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Mitochondrial tRNA import is widespread in eukaryotes.

Yet, the mechanism that determines its specificity is un-

known. Previous in vivo experiments using the tRNAsMet,

tRNAIle and tRNALys have suggested that the T-stem nu-

cleotide pair 51:63 is the main localization determinant of

tRNAs in Trypanosoma brucei. In the cytosol-specific

initiator tRNAMet, this nucleotide pair is identical to

the main antideterminant that prevents interaction with

cytosolic elongation factor (eEF1a). Here we show that

ablation of cytosolic eEF1a, but not of initiation factor 2,

inhibits mitochondrial import of newly synthesized tRNAs

well before translation or growth is affected. tRNASec is the

only other cytosol-specific tRNA in T. brucei. It has its own

elongation factor and does not bind eEF1a. However, a

mutant of the tRNASec expected to bind to eEF1a is im-

ported into mitochondria. This import requires eEF1a and

aminoacylation of the tRNA. Thus, for a tRNA to be

imported into the mitochondrion of T. brucei, it needs to

bind eEF1a, and it is this interaction that mediates the

import specificity.
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Introduction

Most protozoa, many fungi, plants and a few animals lack a

variable number of mitochondrial tRNA genes. It has been

shown in these organisms that the missing genes are com-

pensated for by import of a small fraction of the correspond-

ing cytosolic tRNAs (Schneider and Marechal-Drouard, 2000;

Bhattacharyya and Adhya, 2004). The phylogenetic distribu-

tion of mitochondrial tRNA import is disperse. Thus, for some

species where tRNA import has been predicted, closely

related organisms can be found that do not import tRNAs

(Schneider and Marechal-Drouard, 2000). Since the loss of

mitochondrial tRNA genes is likely to be irreversible, this

suggests that the process has a polyphyletic origin. This

conclusion is supported by studies of mitochondrial tRNA

import in yeast (Tarassov et al, 1995), Leishmania (Goswami

et al, 2006) and plants (Salinas et al, 2006), which provided

evidence for three distinct tRNA import machineries. The

capability to import tRNAs in these three groups of organisms

is therefore due to convergent evolution.

Consistent with this view is the fact that the number

of imported tRNAs is species-specific. Mitochondria of

Saccharomyces cerevisiae import two tRNAs only (Tarassov

and Martin, 1996; Rinehart et al, 2005). Plants import a

variable number of mitochondrial tRNAs, but have retained

at least a few mitochondrial tRNA genes (Dietrich et al,

1996b). The most extreme cases are two groups of unrelated

parasitic protozoa, the trypanosomatids (which include

Trypanosoma brucei and Leishmania spp.) (Simpson et al,

1989; Hancock and Hajduk, 1990; Schneider et al, 1994) and

the apicomplexans (Crausaz-Esseiva et al, 2004b), both of

which completely lack mitochondrial tRNA genes and there-

fore must import the whole set of tRNAs. However, in both

parasites we still find tRNAs that are cytosol-specific

(Crausaz-Esseiva et al, 2004a, b; Geslain et al, 2006).

Interestingly, in all organisms that have been analyzed, an

imported nucleus-encoded mitochondrial tRNA only repre-

sents a small fraction of a normal cytosolic tRNA (Schneider

and Marechal-Drouard, 2000; Tan et al, 2002b). Strikingly, the

imported fraction is specific for a given tRNA species and

varies between 1 and 8%.

Thus, two prominent questions regarding mitochondrial

targeting of tRNAs are (i) what determines the import speci-

ficity and (ii) what regulates the extent of tRNA import?

Regarding the latter, it has been suggested that for some

leishmanial tRNAs the extent of import is regulated by

cytosol-specific thio-modifications in the anticodon (Kaneko

et al, 2003). Regarding the former, there are a number of

studies in different organisms showing that the import spe-

cificity is controlled by localization determinants on mature

tRNAs (Rusconi and Cech, 1996; Entelis et al, 1998; Crausaz-

Esseiva et al, 2004a). However, as expected due to the

polyphyletic origin of tRNA import, they are not identical in

the different species. In the imported tRNALys isoacceptor of

yeast, the localization signals are confined to the acceptor

stem and the anticodon loop, and are required for binding to

the precursor of mitochondrial lysyl-tRNA synthetase (Entelis

et al, 1998). This protein forms a complex with the imported

tRNALys, which then is transported across the mitochondrial

membranes by using the protein import pores (Tarassov et al,

1995). It is not known how the other imported yeast tRNA,

the tRNAGln, is addressed to mitochondria, and by which

mechanism it is imported (Rinehart et al, 2005).

The only other species where the in vivo tRNA import

determinants have been analyzed in detail are Tetrahymena

and T. brucei. For tRNAGln isoacceptors of Tetrahymena it is

the anticodon (Rusconi and Cech, 1996), and for the tRNAMet

isoacceptors of T. brucei a single T-stem nucleotide pair that
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are both necessary and sufficient to determine the localiza-

tion of these tRNAs (Crausaz-Esseiva et al, 2004a). Only

fragmentary results are available for what determines the in

vivo import specificity in plants; a point mutation in the

acceptor stem of tRNAAla of potato was shown to abolish

import in vivo (Dietrich et al, 1996a), and more recently the

D-loop and the anticodon region were implicated in import of

plant tRNAVal (Delage et al, 2003).

However, it is not known in any system which factors

decode the localization signals. Here we present evidence

that in T. brucei, binding to translation elongation factor 1a

(eEF1a) is a prerequiste for import, suggesting that it is this

interaction that determines the specificity of tRNA import in

vivo.

Results

Correlation between import and binding to EF1a

In T. brucei the initiator tRNAMet (Crausaz-Esseiva et al,

2004a) and the tRNASec are cytosol-specific (Geslain et al,

2006). All other tRNAs function in both the cytosol and the

mitochondrion (Figure 1). Thus, by expressing chimeras

between the closely related cytosolic initiator and the im-

ported elongator tRNAsMet, we showed that the single un-

modified T-stem nucleotide pair at position 51:63 is both

necessary and sufficient for the correct localization of the

tRNAsMet (Crausaz-Esseiva et al, 2004a). The adjacent nu-

cleotide pair 52:62 influences the efficiency of import, but

when transplanted onto other tRNAs, was not able to change

their localization. Furthermore, we showed that both the

cytosolic as well as the mitochondrial localization determi-

nants can act in the context of the tRNAIle and the tRNALys

(Crausaz-Esseiva et al, 2004a), suggesting that the same

determinants can function in the context of any trypanosomal

tRNA. Thus, if we find the T-stem nucleotide pair U51:A63,

the tRNA remains in the cytosol, whereas if any other

standard base pair, such as C:G, A:U or G:C, is present at

this position, the tRNA is in part imported into mitochondria

(Crausaz-Esseiva et al, 2004a) (Figure 1). (However, the

tRNASec is an exception, despite carrying C51:G63 it is

cytosol-specific.) Interestingly, the nucleotide pair U51:A63

is conserved in all eukaryotic initiator tRNAsMet and generally

absent from elongator tRNAs. It not only acts as a cytosolic

localization determinant in T. brucei, but the corresponding

nucleotide pair in vertebrate initiator tRNAMet is one of two

antideterminants that prevent binding of cytosolic eEF1a

(Drabkin et al, 1998). The trypanosomal eEF1a is 78%

identical to its human counterpart (Kaur and Ruben, 1994),

which makes it very likely that the U51:A63 nucleotide pair

also acts as antideterminant for the T. brucei protein.

Furthermore, it has been shown that one tRNA domain

recognized by eEF1a is the T-arm (Dreher et al, 1999).

Thus, we observe a perfect correlation between mitochon-

drial import of a given trypanosomal tRNA and its predicted

binding to eEF1a. This is not only true for wild-type tRNAs

but also for the numerous variants whose localization we

have tested in vivo (Crausaz-Esseiva et al, 2004a). In agree-

ment with this correlation we see a congruence of the

localization determinant with a nucleotide pair involved in

binding or preventing of binding to eEF1a. Based on these

observations we suggest the hypothesis that in T. brucei

interaction with eEF1a is a prerequisite for a tRNA to be

imported into mitochondria, and that it is this binding that

determines the specificity of the process.

How does the cytosolic localization of the tRNASec, which

lacks the U51:A63 cytosolic localization determinant of the

initiator tRNAMet, fit into this picture (Figure 1)? It is known

that tRNAsSec do not bind to eEF1a (or the bacterial homo-

logue EF-Tu). In eukaryotes this is most likely due to the non-

conventional U:U nucleotide pair at position 9 of the acceptor

stem, which acts as an antideterminant for eEF1a binding

(Rudinger et al, 1996). tRNAsSec, instead of eEF1a, interact

with their own specialized elongation factor, termed EFSec

(Diamond, 2004), an orthologue of which has also been

identified in T. brucei (Cassago et al, 2006; Lobanov et al,

2006). Taking all this into account, the cytosolic localization

of the tRNASec, rather than contradicting our hypothesis,

actually supports it.

Inducible tRNA expression

In order to test the hypothesis that eEF1a is involved in tRNA

import, we constructed RNAi cell lines allowing inducible

ablation of either eEF1a or as a control of cytosolic translation

initiation factor 2 (eIF2). Ablation of both of these proteins,

as expected due to their essential function in translation,

leads to a growth arrest but did not change the steady-state

levels of mitochondrial tRNAs (data not shown). This could

however be due to the fact that even in the absence of import
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the tRNA population that was imported before the induction

of RNAi may persist for a long time. It might therefore not be

possible to detect an import phenotype by simply analyzing

the steady-state population of tRNAs. The very same problem

was encountered in the analysis of mitochondrial protein

import in yeast, where inducible ablation of a key import

factor did not result in an obvious depletion of mitochondrial-

localized proteins at steady state (Baker et al, 1990).

However, the import phenotype was clearly seen in a

pulse–chase experiment, which allows to selectively monitor

newly synthesized proteins. Thus, in order to follow the fate

of a newly synthesized tRNA in T. brucei, we produced a cell

line that allows inducible expression of a nucleus-encoded

and imported tRNA. Practically this was achieved by trans-

fection of T. brucei 29-13, which expresses the tetracycline

repressor, with a construct containing the tetracycline opera-

tor 50 of a tagged tRNA gene. Figure 2A shows that in these

cells addition of tetracycline induces expression of the tagged

tRNA in a time-dependent manner. The transgenic tRNA is

correctly processed as well as aminoacylated (not shown),

and by all means behaves like a fully functional tRNA.

Analysis of digitonin-extracted mitochondrial fractions

furthermore showed that, as expected, the tagged tRNA was

imported into mitochondria. In vitro experiments from dif-

ferent laboratories suggested that tRNA import requires an

electrochemical gradient across the mitochondrial inner

membrane (Mukherjee et al, 1999; Yermovsky-Kammerer

and Hajduk, 1999). The left and the middle panels of

Figure 2B show that treatment of a culture of T. brucei with

carbonyl cyanide m-chlorophenylhydrazone (CCCP)—an un-

coupler that dissipates the electrochemical gradient—inhibits

import of the newly synthesized tRNA by 75%. This inhibi-

tion is not detected by looking at the steady-state mitochon-

drial tRNA pool (Figure 2B, left panel), since the major

fraction of each tRNA was imported before the CCCP treat-

ment. Staining of cells with Mitotracker (Figure 2B, right

panel), a dye that detects the electrochemical gradient, con-

firms that incubation with CCCP depolarizes the mitochon-

drial inner membrane and shows that the cells remain alive

and morphologically unchanged during the treatment.

Thus, these results demonstrate that in vivo import of

trypanosomal tRNAs requires an electrochemical gradient

across the inner mitochondrial membrane, and provide a

proof of principle that inducible tRNA expression can be

used to study aspects of mitochondrial tRNA import that

previously were not accessible to direct in vivo analysis.

Inducible tRNA expression combined with RNAi

In a next step we produced two RNAi cell lines, which upon

addition of tetracycline, induce the expression of the tagged

tRNA gene, and at the same time downregulate the expres-

sion of eIF2 or eEF1a, respectively. Both cell lines showed a

slow growth phenotype approximately 48 h after induction of

RNAi (Figure 3). Furthermore, in both cases, concomitant

with the growth arrest a reduction of cytosolic protein
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Figure 2 Tetracycline-inducible expression of a tagged tRNA. (A) Time course of induction. Appearance of the tagged tRNAMet (tRNAMet*) in
the cytosol (Tot) and in digitonin-extracted mitochondria (Mit) was monitored by Northern analysis (left side, upper panel). The lower panel
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was induced for 10 h in absence (�) and presence (þ ) of 20 mmol of the uncoupler CCCP, and analyzed by Northern blot. Middle panel:
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synthesis as measured by 35S-methionine incorporation was

seen (Figure 3).

However, fractionation of the eEF1a-ablated cell line

showed that reproducibly approximately fourfold less of the

newly synthesized tRNA was found in the mitochondrial

fraction than in uninduced cells (Figure 4A). In contrast, no

significant effect on import of the newly synthesized tRNA

was detected in cells ablated for eIF2 (Figure 4B). Most

importantly, the tRNA import phenotype in the eEF1a cell

line is already detected 24 h after induction of RNAi, well

before growth or translation is affected (Figure 3). Consistent

with this observation, the induced cells are fully motile and

the electrochemical gradient of their mitochondria, as evi-

denced by Mitotracker staining, is identical to the one ob-

served in uninduced cells (data not shown). As a further

control, that it is indeed the lack of eEF1a that causes the
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import phenotype, we tested the import of the newly

synthesized tRNA in a cell line ablated for the seryl-tRNA

synthetase, an essential protein that as eIF2 and eEF1a

is required for translation. It was previously shown

that ablation of this enzyme causes deacylation of tRNAsSer

and leads to a growth arrest (Supplementary Figure 1A)

whose kinetics is identical to the one seen in the eIF2 and

eEF1a RNAi cell lines (Geslain et al, 2006) (Figure 3).

According to our model we expect that ablation of the

seryl-tRNA synthetase, identical to the knockdown of eIF2

but in contrast to the ablation of eEF1a, will not affect the

import of the newly synthesized tRNA, which is exactly what

is seen (Supplementary Figure 1B).

These results strongly suggest that inhibition of import of

newly synthesized tRNAs is a direct consequence of the lack

of eEF1a. However, it cannot formally be excluded that the

lack of a labile factor, required for tRNA import, that is

rapidly degraded under limiting eEF1a concentrations is

responsible for inhibition of import.

To be imported into mitochondria tRNAs must cross both

the nuclear and the mitochondrial membranes. A potential

caveat of the in vivo import system is to distinguish nuclear

retention from inhibition of mitochondrial import. There are

two ways to export tRNAs from the nucleus: the exportin-t

and the exportin-5 pathway (Bohnsack et al, 2002; Calado

et al, 2002). There is no reason to believe that ablation of

eEF1a will affect the exportin-t pathway. At first sight this

looks different for the exportin-5 pathway, since it transports

both tRNAs and eEF1a. However, nuclear export of eEF1a

requires the presence of tRNAs that bind to both eEF1a and

exportin-5. Thus, while export of eEF1a depends on tRNAs,

the converse is not true and tRNAs are still exported even in

the absence of eEF1a (Bohnsack et al, 2002; Calado et al,

2002). Finally, we have addressed this question experimen-

tally for the tRNASec variants that are discussed in the next

section.

In summary, inhibition of tRNA import by ablation of EF1a

shows that in T. brucei eEF1a has a dual function; besides its

role in cytosolic translation, it is required for in vivo import of

tRNAs into mitochondria and determines the specificity of the

process.

The tRNASec

Eukaryotic and bacterial tRNAsSec do not interact with

eEF1a or EF-Tu, respectively (Diamond, 2004). Instead

they have their own elongation factors. The cytosolic locali-

zation of the trypanosomal tRNASec therefore supports the

hypothesis that binding to eEF1a might be a prerequisite for

tRNA import. For Escherichia coli tRNASec, the antidetermi-

nants for EF-Tu binding have been mapped to the eighth,

ninth and tenth base pairs of the acceptor branch (Rudinger

et al, 1996). Interestingly, the eighth acceptor stem base pair

of eukaryotic tRNASec is invariantly a non-Watson Crick U:U

(Figure 5A). It has been suggested, in analogy to the situation

in bacteria, that this base pair may act as an antideterminant

for eEF1a binding in eukaryotes (Rudinger et al, 1996). Thus,

we would expect that a variant of the trypanosomal tRNASec,

where the U:U eEF1a antideterminant had been replaced by a

standard C:G base pair should bind eEF1a (Figure 5A). Our

hypothesis predicts that as a consequence this variant

tRNASec should be imported into mitochondria. In transgenic

T. brucei cells that express the variant tRNASec, this is indeed

observed and sequences derived from the variant tRNASec,

contrary to the wild-type tRNASec, are recovered in both the

cytosol and the mitochondrial fraction (Figure 5A). However,

instead of the intact molecule we reproducibly detect two

distinct smaller fragments. Thus, for unknown reasons the

tRNASec variant appears to be degraded when present in

mitochondria.

In a next experiment we prepared a cell line allowing

inducible expression of the tRNASec variant with simulta-

neous knockdown of eEF1a (Figure 5B). Induction of RNAi

led to a similar growth phenotype than is observed in the

previously described eEF1a RNAi cell line (Figure 3) (data not

shown). As expected according to our model, ablation of

eEF1a for 24 h abolished mitochondrial import of the variant

tRNASec (Figure 5B, left panel).

In order to show that the variant tRNASec accumulates in

the cytosol and not in the nucleus, we performed cell

fractionations using the detergent digitonin. A quantification

of the lanes in the right panel of Figure 5B shows—after

normalization to equal cell equivalents—that 50% of the

primarily nucleus-localized U6 RNA is recovered in the pellet.

Figure 5 Mitochondrial import of a tRNASec variants. (A) Predicted secondary structure of the trypanosomal tRNASec. The nucleotide changes
that were introduced to obtain the variant tRNASec (var1-tRNASec) that lacks the predicted eEF1a antideterminant are indicated. RNA from the
cytosol (Tot) and from digitonin-extracted mitochondria (Mit) of a cell line allowing tetracycline-inducible expression of the variant tRNASec

(ind-var1-tRNASec) was analyzed by specific oligonucleotide hybridization for the presence of the wild-type tRNASec (tRNASec) (left panel) and
the variant tRNASec (var1-tRNASec) (middle panel). Arrows highlight the two fragments of the variant tRNASec that are reproducibly detected in
the mitochondrial fraction. Right panel: Ethidium bromide staining (EtBr) of the corresponding gel. Broken lines indicate which region of the
stained gel is represented in the blot. (B) Effect of eEF1a-RNAi on import of newly synthesized var1-tRNASec. Left panel: Northern analysis for
var1-tRNASec of cytosolic (Tot) and digitonin-extracted mitochondrial (Mit) RNA fractions of an uninduced (�Tet) and induced (þTet) cell line
that allows tetracycline-regulated expression of the var1-tRNASec in combination with ablation of eEF1a (var1-tRNASec/EF-RNAi). The growth
phenotype of this cell line was essentially identical to the one shown for the eEF1a-ablated cell line shown in Figure 3 (data not shown). Bottom
panels show a reprobing of the same blot for the endogenous imported tRNAIle. Middle panel: EtBr staining of the corresponding gel. Broken
lines indicate which region of the stained gel correspond to which blots. Right panel: Total (Tot), cytosolic (Cyt) and nuclear (Nuc) RNA
fractions were analyzed for the presence of var1-tRNASec, the primarily nuclearly localized U6 RNA (U6), the cytosolic initiator tRNAMet

(tRNAMet�i) and for tRNAs in general (tRNAs, EtBr). The percentage of the total samples that were analyzed in the different lanes is indicated at
the bottom. (C) Predicted secondary structure of the tRNASec. The discriminator nucleotide change that prevents charging by seryl-tRNA
synthetase and the nucleotide changes that inactivate the predicted eEF1a antideterminant are indicated. All these changes lead to a variant
tRNASec that is termed var2-tRNASec. Left panel: Total RNA from cell lines allowing tetracycline-inducible expression of the var1-tRNASec (ind-
var1-tRNASec) and var2-tRNASec (ind-var2-tRNASec), respectively, was analyzed on a long acidic gel. Aminoacylated (aa) and deacylated (da)
var1-tRNASec (left lane) and var2-tRNASec (right lane) were detected by specific oligonucleotide hybridization. Middle two panels: RNA from
the cytosol (Tot) and from digitonin-extracted mitochondria (Mit) of the var2-tRNASec expressing cell line was analyzed for the presence var2-
tRNASec. The corresponding EtBr-stained gel is also shown. Broken lines indicate which region of the stained gel corresponds to which blot.
Right panel: Distribution of var2-tRNASec in total, cytosolic and nuclear RNA fractions (as in (B)).
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However, 88% each of the cytosolic initiator tRNAMet and the

variant tRNASec are recovered in the supernatant, confirming

that ablation of eEF1a does not interfere with nuclear tRNA

export (Figure 5B, right panel).

Thus, these experiments directly link import of the variant

tRNASec to the presence of eEF1a.

Formation of the ternary complex between eEF1a, GTP and

tRNA requires the tRNA to be aminoacylated (Ribeiro et al,

1995). We have recently shown that the discriminator nucleo-

tide G73 on tRNASer and the tRNASec is the major identity

element recognized by the trypanosomal seryl-tRNA synthe-

tase (Geslain et al, 2006). Thus, changing the G73 on the

tRNASec to a C is expected to abolish aminoacylation. The

Northern blot in the left panel of Figure 5C shows that the

same is true for the tRNASec variant that is imported into

mitochondria. Interestingly, cell fractionation reveals that this

aminoacylation-deficient tRNASec variant cannot anymore be

imported into mitochondria (Figure 5C, middle two panels)

even though it lacks—just as the imported variant in

Figure 5A—the antideterminant for eEF1a binding. It is

important to emphasize that this experiment is not based

on RNAi. Translation is therefore fully active. Quantification
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of a cell fractionation experiment (Figure 5C, right panel)

shows that the absence of mitochondrial import of the variant

tRNASec cannot be explained by nuclear retention of the

aminoacylation-deficient tRNASec. In this experiment 50%

of the U6 RNA is found in the nuclear fraction, whereas

81% of the cytosolic initiator tRNAMet and 88% of the variant

tRNASec are recovered in the cytosol.

Thus, the most parsimonious explanation for these results

is that in absence of aminoacylation the tRNA cannot bind to

eEF1a and therefore is not imported into mitochondria.

In summary, eEF1a-dependent mitochondrial import of the

tRNASec variant that is predicted to interact with eEF1a,

strongly supports the notion that this protein is required for

mitochondrial tRNA import in T. brucei.

In vitro import shows no specificity

A number of groups have shown that efficient import

of tRNAs into isolated mitochondria of trypanosomatids

occurs in the absence of added cytosol and thus of eEF1a

(Mukherjee et al, 1999; Yermovsky-Kammerer and Hajduk,

1999; Rubio et al, 2000; Crausaz-Esseiva et al, 2004a). This

raises the question of how these results can be reconciled

with the eEF1a-dependent targeting mechanism proposed in

our model? Should the specificity of tRNA import indeed be

mediated by eEF1a, we would predict that in vitro all tRNAs,

irrespective of whether in vivo they are cytosol-specific or

not, should be imported. In order to test this prediction, we

performed in vitro import experiments using transcripts

corresponding to the in part imported elongator tRNAMet as

well as to the cytosol-specific initiators tRNAMet and the

tRNASec. Figure 6 shows that all these cytosol-specific

tRNAs are imported into isolated mitochondria that are

devoid of eEF1a. The import efficiency of the initiator

tRNAMet is comparable to that of the elongator tRNAMet,

which in vivo is partly localized to the mitochondria

(Crausaz-Esseiva et al, 2004a). Figure 6C indicates that the

import efficiency does not depend on the substrate concen-

tration. Both elongator tRNAMet and a variant thereof,

carrying the T-stem of the in vivo cytosolically localized

initiator tRNAMet (Crausaz-Esseiva et al, 2004a), were im-

ported into isolated mitochondria with equal efficiency over a

concentration range of 8 to 70 nM. The experimentally de-

termined in vivo concentration of the initiator tRNAMet

variant is 63 nM (Crausaz-Esseiva et al, 2004a), and the one

of the cytosolically localized elongator tRNAMet variant

(assayed in Figure 6C) is 520 nM, respectively (Tan et al,

2002b; Crausaz-Esseiva et al, 2004a). In vitro import of the in

vivo cytosolically localized tRNAMet variant is therefore not

due to an unphysiological high substrate concentration.

In summary these results suggest that the specificity of

tRNA import is mediated by a cytosolic factor that is absent

from the in vitro assay, and thus support our model.

Absence of eEF1a leads to unspecific import in vitro, but

interferes with the membrane translocation step in vivo. This

indicates that in living cells the targeting step is obligatory for

the subsequent membrane translocation, whereas in the in

vitro assay this step can be bypassed.

Discussion

The only cytosol-specific tRNAs in T. brucei are the initiator

tRNAMet (Crausaz-Esseiva et al, 2004a) and the tRNASec

(Geslain et al, 2006). Both of these tRNAs would be of no

use inside the organelle, since the mitochondrial translation

initiation mechanism is very different from the eukaryotic

one (Tan et al, 2002a), and since no selenocysteine insertion

machinery exists in mitochondria. Here we show that the lack

of interaction with eEF1a provides an explanation for the

cytosolic localization of these tRNAs. There are five lines of

evidence supporting this conclusion: (i) an extensive in vivo

study showed a perfect correlation of mitochondrial import of

tRNAs with their predicted binding to eEF1a (Crausaz-

Esseiva et al, 2004a); (ii) the main cytosolic localization

determinant in the initiator tRNAMet coincides with a pre-

dicted antideterminant for eEF1a binding (Drabkin et al,

1998; Crausaz-Esseiva et al, 2004a); (iii) ablation of eEF1a

abolishes import of newly synthesized tRNAs; (iv) a variant

of the tRNASec that, unlike its wild-type counterpart, is

predicted to bind to eEF1a, is imported into mitochondria

by an eEF1a-dependent pathway (Figure 5) and (v) in vitro

import of tRNAs in an in vitro system lacking eEF1a does not

show specificity (Figure 6).

tRNA import can be subdivided into two temporally and

spatially ordered steps. These are targeting of a subset of

cytosolic tRNAs for mitochondrial import and the actual

membrane translocation step. The specific interaction of

eEF1a with imported tRNAs and the fact that it is a cytosolic

protein that is never imported into mitochondria, indicate

that eEF1a is involved in the targeting step. Thus, we suggest

that besides its canonical function in translation, eEF1a

selects a subpopulation of cytosolic tRNAs and hands them

over to a putative receptor on the outer membrane of

mitochondria. The receptor itself cannot discriminate be-

tween cytosol-specific tRNAs and tRNAs destined to be

imported, which explains the lack of specificity in the in

vitro assay (Figure 6). However, the membrane receptor

appears to be able to monitor the modification status of

tRNAs, as evidenced by in vitro import assay using

Leishmania mitochondria. In these experiments, it was

shown that the tRNAGln and tRNAGlu carrying a thio-modified

anticodon nucleotide are less efficiently imported than the

corresponding tRNAs lacking it (Kaneko et al, 2003). Thus,

while the specificity of tRNA import is controlled by cytosolic

eEF1a, the extent of import might be mediated by the

modification status of tRNAs.

Interestingly, unlike what one might expect, ablation of

eEF1a does not selectively interfere with the targeting step,

but also prevents the membrane translocation process

(Figure 4). This suggests that in living cells, in contrast to

the in vitro import assay, the targeting step is obligatory for

the subsequent membrane translocation of tRNAs. In the cell

line ablated for eEF1a, impairment of tRNA import occurs

well before inhibition of cytosolic translation (Figure 4). This

shows that determining the tRNA import specificity and

translation elongation are separate functions most likely

mediated by two distinct eEF1a populations. Thus, it is

conceivable that a small fraction of trypanosomal eEF1a,

instead of transferring the tRNA to the A-site of the ribosome,

hands it over to a putative tRNA import receptor on the

surface of the mitochondrion. It is at present not known

whether this requires ongoing translation elongation or not.

There is evidence that in eukaryotes protein synthesis is a

channeled pathway, meaning that elongator aminoacyl-

tRNAs are directly transferred from the aminoacyl-tRNA
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synthetases to eEF1a and then to the ribosomes (Stapulionis

and Deutscher, 1995; Hudder et al, 2003). This would mean

that free aminoacyl-tRNAs that are not bound to proteins

might not exist in the cell. Thus, we propose that in vivo

import requires a highly structured cytosolic translation

machinery.

However, the protein free tRNAs, that are used as sub-

strates in the in vitro import system, may directly interact

with the putative import receptor and as a consequence

bypass the requirement for eEF1a.

Mitochondrial tRNA import is widespread among eukar-

yotes. However, contrary to mitochondrial protein import it

has a polyphyletic evolutionary origin (Schneider and

Marechal-Drouard, 2000). Thus, the tRNA import machi-

neries might be distinct in different organisms and are

probably less complex than the conserved, multicomponent

protein import apparatus. This raises the question whether

the recruitment of eEF1a for mitochondrial tRNA targeting is

a general phenomenon? The number of tRNAs that are

imported in the different systems is highly variable. In plants,

for example there is no correlation of predicted eEF1a binding

of tRNAs with mitochondrial import. An involvement of

eEF1a in determining the tRNA import specificity is therefore

unlikely. Interestingly, however, the tRNA import specificity

in apicomplexan parasites, such as Plasmodium falciparum

and Toxoplasma gondii, is probably identical to the one in

Initiator tRNAMet

Elongator tRNAMet

tRNASec

Mit
rRNA

Mit
rRNA

IP (1 ng) 8 nM 24 nM 70 nM

Mit
rRNA

Mit
rRNA

Elongator tRNAMet*

100 20 30 40 50 60 70
0

1

2

3

4

5

6

Im
po

rt
ed

 tR
N

A
 (

ng
)

tRNA in assay (nM)

100 nM

+ATP 

Elongator tRNAMet*
T-arm Met-i

+ATP
IP (1%)

–ATP

100 nMIP (1%) 200 nM
+ATP –ATP+ATP –ATP

Elongator

tRNAMet*
T-arm Met-i

Elongator tRNAMet*

Tot Mit

KDH

EF
Mit

rRNA

A B

C
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respectively (B) Left and middle panels: In vitro import in the presence and absence of ATP of in vitro transcribed and radioactively labeled
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vitro import of in vitro transcribed cytosol-specific tRNASec. In this case the imported tRNASec was detected by Northern blot and specific
oligonucleotide hybridization. The concentration of each substrate tRNA in the import reaction is indicated. (C) In vitro import assays
containing ATP and the indicated concentrations of in vitro transcribed tagged in vivo in part imported elongator tRNAMet (elongator tRNAMet*,
top panel) or an in vivo cytosol-specific variant thereof carrying the T-arm of the initiator tRNAMet (elongator tRNAMet*

T�arm Met�i, bottom panel).
Imported tRNAs were detected by Northern blots and hybridization of oligonucleotides directed against the tag (Crausaz-Esseiva et al, 2004a).
The input lanes show the hybridization signals obtained by 1 ng of substrate. The graph shows the quantification of the Northern blots. All
import reactions shown in panels B and C were treated with micrococcus nuclease. Ethidium bromide-stained panels show the two
mitochondrial rRNAs and serve as loading controls.

Role of EF1a in mitochondrial tRNA import
N Bouzaidi-Tiali et al

&2007 European Molecular Biology Organization The EMBO Journal VOL 26 | NO 20 | 2007 4309



trypanosomatids (Crausaz-Esseiva et al, 2004b). Thus, the

role of eEF1a in tRNA targeting might well be conserved

between these two groups even though they are not ob-

viously related.

While the targeting function of eEF1a is unlikely to be

conserved in all systems that import tRNAs, it is clear that a

cytosolic targeting mechanism is also operative in S. cerevi-

siae. Targeting of the imported tRNALys isoacceptor to the

surface of mitochondria requires the glycolytic enzyme

enolase (Entelis et al, 2006). Thus, comparable to eEF1a in

T. brucei, enolase has acquired a second function. It recog-

nizes the imported tRNALys isoacceptor and hands it over to

the precursor of mitochondrial lysyl-tRNA synthetase, the

carrier protein required for import.

Recruiting housekeeping components appears to be a

general feature of mitochondrial tRNA import in all systems.

tRNA import in yeast makes use of the protein import path-

way (Tarassov and Martin, 1996). Recent studies on

Leishmania have suggested that the alpha subunit of the

F1-ATPase (Goswami et al, 2006) as well as subunit 6b of the

ubiquinol cytochrome c reductase (Chatterjee et al, 2006) are

involved in the membrane translocation of tRNAs. Finally,

studies in plants have shown that the voltage-dependent

anion channel of the outer mitochondrial membrane is a

major component of the tRNA import machinery (Salinas

et al, 2006). In fact up to now no factor has been described

yet in any system that functions in mitochondrial tRNA

import only.

A number of non-canonical functions of eEF1a have been

described. It has long been known that eEF1a is an actin-

binding protein. Recently, mutations in eEF1a have been

produced that alter actin cytoskeleton organization without

interfering with protein synthesis (Gross and Kinzy, 2005). In

plants eEF1a appears to be implicated in microtubule bund-

ling (Durso and Cyr, 1994). Furthermore, overexpression of

eEF1a was proposed to be important for apoptosis (Lamberti

et al, 2004). Our results show that in T. brucei eEF1a has yet

another novel function, namely mediating the specificity of

mitochondrial tRNA import.

Materials and methods

Inducible tRNA expression
The inducible tRNA expression system is based on the tetracycline-
regulatable polymerase I promoter system originally developed by
(Wirtz and Clayton, 1995). To establish the system we used a
derivative of pLew-100 where the 2296-bp KpnI/BamHI fragment
was replaced by a KpnI/BamHI fragment consisting of the 21-bp
tetracycline operator followed by a variant initiator tRNAMet gene,
followed by 77-bp 30-flanking region of the wild-type initiator
tRNAMet. The variant initiator tRNAMet gene that was used contains
the T-stem loop region of the elongator tRNAMet and a tag (G12:C23
to U12:A23) in the D-stem. Previous work has shown that this
variant tRNAMet is imported into mitochondria of transgenic T.
brucei to the same level as wild-type elongator tRNAMet (Crausaz-
Esseiva et al, 2004a). Furthermore, it was shown that the tagged
tRNA can be aminoacylated in vitro and is correctly processed in
vivo. The construct was linearized with NotI and electroporated into
T. brucei 29–13 grown in SDM-79 supplemented with 15% FCS.
Transformants were selected with phleomycine and cloned as
previously described (Beverley and Clayton, 1993). The selected
clone allowed tetracycline-inducible (1mg/ml) polymerase III-
directed transcription of the variant initiator tRNAMet that could
specifically be detected using the oligonucleotide 50CGCTCTT
CCCCTGAGCCA30, which hybridizes to the region containing the
D-stem tag.

RNAi cell lines
RNAi of eEF1a and eIF2 was performed using stem loop constructs
containing the puromycine resistance gene, as described (Bochud-
Allemann and Schneider, 2002). As inserts we used a 546-bp
fragment (nucleotides 321–867) of the eEF1a gene and a 624-bp
fragment of the eIF2 gene (nucleotides 257–881) (Berriman et al,
2005). The NotI-linearized constructs were electroporated into the
clonal cell line obtained above. Selection with puromycine resulted
in two new clonal cell lines that allow concomitant inducible
expression of the variant tRNA, as well as ablation of either eEF1a
or eIF2, respectively.

Expression of variant tRNASec

DNA fragments consisting of the tRNASec gene, containing the
changes indicated in Figure 5A or C, respectively, including 308 bp
of its 50-flanking and 205 bp of its 30 flanking region, were cloned
into a modified pLew-100 containing convenient cloning sites
downstream of the procyclin promoter. Linearization, electropora-
tion, selection with puromycine and cloning were performed as
above. In the presence of 1mg/ml tetracycline the resulting clonal
cell line expresses both wild-type tRNASec, which can be monitored
by hybridization with the oligonucleotide 50ACCAGCTGAGCTCAT
CGTGGC30, as well as either of the variant tRNAsSec, which can be
specifically detected by hybridization with the oligonucleotides
50TGGCACCACCACGGCCGA30 (var1-tRNASec) or 50TGGGACCACC
ACGGCCGA30 (var2-tRNASec).

Cell fractionation
Mitochondrial fractions were prepared by digitonin extractions (Tan
et al, 2002b). Washed cells (4�108 cells each) were resuspended in
0.5 ml of SoTE (0.6 M sorbitol, 20 mM Tris–HCl, pH 7.5 and 2 mM
EDTA). Five percent of the sample (25ml) was removed to isolate
the total RNA using the acidic guanidinium isothiocyanate method
(Chomczyinski and Sacchi, 1987). After the addition of 0.475 ml of
SoTE containing 0.1% (w/v) of digitonin, the samples were mixed
by pipetting and incubated on ice for 5 min. The suspension (final
concentration of digitonin 0.25%) was centrifuged (8000 g/5 min/
41C) and the supernatants were discarded. Next, the resulting
pellets were resuspended in 500ml of SoTE containing 1mg of RNase
A and incubated on ice for 15 min. After a final centrifugation
the supernatants were discarded and RNA was isolated as for the
total RNA sample. Both total RNA (corresponding to 2�107

cell equivalents) and mitochondrial RNA (corresponding to
2�107 cell equivalents) were separated on short 8 M urea/10%
polyacrylamide gels.

Nuclear and cytosolic RNA fractions were prepared by digitonin
extractions as described above, except that a final concentration of
0.1% of digitonin was used, 8% (w/v) of poly-(N-vinyl pyrroli-
done) was added and no RNase digestion was performed. The
nuclear RNA was isolated from the pellet and the cytosolic RNA
from the supernatant. RNAs corresponding to 0.8�107 cell
equivalents (for the cytosol) and 3.2�107 cell equivalents (for the
nuclear fraction) were analyzed. U6 RNA was used as a nuclear
marker and mature tRNAs visualized by ethidium bromide as a
cytosolic marker (Figure 5B and C).

35S-labeling of total cellular proteins
The two RNAi cell lines containing the inducible tRNA expression
system were induced with 1 mg/ml tetracycline for the indicated
time. Next the cells were washed in phosphate buffer (20 mM
sodium phosphate buffer, pH 7.9, 20 mM glucose, 0.15 M NaCl) and
resuspended in SDM-80 (Lamour et al, 2005) that lacks methionine.
Subsequently 35S-labeled methionine (1175 Ci/mmol) was added to
a final concentration of 4 mCi/ml. After incubation for 2 h at 271C,
aliquots of 5�107 cells were removed and washed in phosphate
buffer. The resulting pellets were resuspended in standard SDS–gel
sample buffer and resolved on a 10% SDS–polyacrylamide gel. The
dried gel was exposed on a phosphorimager and the total signal
obtained per lane of the induced samples was compared to that of a
lane containing the uninduced control.

In vitro import assays
A standard in vitro import reaction was performed in 20 ml of SoTE
containing 2 mM DTT, 20 mM MgCl2 and isotonically isolated
mitochondria (500mg protein) (Hauser et al, 1996; Schneider et al,
2007). After the addition of the indicated amounts of the different
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substrate tRNAs (Figure 6), the reaction was incubated for 20 min at
271C in either the absence or the presence of a mixture containing
8 mM ATP, 1.3 mM creatine phosphate and 1mg of creatine
kinase (Roche). Subsequently, a tube was prepared containing a
bottom layer of 10 ml of 20 mM Tris–HCl, pH 8.0, 2 mM EDTA
containing 1.75 M of sucrose and a top layer of 20ml of the
same buffer containing 0.6 M of sucrose. The 20-ml import reaction
was overlayed on the top layer and after centrifugation for 5 min
(6800 g at 41C) the top 30ml were discarded. The remaining
20ml were mixed by pipetting. Subsequently, CaCl2 was added to
a final concentration of 2.2 mM and the reaction was digested with
48 U of micrococcal nuclease (MBI Fermentas) for 15 min at 41C,
followed by 30 min at 271C. Finally, RNA was isolated using the
guanidinium isothiocyanate method (Chomczyinski and Sacchi,
1987) and analyzed on a short 8 M urea/10% polyacrylamide
sequencing gel.

Miscellaneous
Transfer and Northern hybridization using specific radioactively
kinased oligonucleotide probes were performed as described (Tan
et al, 2002b).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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