a slightly lowered gene con-
version rate estimate, while using an estimate t * ¼ t0=2
causes us to overestimate the gene conversion rate by
approximately a factor of 2 (data not shown). These
results will vary depending on the SNP spacing and the
actual gene conversion rate. Fortunately, estimates of
the gene conversion tract length are available for several
organisms (e.g., Palmer et al. 2003; Jeffreys and May

2004; Nishant et al. 2004) although little is yet known
about whether there is heterogeneity in this length
between different genomic regions.

Our implementation of this model is of order �N 3

and is linear in both the number of markers and the
number of orders used. It takes �30 min of processing
time on a standard desktop machine to jointly calculate
the constant MLEs for r and g when N¼ 50, L¼ 100, l is
fixed, and 10 random orderings are used. However, when
g and r are allowed to vary, with their ratio f constant,
using the same data set it would take �9 hr to obtain ĝ

and f̂ (and therefore r̂). This time could be reduced by
improvements to the implementation and by running
on a faster computer. For very large data sets the method
is impracticable with present computers, but results can
still be obtained by taking several subsamples of the data
and taking the median result. Subsamples should be as
large as possible as smaller subsamples tend to produce
underestimates of the gene conversion rate and have
higher variance (see supplemental Table 1 at http://www.
genetics.org/supplemental/), but when averaging over
several subsamples, one order is sufficient. For reasonable-
sized data sets we believe the accuracy obtained by this
model’s usage of all the information contained in the
data makes its slow speed a worthwhile penalty.

In this article we do not consider the effects of ge-
notyping error on our results. Genotyping error can have
a similar effect on the patterns of genetic diversity to
that of gene conversion (Ptak et al. 2004). In densely
typed SNP data, allowing for multi-SNP gene conversion
tracts should reduce the impact of genotyping error.

We anticipate that this model could be adapted to
detect the signature of nonallelic gene conversion in
population genetic data, which would be particularly
useful when considering the evolution of multigene fam-
ilies such as the histones (see Nei and Rooney 2005).

As well as finding fine-scale variations in g, it would be
straightforward to adapt this model to compare estimates
of f for different regions or genes within a given organ-
ism, allowing production of a broad-scale map of f. This
could be used to discover whether large-scale genomic
features such as proximity to centromeres affect this ratio.

Whether f is constant at a fine scale remains an open
question.
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APPENDIX

Hidden Markov model implementation: Here we detail the implementation of the model described above,
including the state transition probabilities and some algorithmic shortcuts used to reduce the computation time. The
‘‘hidden’’ data in our model are the ‘‘true’’ underlying mosaic structure of the current haplotype. Under the true
coalescent genealogy, a mosaic consisting of haplotypes we have already seen may not exist, but under our
approximation it always does. We do not try to infer this but sum over all mosaic structures using the hidden Markov
model (HMM) formulation. Each of the terms Pr(hk11 j h1, . . . , hk, r, g) is approximated using its own HMM with k(k 1

1) states and its own emission and transition probabilities that depend on k.
Our HMM has k(k 1 1) distinct states (X¼ x, G¼ g), where 1 , x # k denotes our nearest neighbor, unless g 6¼ 0, in

which case we are in a gene conversion, and the current nearest neighbor is g. Starting at the leftmost marker, we
calculate the likelihood of the data for each possible state (Xj, Gj) at each marker j, on the basis of the k(k 1 1) distinct
state probabilities at the previous marker, and the transition (t) and emission (e) probabilites (see below).

Transition probabilities: We model the process of crossover and that of gene conversion as separate processes,
happening independently of each other. The variable Xj can be modified only by crossover, while Gj is affected only by
gene conversion:

PrðXj11;Gj11 jXj ;GjÞ ¼ PrðXj11 jXjÞPrðGj11 jGjÞ: ðA1Þ

Initial state probabilities: Since we have no data outside our region, PrðX1 ¼ xÞ ¼ 1=k for all x. The probability that we
start our Markov chain inside a gene conversion tract depends on how the rate of starting a gene conversion tract
compares to the rate of ending one:

PrðG1 ¼ g Þ ¼

lk

ðlk 1 gÞ ðg ¼ 0Þ
g

kðlk 1 gÞ ðg 6¼ 0Þ:

8>><
>>: ðA2Þ
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X transition probabilities: The first term on the right-hand side of Equation A1 is given by Li and Stephens (2003) as

PrðXj11 ¼ x jXj ¼ x9Þ ¼

1

k

�
1� e�ðrj dj=kÞ

�
ðx 6¼ x9Þ

e�ðrj dj=kÞ1
1

k

�
1� e�ðrj dj=kÞ

�
ðx ¼ x9Þ

8><
>: ðA3Þ

when we are considering the (k 1 1)th haplotype and the distance between marker j� 1 and marker j is dj. Informally,
in the case where x 6¼ x9, we must have had at least one crossover between the two sites, and the probability that the new
nearest neighbor was x9 is 1/k. When x¼ x9, we may have had no crossover event, or we may have crossed over one or
more times but in the last event chose the same nearest neighbor.

G transition probabilities: To calculate Pr(Gj11 j Gj) we must consider not only the probability of beginning a gene
conversion event within the current interval but also that of ending one. The rate of terminating a gene conversion
tract is fixed at l, regardless of the length the tract has so far covered. This geometric model allows us to consider the
ending of a gene conversion event as a process in its own right, which goes on all the time, independently of our
current state, and resets the state of the system to the base (non-gene-conversion) state. This is reasonable because
although in biological terms there is no event corresponding to the end of a gene conversion that can occur outside of
a gene conversion tract, any such event occurring when we are already in the base state has no effect and thus has no
effect on our model.

For each type of transition between gene conversion states, we describe the sequence of events that could cause that
transition to occur and give the probability of undergoing this transition. In each case, any events occurring before the
last reset event within the interval will have no effect on the state at the right-hand side of the interval. We therefore
integrate back from the right-hand side of the interval, over possible positions of the last reset event, so that we do not
have to explicitly consider how many gene conversion events may have taken place prior to the final reset event.

There are five distinct types of transition between gene conversion states:

1. We are currently not in a gene conversion, and we were not in one at the last marker. We break this down into two
scenarios: there was no reset event in the interval ½which happens with probability exp(�ldj)� and also no gene
conversion event ½probability expð�ðgdj=kÞÞ� or there was a reset event and no gene conversion event has taken
place since then. This last term can be written as the integral (over all possible places at which the last reset event
might have happened) of the probability that no further reset event occurred multiplied by the probability that no
gene conversion occurred:

PrðGj11 ¼ 0 jGj ¼ 0Þ ¼ e�ldj e�ðgdj=kÞ1

ðdj

0
le�lxe�ðgx=kÞdx

¼ e�ðlk1g=kÞd 1� lk

lk 1 g

� �
1

lk

lk 1 g
: ðA4Þ

2. We have moved from a non-gene-conversion state to a gene conversion state:

PrðGj11 ¼ g jGj ¼ 0Þ ¼ e�ldj

k

h
1� e�ðgdj=kÞ

i
1

ðdj

0

l

k
e�lx

h
1� e�ðgx=kÞ

i
dx

¼ g

kðlk 1 gÞ

h
1� e�ðlk1g=kÞd

i ðA5Þ

(either there was no reset event in the interval but there was a gene conversion event that made g our new nearest
neighbor or there was a reset event and there was a gene conversion event after it).

3. Previously we were in a gene conversion event but now we are not:

PrðGj11 ¼ 0 jGj ¼ g Þ ¼
ðdj

0
le�lxe�ðgx=kÞdx

¼ lk

lk 1 g

h
1� e�ðlk1g=kÞd

i ðA6Þ

(no gene conversion event has taken place since the last reset event).
4. We were previously in a gene conversion state where we were copying from haplotype g, and we are currently in a

similar state:
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PrðGj11 ¼ g jGj ¼ g Þ ¼ e�ldj 1

ðdj

0
le�lx

h
1� e�ðgx=kÞ

i1
k
dx

¼ k � 1

k
e�ld 1

l

lk 1 g
e�ðlk1g=kÞd 1

g

kðlk 1 gÞ ðA7Þ

(either no reset event has occurred or there has been a gene conversion event choosing the same value of g since the
last reset event).

5. We were previously in a gene conversion state copying from haplotype g and we have moved into a gene conversion
state where we are copying from haplotype g9, where g 6¼ g9:

PrðGj11 ¼ g 9 jGj ¼ g Þ ¼
ðdj

0
le�lx

h
1� e�ðgx=kÞ

i1
k
dx

¼ l

lk 1 g
e�ðlk1g=kÞd 1

g

kðlk 1 gÞ �
1

k
e�ld ðA8Þ

(as above but without the option for no event occurring).

These gene conversion state transition probabilities, together with the crossover state transition probabilities above,
make up the state transition probabilities for our Markov chain. We write tG(g9 j g, j)¼ Pr(Gj11¼ g9 jGj¼ g) and tX(x9 j x,
j) ¼ Pr(Xj11 ¼ g9 j Xj ¼ x).

Emission probabilities: When it is not known, we (as do Li and Stephens 2003) use Watterson’s estimator
(Watterson 1975) to approximate the per-site rate of mutation, u/L:

u

L
¼

Xn�1

m¼1

1

m

 !�1

: ðA9Þ

Conditional on the hidden state (Xj, Gj) at marker j, we could calculate the emission probability on the basis of whether
or not a mutation had occurred, compared to the chromosome c from which we are copying (c¼ Xj if Gj¼ 0, otherwise
c ¼ Gj). This is simply

ekðj j Xj ;GjÞ ¼ Prðhk11;j j Xj ;GjÞ ¼

u

2ðkL 1 uÞ ðhk11;j 6¼ hc;jÞ
2kL 1 u

2ðkL 1 uÞ ðhk11;j ¼ hc;jÞ:

8>><
>>: ðA10Þ

Likelihood: Let px,g(j) be the relative probability of being in the state (x, g) at the marker j, given the data up to that
marker. Then

px;g ð1Þ ¼ PrðX1 ¼ x;G1 ¼ g ÞPrðhk11;1 jX1 ¼ x;G1 ¼ g Þ

¼

1

k2

g

g 1 kl

� �
ekð1 j x; g Þ ðg 6¼ 0Þ

1

k

kl

g 1 kl

� �
ekð1 j x; g Þ ðg ¼ 0Þ

8>>><
>>>:

ðA11Þ

and

px;g ð jÞ ¼
X
x9;g 9

px9;g 9ð j � 1ÞtX ðx j x9; j � 1ÞtG ðg j g 9; j � 1Þekð j j x; g Þ ðA12Þ

and the approximate likelihood of the data, for the (k 1 1)th chromosome, for this chromosomal order, is given by

pCðhk11 j h1; h2; . . . ; hk ; r; g; lÞ ¼
X
x;g

px;g ðLÞ: ðA13Þ

To overcome the issue of order dependency, we repeat this calculation n $ 10 times and take the average likelihood.
Optimization: The basic algorithm described above is of approximate order N 4, but we were able to reduce this to

N 3 by calculating sums of several subgroups of the px,g(j) and using these sums to facilitate the calculation of px9,g9(j 1 1).
First note that tX(x j x9, j) can take only two possible values, depending on whether x ¼ x9. Similarly, tG can take five
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values as described above. So, for example, tX(x j x9, j) is the same for all values of x9 except x9 ¼ x, and the sumPk
x9¼1 px9;g 9ð jÞ gives the total probability of all the states where Gj¼ g9. To calculate px,g9( j 1 1), subtracting px,g9(j) from

this sum leaves a group of states at marker j for which the transition probability is the same.
These sums, calculated once for each marker, can be used many times in different combinations.
Estimating parameters: To find maximum-likelihood estimates we use a direct search algorithm (Hooke and Jeeves

1961) to find the r̂ and ĝ that maximize the average likelihood. When variable rate estimates are required, we use
expectation maximization to find these rates independently in each interval.

The C11 code and windows/linux executables for our implementation of this model are available from http://
www.stats.ox.ac.uk/ � gay/.
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