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Abstract
The high packing density inside proteins leads to certain geometric regularities and also is one of the
most important contributors to the high extent of cooperativity manifested by proteins in their
cohesive domain motions. The orientations between neighboring non-bonded residues in proteins
substantially follow the similar geometric regularities, regardless of whether the residues are on the
surface or buried - a direct result of hydrophobicity forces. These orientations are relatively fixed
and correspond closely to small deformations from those of the face-centered cubic lattice, which is
the way in which identical spheres pack at the highest density. Packing density also is related to the
extent of conservation of residues, and we show this relationship for residue packing densities by
averaging over a large sample or residue packings. There are three regimes: 1) over a broad range
of packing densities the relationship between sequence entropy and inverse packing density is nearly
linear, 2) over a limited range of low packing densities the sequence entropy is nearly constant, and
3) at extremely low packing densities the sequence entropy is highly variable. These packing results
provide important justification for the simple elastic network models that have been shown for a
large number of proteins to represent protein dynamics so successfully, even when the models are
extremely coarse-grained. Elastic network models for polymeric chains are simple and could be
combined with these protein elastic networks to represent partially denatured parts of proteins.
Finally, we show results of applications of the elastic network model to study the functional motions
of the ribosome, based on its known structure. These results indicate expected correlations among
its components for the step-wise processing steps in protein synthesis, and suggest ways to use these
elastic network models to develop more detailed mechanisms - an important possibility, since most
experiments yield only static structures.
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1. Introduction
Globular proteins are compact and usually quite densely packed (1), even to the extent that
their interior have sometimes been viewed as being solid-like (2,3); however there are still
numerous voids and cavities in protein interiors (4). The importance of tight packing is widely
acknowledged and is thought to be important for protein stability (5,6), for nucleation of protein
folding (7–9), and for the design of novel proteins (10). In conjunction with nucleation, it has
previously been postulated that the conservation of amino acid residues through evolution may
include essential tightly packed sites (7–9,11). Much regularity exists in the geometries within
proteins. For example it is well known that proteins have strong biases for certain backbone
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and side chain torsion angles (12). High packing density also imposes some regularity on non-
bonded geometries; for example, there are some biases for the orientations of side chains
(13–15). This preference for side chain orientations could imply some relationship between
sequence conservation and structure, which has been poorly understood (16,17). The aim of
our article is to show how these regularities in the packing inside proteins can provide
motivation for the recent advancements in studies of protein dynamics with the Elastic Network
(EN) models to explain large conformational changes in proteins and assemblies of proteins
and nucleic acids, such as the ribosome. The study of these conformational changes is
extraordinarily important because they relate closely to the functions and mechanisms of
biological macromolecules.

In the nexg section we will discuss the problem of packing regularities in proteins. In the
following section elastic network theory will be described. Because this theory was first
developed for polymers we will briefly discuss some polymer network cases, for which
analytical solutions are known. We will mention the applicability of these solutions for analysis
of loops in proteins. We will present the formalism of Elastic Networks theories for proteins:
the Gaussian Network Model (GNM) and the Anisotropic Network Model (ANM) of proteins
presented here are based on a harmonic approximation. We will consider hierarchical levels
of coarse graining and the Mixed Coarse Graining (MCG) where the functionally important
parts of proteins are modeled with higher accuracy than the rest. In the final section we will
present some results obtained for the functional dynamics of the ribosome.

2. Packing Regularities in Proteins
The standard coarse-grained assumption of one geometric point for each residue is equivalent
to an assumption of equal sized residues. This implies that residues pack similarly as spheres.
This packing regularity is evident in the angular directions, but not in the spatial distances since
different types of amino acids have different sizes. If the packing were equal sized spheres,
then residues would pack as in Fig. 1.

Their angular distributions are preserved however, and actual residues pack with the angles
shown in Fig. 2.

Residue points are taken as the Cβ atoms and close residues within a radius of 6.8 Å are
considered. Clusters obtained from a set of non-homologous protein structures were rotated to
find an optimal superimposition. The central residue defines the origin of a spherical reference
system with the rigid-body rotated directional vectors from different clusters intersecting the
surface of a unit sphere. The most populous regions on the surface of this sphere define the
most probable coordination directions, characterized by two spherical angles θ - polar, and φ
- azimuthal. When there is less than a full set of neighbors, sites are gradually filled as the
coordination number increases by clusters of nearby points. It is important to note that the
filling is not sparse or staggered, but instead the relatively close sites are filled first, thus
maintaining an approximately constant density excluding the solvent space. The optimal
protein architecture can be viewed as a distorted, incomplete face centered cubic packing. This
approximate cubic closest-packed geometry appears as a generic characteristic of the residue
packing architecture for proteins. Note that face-centered cubic packing is the densest way to
pack uniform spheres in space.

While these local orientation clusters are present in proteins, the ability to sustain substitutions
of amino acids depends on other aspects of protein structure, such as the available space, its
ability to accommodate side chains of a specific shape, the change in stabilizing interactions
upon substitution. Thus it is difficult to make sense of individual substitutions. However, if we
include a sufficiently large sample and average results, it becomes clearer as will be seen next.
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2.1 Sequence alignments and structure
Employing sequence alignments in conjunction with molecular modeling has proven to provide
significant improvements for protein structure prediction (18,19). One key assumption in
homology-based modeling is that conserved regions share structural similarities, but the
structural basis of this connection has not been clearly established. Although there have been
many individual demonstrations of connections between sequence conservation and structural
properties (20), there are no definitive studies on this subject. Establishing direct connections
between sequences and structural features have proven difficult; hence the limited number of
successes at protein design and the limited comprehension of mutagenesis. Recent applications
that incorporate sequence variability into structure predictions have often lead to enhanced
results (21), indicating that empirical measures of sequence variability are useful by
themselves, even if their full implications are not well understood.

2.2 Sequence variability
Entropy is defined as the sum over the physical states i of a system, − ∑

i
pi ln pi. Developing

such a measure for the probabilities of individual residues at each place in a structure is
straightforward, and these types of computed Shannon entropies for protein sequences have
proven useful and have been shown to correlate with entropies calculated from local physical
parameters, including backbone geometry (22). A deeper exploration of the connection
between sequence entropy and protein structure is useful for developing a better understanding
of protein stability and function.

While extending the investigations of packing in proteins for greater detail could prove to be
informative, we have chosen to investigate the coarse-grained packing of the points
representing neighboring amino acids similarly to what was developed in the previous section.
The results we will see are quite general, even if not so immediately useful for protein structure
predictions, and we have established a strong relationship between packing density and
sequence conservation. Specifically we generate a large set of aligned protein sequences over
a diverse sample of 130 non-redundant protein sequences, all having structures in the PDB,
and calculate sequence entropies for each individual residue position in the alignment. These
are then compared with a corresponding local flexibility as defined by the Cα packing density
calculated from the corresponding structures. Similar comparisons can also be made between
residue hydrophobicity and packing density.

Sequence alignments were generated using BLASTP (23) searching through GenBank
available from the National Center of Biotechnology Information (NCBI, 2002). Alignments
are not included if bit scores fall below 100 and they are required to be at a level greater than
or equal to 40% of the best score. Exploratory calculations showed that 40% of the BLASTP
bit score was a reasonable threshold for calculations of sequence entropy and its relationship
with density. Also a minimal set of sequences is required, and a maximum number of 100
alignments are typically included. This yields a set of 7,143 aligned protein sequences. The
average number of alignments per query is 55. The frequency distribution of the BLASTP bit
scores for all 130 sets of alignments is consistent with the right-skewed (i.e. positive skew)
distribution for a randomized set of BLAST scores (24). Here the mean, median and the overall
range of BLASTP bit scores for all 7,143 alignments were 408, 354 and 100 to 1,793. Sequence
entropy Sk at amino acid position k was calculated from

Sk = − ∑
j=1.20

p jk ln p jk + ∑
j=1.20

pj ln pj (1)

where pjk is the probability at some amino acid sequence position k derived from the frequency
fjk for an amino acid type j at sequence position k for all of aligned residues and pj is the
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probability of amino acid type j in all alignments. Gaps were ignored. The second term
corresponds to the random case, which has been subtracted (25). Cα packing densities are
calculated from the atomic coordinates. The radius for inclusion in the packing calculation was
9 Å. Here we discuss the extent to which the inverse of this local packing density, as a measure
of local flexibility (26), is correlated with sequence variability. Calculated sequence entropies
for individual proteins when compared with the inverse Cα packing density do not agree with
one another. For example three individual proteins gave slopes of the best fit lines of 13.0, 6.1
and 4.3. This appears to be because the sample sizes within individual proteins are insufficiently
large. In our sample over the entire set of proteins there were a total of 41,543 residues. The
results shown in Fig. 3(27) were first averaged for each protein and then averaged over the set
of proteins within each interval of density.

There are two major regions corresponding to high and low densities visible in the correlation
plots of sequence entropy versus inverse packing density. The first region for higher packing
densities has a steep slope, and corresponds to densities of 12 to 25 Cα atoms (inverse densities
from 0.040 to 0.083). There is the hint of a slight sigmoidal shape to the curve. The second
region on the right of the figure includes a significant number of residues but appears to be
nearly constant in sequence entropy; this region involves lower packing densities ranging from
6 to 11. It is quite logical that in the low packing density regime, changes in sequence entropy
should be unaffected by their packing. The surprise is that there is constant sequence variability
for the low residue packing density regime.

2.3 Flexibility and Hydrophobicity and Sequence Entropy
Previously a strong correlation was reported between computed displacements using elastic
networks, which directly reflects residue packing (20,28) and the measured hydrogen exchange
(HX). Regions of high packing density naturally resist hydrogen exchange, because of both
stability and inaccessibility. Here, we have gone further to relate the calculated inverse Cα

packing density from X-ray structures to sequence variability. Strong linear correlations are
observed between sequence entropy and the inverse packing density, except for the lowest
range of density. This provides a quantitative relationship between these two quantities, and
can provide an important structural measure for determining likely non-disruptive sites for
mutagenesis.

There is also a strong correlation between calculated sequence entropy and hydrophobicity.
Clearly, correlations between the sequence variabilities as reflected in the sequence entropies,
and the corresponding hydrophobicities are consistent with the average behavior for residues
within a given packing density range. Still, this observed correlation between average sequence
entropy and hydrophobicity is noteworthy, but both density and hydrophobicity are reflecting
fundamental properties related to the extent of burial. The critical importance of hydrophobicity
for folding of model protein chains (29,30) is well known. This is consistent with the fact that
key hydrophobic residues can be described as buried or tightly packed (7–9). Packing and the
resulting interactions associated with hydrophobicity were reported by Dima and Thirumalai
(31) to be manifested in pairs and triplets of contacts. Our calculation of residue packing density
represents a coarse-grained counting of such contacts. It is possible to calculate more detailed
measures than those used here, by using full atomic representations. Such calculations would
depend upon the residue's environment in more detailed ways, than is given by the present
simple residue density. Progress in this direction could assist with protein design - a closely
related problem (10,22,32–37). Further efforts are clearly required to achieve such a goal;
however, the present results point the way towards such a goal. Here packing at the residue
level for coarse-grained structures has been shown to exhibit an extremely strong connection
to sequence conservation. Why is the averaging here necessary? One possible explanation is
that the large number of combinatorial ways in which a group of residues' atoms can be packed
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together requires averaging over large numbers of occurrences, in order to obtain a meaningful
single coarse-grained value.

3. Elastic Network Models
Originally, elastic network theory was developed for networks of polymer chains. James and
Guth (38–44) developed in the forties a theory of a “phantom network” whose behavior is
dictated only by the connectivity of the network chains if the effect of the excluded volume of
polymer chains is neglected. The chains are phantom-like; i.e. they are able to pass readily
through one another. They assumed that the network is composed of crosslinked Gaussian
chains. They assumed that there are two types of network junctions. Junctions at the surface
of the rubber are fixed and deform affinely with the macroscopic strain, while the junctions
inside the network are free to fluctuate about their mean positions. The configurational partition
function ZN of the network is the product of the configurational partition functions of the
individual Gaussian chains (45).

ZN = C∏
i<j

exp − 1
2∑i ∑j γij(Ri − Rj)2 (2)

where Ri is the position of junction i, C is a normalization constant and the matrix elements
γij are defined as

γij = { 3
2 < rij

2 > 0 if i and j are connected by a chain

0 if i and j are not connected
(3)

where <(rij)2>0 is the mean square end-to-end vector of the chain between junctions i and j in
the undeformed state. The diagonal elements are defined so that the summation of all matrix
elements in a given row (or column) is zero.

γii = −∑
j
γij (4)

This means that all statistical properties of the network depend on the connectivity matrix Γ
defined in Eqs. 3–4. One can easily calculate fluctuations of junctions in the phantom network
model, and correlations between these fluctuations for the ideal infinite network with the
topology of a tree (with network junctions having functionality φ - the number of chains
connected at each junction). An example of such a tree-like network is shown in Fig. 4.

These quantities are related to the matrix elements of the inverse matrix Γ-1. The mean square
fluctuations of the end-to-end vector < (Δr)2> of polymer chains depend on the functionality
φ of the network as

< (Δr)2> = 2
φ < r2>0 (5)

It can be shown that correlations <(ΔRi·ΔRj)> are related to Γij
-1

< (ΔRi ·ΔRj) > = 3
2 Γij
−1 (6)

The problem of fluctuations of junctions and chains in random phantom networks has been
studied in detail by Kloczkowski, Mark and Erman (46,47). In the simplest case when junctions
i and j are directly connected by a single chain the solution of the problem converges to the
following simple formula
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< (ΔRi)
2> < (ΔRi ·ΔRj) >

< (ΔRi ·ΔRj) > < (ΔRj)
2>

= < r2>0

φ − 1
φ(φ − 2)

1
φ(φ − 2)

1
φ(φ − 2)

φ − 1
φ(φ − 2)

(7)

where φ is the functionality of the network. In the case of two junctions m and n separated by
d other junctions along the path joining m and n the solution of the problem is

< (ΔRm)2 > < (ΔRm ·ΔRn) >

< (ΔRm ·ΔRn) > < (ΔRn)2 >
= < r2>0

φ − 1
φ(φ − 2)

1
φ(φ − 2)(φ − 1)d

1
φ(φ − 2)(φ − 1)d

φ − 1
φ(φ − 2)

(8)

and the fluctuations <(Δrmn)2> of the distance rmn are

< (Δrmn)2> = 2
φ(φ − 2)(d + 1)

(φ − 1)d+1 − 1
(φ − 1)d

< rmn
2 >0 (9)

The problem was also solved for the general case of fluctuations of points along the chains in
the network and correlations of fluctuations among such points. To deal with this case it was
assumed that each chain between two functional junctions is composed of n Gaussian segments
connected by bifunctional junctions to form a chain, as shown in Fig. 5.

Because of this the diagonal elements γii of the connectivity matrix are φ if the index i
corresponds to the φ functional junction and 2 for the bifunctional junction. The off-diagonal
elements γij are −1 if i and j are directly connected by a chain segment, and zero otherwise.
For the infinite number of tiers in the tree-like network the solution of the problem has the
following form

< (ΔRi)
2> < (ΔRi ·ΔRj) >

< (ΔRi ·ΔRj) > < (ΔRj)
2>

= < r2>0

φ − 1
φ(φ − 2) + ζ(1 − ζ)(φ − 2)

φ
1

φ(φ − 2)(φ − 1)d
+ 1 + ζ(φ − 2) (φ − 1) − θ(φ − 2)

φ

1
φ(φ − 2)(φ − 1)d

+ 1 + ζ(φ − 2) (φ − 1) − θ(φ − 2)
φ

φ − 1
φ(φ − 2)

θ(1 − θ)(φ − 2)
φ

(10)

where ζ = i − 1
n  and θ = j − 1

n  are the fractional distances of sites i and j from the nearest φ-
functional junctions on their left side (as shown in Fig. 6) with 0 < ζ θ< 1, and d is the number
of φ-functional junctions between sites i and j. Our preliminary results show that Eq. 10 is
applicable also to proteins loops.

3.1 Elastic Network Models of Proteins - Gaussian Network Model
The EN models developed for polymer networks have been successfully applied to proteins in
many different applications by us (20,48–68) and many others (53,54,69–92). The basic
difference between elastomeric polymer networks and proteins is that a protein is a collapsed
polymer with many non-bonded interactions, while for polymers these non-bonded interactions
could be (as for the phantom chain models) completely neglected. The simplest EN model of
proteins is the Gaussian Network Model (GNM). In the GNM it is assumed that fluctuations
of residues about their mean positions are spherically symmetric. (The Anisotropic Network
Model (ANM) discussed in the next section assumes that these fluctuations are represented by
ellipsoids.) For the usual level of one point per amino acid, usually taken as the Cα atoms, all
close points within a cutoff distance Rc are connected with identical deformable springs. While
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this is a kind of uniform material model of proteins, it provides a representation of the
mechanics of the intact structure, and does not have the level of detail of a potential energy
function that would be needed for describing the folding process or how the structure was
arrived at. It is assumed that the initial structure (usually a well-resolved crystal structure) is
lowest in energy. The energy of each spring increases with deviations ΔR away from the initial
structure, with ΔR following a Gaussian distribution. The total energy of the network at is
given by

Vtot = (γ / 2) tr ΔRT Γ ΔR (11)

where Γ is the Kirchhoff (contact) matrix defined on the basis of the cutoff distance Rc and
tr is the trace of the matrix. Then the average changes in position, given either as the correlation
between the displacements of pairs of residues i and j or as the mean-square fluctuations for a
single residue i, are

< ΔR1
2 > = < ΔRi ·ΔRi > = (1 / ZN)∫(ΔRi ·ΔRj) exp { − Vtot / kT} d{ΔR} = (3kT /γ) Γ−1 ij (12)

The most direct validation of this approach has been made by comparing the computed
fluctuation magnitudes with the Debye-Waller temperature factors usually reported by
crystallographers as B-factors

Bi = 8π2 < ΔRi ·ΔRi > / 3 (13)

Usually excellent agreement is achieved by this approach when B-factors of high resolution
structures are compared. Another test was a comparison with H/D exchange data (64), where
the protection factors and/or free energy of exchange from experiments for a series of proteins
were closely reproduced/explained by the theoretical (GNM) results. Other tests (performed
after mode-decomposition of GNM dynamics, see below) include a comparison of the most
constrained regions in the GNM with conserved residues and/or folding nuclei, comparison of
hinge sites (minima in the slowest mode fluctuation curve) and cross-correlations between
domain motions, with those revealed in experimental studies.

The applicability of the GNM to oligonucleotides, or protein- RNA complexes is supported
by our studies. Fig. 7 shows how the GNM methodology closely reproduces the experimental
B-factors measured for tRNA in isolated form, and when bound to Gln synthetase.

Another study that lends support to the use of the GNM is the application to HIV-1 reverse
transcriptase (RT), where RTs in different forms (bound to DNA, or to inhibitors) were
analyzed to infer the mechanism of action, consistent with experimental data (59,63,93).

3.2. Elastic Network Models of Proteins. Anisotropic Network Model
The GNM provides information on the sizes of fluctuations, <ΔRi

2>, and on their cross-
correlations, <ΔRi•ΔRj>. The Anisotropic Network Model (ANM) is the extension that
includes fluctuation vector directions (94). In the ANM, the potential is defined as a function
of inter-residue distances Rij as

V2(rρij) = 1
2 γ(Rij − Rij

0)2H (Rc − Rij) (14)

where Rij
0 is the equilibrium (native state) distance between residues i and j, and H(x) is the

Heaviside step function equal to 1 if x > 0, and zero otherwise. V can be rewritten as an
expression similar in form to eq 13, where Γ is replaced by the 3N x 3N Hessian matrix
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HANM of the 2nd derivatives of the potential with respect to positions, similar to classical
normal mode analysis (NMA) of equilibrium structures. HANM provides information on the
individual components, ΔXi, ΔYi, and ΔZi of the deformation vectors ΔRi, and their
correlations, whereas GNM yields only the magnitudes of ΔRi and the correlations between
ΔRi vectors, only.

The contributions of the individual EN modes to the observed motion are found by eigenvalue
decomposition of G(GNM) [or H(ANM)]. The individual eigenvectors represent the normal
modes of motion. The decomposition is represented as Γ−1 = Σ λκ−1 [ukuk

T], where λ κ is the
kth eigenvalue and uk is the kth eigenvector. Note that the solution requires using singular value
decomposition to remove the zero eigenvalue terms corresponding to rigid-body translations
and rotations in order to obtain the remaining eigenvalues and eigenvectors. In general, the
result is a small number of modes that contribute most, and a large number that have only small
contributions (95). This is consistent with the general viewpoint that proteins are highly
cohesive materials, and that the collective motions, which correspond to domain-like motions,
are the most related to function. The localized, high-frequency motions do not significantly
contribute to the overall motions, but are perhaps related to stability (20,96). We note that the
use of harmonic potentials restricts the amplitude of motions, and truly large transitions are
not observed with the present EN models (87,88).

We have recently applied the ANM (94) to the ribosome (These results will be shown in detail
in the last section). This and a recent study by another group (97), which also employs the
ANM methodology, provide firm evidence for the utility and applicability of the EN models
to represent and predict the dynamics of not only proteins, but also other biological structures
such as protein-RNA complexes, and the ribosome.

3.3 Hierarchical levels of coarse-graining
The hypothesis is that the most cooperative (lowest frequency) modes of motion are insensitive
to the details of the model and parameters, and can be satisfactorily captured by adopting low
resolution EN models. Fig. 8 gives the results from an application (62) to two large proteins
of the hierarchical coarse-graining scheme we have recently introduced (95), which support
this hypothesis.

The idea is to adopt a low resolution EN representation, where each node stands for a group
of m residues condensed into a single interaction site. Calculations performed for different
levels of coarse-graining (m = 1, 2, 10, 40) have shown that the slowest modes of motion are
preserved regardless of the level of coarse-graining. Part a) compares the slowest mode (a
global torsion) predicted for influenza virus hemagglutinin A (HA) using EN models of m =
1 (left) and 10 (right). One of the monomers is shown in black for visualizing the motion. The
two symmetric structures shown in each case refer to the ‘deformed’ conformations between
which the original structure fluctuates, thus disclosing the potential global changes in structure
favored by the equilibrium topology of inter-residue contacts. Part (b) shows the second most
probable mode, a cooperative bending of the trimer. The functional implications of these modes
have been discussed in our earlier study (28). Panel B shows similar results for β-galactosidase
(GAL), confirming that the global motions of the system of N residues are almost identically
reproduced by adopting a coarse-grained (m = 10, N/10 nodes) model.

The ANM computation time for a given structure scales with the 3rd power of the number of
EN nodes. The use of a model of N/10 sites would increase the computational speed by three
orders of magnitude. Application of the hierarchical coarse-graining to HA showed that the
global dynamics are accurately captured even with an EN model of only N/40 nodes. The
change in the coordinates of every mth residue is computed in this approach and by repeating
this approach m times, each time shifting the selected node-residue by one residue along the
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sequence permits us to reconstruct the fluctuation profile of all N residues, with a net reduction
in computation time by a factor of m2.

3.4. Mixed coarse-graining
A mixed coarse-graining (MCG) approach (28) has also been introduced for EN models, where
a protein's native conformation is represented by different regions having high and low
resolution. The aim here is to capture the dynamics of the interesting parts in structures at
higher resolution and retain the remainder of the structure at lower resolution. As a result, the
total number of nodes in a system can be kept sufficiently low for computational tractability.

4. Modeling Ribosome Functional Dynamics
The X-ray crystal structure of the 30S subunit from the T. thermophilus was reported by
Wimberly et al. (98). The crystal structure of the entire assembly of the 70S ribosome from T.
thermophilus has been reported by Yusupov et al. (99). We performed ANM analysis on the
structure of the 30S subunit reported from Wimberly et al. (PDB code 1J5E),the 50S subunit
from Yusupov et al. (PDB code 1GIY) and the 70S ribosome structure reported by Yusupov
et al.(99) (PDB structrues 1gix and 1giy). The 30S subunit of Wimberly et al. (98) contains
full coordinates for the rRNAs, whereas the structure of the 70S ribosome by Yusupov et al.
(99) contains only the P atoms of the rRNAs and the Cα atoms of the proteins, except for the
three tRNAs and mRNA. The cutoff distance for interaction is taken as 15Ǻ. We used one
interaction site on the P atom per nucleotide of the rRNAs and tRNAs and one interaction site
on the Cα atom of the proteins. The cutoff distance between the Cα –Cα atoms is still 15Ǻ, but
the cutoff distance between P-P and P-Cα atoms is increased to 24 Ǻ. The dimensions of the
ANM contact matrices (equivalent to NMA Hessian) are 16,266 × 16,266 for the 30S subunit,
and 29,238 × 29,238 for the 70S. We utilized the software BLZPACK of Marques and
Sanejouand. (84). This yields a specific number of eigenvalues and eigenvectors for this matrix
and is quite rapid.

4.1 ANM Results for the 50S subunit and the 70S assembly
Flexibility in the 50S subunit predicted by the ANM is illustrated in Fig. 9.

The figure displays the 50S subunit from T. thermophilus (PDB code: 1GIY), viewed from the
30S interface side. Residues are color-coded according to the deformation energy averaged
over the ten slowest modes. The landmarks on the structures are: center protuberance (CP), L1
stalk, L7/L12 stalk and the body. There are four dynamic domains: L1 stalk, L7/L12 stalk, CP,
and the body. The two stalks and the CP are found by GNM/ANM (not shown) to be highly
mobile, and their relative motions oppose each other against the body for the first few slowest
modes. For example, in mode 1, only the L1 stalk is mobile and it moves toward the CP. In
mode 2, we see the L1 and L7/L12 stalks move out of the plane of the page, and the CP moves
in the opposite direction. Motions of the 70S assembly in the slowest modes can be viewed in
http://ribosome.bb.iastate.edu/70SnKmode/. The deformable residues are found to be located
mostly at the interface between the two subunits, an indication that the two subunits form
separate dynamic domains relative to each other. A recent study compared the differences
between the atomic positions from low resolution cryo-EM density maps of the 70S ribosome
in two different functional states (100–102) and reported that they were related by a ratchet-
like motion, which is the type of motion we observe in several of the slowest modes of motion.
In an additional experimental observation from cryo-EM the 30S subunit was observed to rotate
counter-clockwise (viewed from the 30S solvent side) when EF-G binds, reducing the opening
between the CP and L1 stalk and bifurcating the L7/L12 stalk. This motion was most similar
to our computed mode 3. In this mode, when the two stalks pull toward the CP, the 30S subunit
rotates counter-clockwise viewed from the 30S solvent side. The L7/L12 stalk also undergoes
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a large conformational change that may be linked to an observed bifurcation. The study of
Tama et al. also reported that their mode 3 resembled the experimentally observed ratchet-like
motion (103). However, we have seen a much more significant re-arrangement in the
deformation of the L7/L12 stalk in this mode than they report. Another difference occurs for
mode 1, where they have only the motion of the L1 stalk, whereas our mode 1 includes a
counter-rotation of the two subunits and the motions of the two stalks.

Analysis of the motions of the structural subunits and their relative motions within the 70S
ribosome give further information. Table 2 gives the orientation correlations between the
motions of the ribosome structural units averaged over the 100 slowest modes.

The motions of the 30S and 50S subunits are almost perfectly anticorrelated (i.e. coupled but
rotation in opposite directions).

This could arise from both the counter-rotation and from the opening-closing motions. Their
motions are extremely weakly correlated with the tRNAs, because the tRNAs and the mRNA
move linearly and in a direction tangential to the rotational motions of the 30S and 50S subunits.
The 30S and mRNA are positively correlated, whereas the 50S and mRNA are anticorrelated.
This indicates that the mRNA moves in the same direction as the 30S subunit, and in the
opposite direction to the 50S subunit. In addition, the A-tRNA and the P-tRNA are strongly
and positively correlated with each other, but they are less correlated with the E-tRNA. A strong
correlation between the A-tRNA and the P-tRNA indicates that the A-tRNA and the P-tRNA
move together in the same direction. This may indicate that the translocation of the A-tRNA
to the P site and the translocation of the P-tRNA to the E site are likely to occur simultaneously.
However, we see that the E-tRNA motion is not so strongly correlated with either the A-tRNA
or P-tRNA, but nonetheless more strongly correlated with its neighboring P-site tRNA than
with the A-site tRNA (48).

Fig. 10 shows the amplitudes of motions in the slowest modes, revealing the high mobility of
the 50S and 30S subunits and the E site tRNA during the collective motions of the 70S
assembly.

Analysis the deformation energies within each structural units reveal that the large mobility of
the E-tRNA is mainly due to inter- subunit movements that relate to the exit of the E-tRNA
from the assembly. Further analysis of the tRNA motions has revealed that the rigid body
directions of their motions correspond closely to the directional vectors connecting the center
of the tRNA to the center of its neighboring tRNA site (48). We anticipate learning further
details of the mechanism of the ribosome by further analysis and application of the mixed
coarse graining approach.

5. Summary
We have discussed the effects of residue packing density on protein structure and how these
observations provide some justification for the EN models. The basic approaches used in these
models originates in polymer theory where it has been shown possible to represent a variety
of systems havinig different connectivities. These approaches outlined could, for example, be
combined with the EN protein models to represent the disordered parts of proteins.

The EN models for proteins are robust and do not depend on the details of protein structure;
consequently they can be applied to extremely large systems, which can be possible only by
approximating structures with relatively highly coarse-grained models. We have shown the
results of EN simulations on the ribosome, which compare favorably with the electron
micrograph images of the ratchet motions in the ribosome. The correlated motions seen overall
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correspond closely to what would be expected for the functional processing steps of the
ribosome.
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Fig 1.
Packing of uniform-sized spheres in their highest density form. While amino acids do not pack
exactly in this face-centered cubic lattice way, they do pack with similar angular preferences,
but do not preserve the fixed distances between the centers of nearest neighbors.
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Fig 2.
The angular positions occupied around a central residue within 6.5 Ǻ having 12 or more
neighbors. Coloring is spectral with the highest densities shown in red. The numbers index the
angular density maxima identified in Table 1.(13–15)
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Fig 3.
Relationship between sequence variability, expressed as sequence entropy and inverse residue
packing density. These results are shown for a set of 113 proteins. Note that there are two
different regions seen in the figure on the left - a nearly linear region for high packing densities
and a more constant region for low packing densities. On the right the data for a broad range
of the higher packing densities have been fit with a straight line (27).
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Fig4.
The first three tiers of a unimodal symmetrically grown tree-like network with functionality
φ = 4. When this is applied to denatured proteins, these network connections will include both
sequence (chain) connections and non-bonded interactions.
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Fig 5.
Tetrafuctional network with additional bifunctional junctions that separate each chain into four
subchains of equal length. Such segments can ideally represent loops on the surfaces of
proteins.
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Fig 6.
Two points i and j of the network separated by d = 3 tetrafunctional junctions. The positions
of points i and j are measured with respect to the nearest multifunctional junction from the left
as fractions ζ θ of the contour length of the chain between multifuctional junctions.
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Fig 7.
Comparison of the computed (black) and experimental (red) temperature factors, for
tRNAGln, with and without its cognate'. Notably the changes in nucleotide mobilities occurring
upon binding of the tRNA to the protein are well reproduced by the GNM computations.
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Fig 8.
Motions of (A) influenza virus hemagglutinin A (HA) and (B) β– galactosidase (GAL), at
different levels of detail. The top diagrams show the native structures, and the diagrams (a)–
(d) show their ‘deformed’ conformations predicted by the ANM. Panels (a) and (b) show the
ribbon diagram (left) and coarse-grained GNM representation (right) of deformed HA
structures, induced by the slowest two collective modes of motion. Their counterparts for β-
galactosidase are shown in panels (c) and (d). The coarse-grained models are constructed using
m = 10, i.e. groups of 10 consecutive residues are condensed into unified nodes of the EN
model (61–62,95).
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Fig 9.
Structure of the 50S subunit color-coded according to the deformation energy averaged over
the ten slowest (dominant) modes. The interfacial regions between these domains and the body
is highly flexible, indicated by the high deformation energies found by ANM, and shown by
the red-green portions above. This flexibility ensures the functional mobilities of the L1 stalk,
CP and L7/L12 domains (48).
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Fig 10.
Amplitude of motions induced by the first seven slowest modes on 70S assembly subunits,
averaged over residues forming these subunits. The 50S shows especially large displacements
in the slowest two modes. The E-site tRNA exhibits large displacements in modes 3, 4, and 6.
The distortion of the E tRNA in mode 4 is illustrated in the ribbon diagram on the right (leftmost
yellow group). The order of the bars for each mode (left to right) is that given in the key (top
to bottom) (48).
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Table 1
Coordination states of surface to core central residues for groups of amino acids having different numbers of
neighboring residues, m. Residues have neighbor coordination number of 3–4 are principally surface residues,
all residue are included in 3 ≤ m ≤14 and core residues are represented by m ≥10, and residues having m ≥ 12
include the most densely packed residues. (13–15).

Coordination number Coordination states (degrees)
1 2 3 4 5 6 7 8 9 10 11 12

3 ≤ m≤ 4 θ 40 45 95 90
φ 30 170 50 110

(3 ≤m≤14)
θ 40 35 45 95 105 55 90(b) 120
φ 10 200 285 350 50 115 180(b) 115

m≥10 θ 45 45 45 95 105 60 100 85 105 140
φ 40 180 280 360 60 100 140 240 300 220

m≥12 θ 45 25 50 70 100 75 80 75 105 140 145 130
φ 60 170 280 340 40 120 160 220 260 200 330 120

fcc lattice θ 35 35 35 90 90 90 90 90 90 145 145 145
φ 30 150 270 360 60 120 180 240 300 210 330 90
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Table 2
Correlations between the motions of ribosome structural units (48)*

50S A-tRNA P-tRNA E-tRNA mRNA
30S −0.99 −0.06 −0.10 −0.07 0.50
50S −0.01 0.03 −0.01 −0.55
A-tRNA 0.77 0.17 0.42
P-tRNA 0.31 0.39
E-tRNA 0.19
*
from the ANM analysis of the PDB files:1GIX+1GIY.
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