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ABSTRACT Distribution of pairwise differences of nu-
cleotides from data on a sample of DNA sequences from a
given segment of the genome has been used in the past to draw
inferences about the past history of population size changes.
However, all earlier methods assume a given model of popu-
lation size changes (such as sudden expansion), parameters of
which (e.g., time and amplitude of expansion) are fitted to the
observed distributions of nucleotide differences among pair-
wise comparisons of all DNA sequences in the sample. Our
theory indicates that for any time-dependent population size,
N(t) (in which time t is counted backward from present), a
time-dependent coalescence process yields the distribution,
p(t), of the time of coalescence between two DNA sequences
randomly drawn from the population. Prediction of p(t) and
N(t) requires the use of a reverse Laplace transform known to
be unstable. Nevertheless, simulated data obtained from three
models of monotone population change (stepwise, exponen-
tial, and logistic) indicate that the pattern of a past population
size change leaves its signature on the pattern of DNA
polymorphism. Application of the theory to the published
mtDNA sequences indicates that the current mtDNA sequence
variation is not inconsistent with a logistic growth of the
human population.

In the absence of selection and recombination, the evolution
of nucleotide polymorphism in a specific DNA sequence is
influenced by two genetic forces: mutation and genetic drift.
Mutation introduces random changes in the sequence of
nucleotides, whereas the genetic drift acts towards reducing
the diversity of population by random loss of alleles.

Mathematical models of the evolution with mutation and
genetic drift were studied by several researchers (1–4). In the
cited references the models of mutation used were either
infinite sites or stepwise, whereas the genetic drift was mod-
eled by the Fisher–Wright process with the effective size of the
population assumed constant. Under these assumptions, after
time long enough, an equilibrium is attained and the statistical
properties of the DNA polymorphism at the analyzed locus can
be found from the model parameters.

However, it is well known that most populations undergo
changes in size during the course of evolution. This informa-
tion led researchers to study the polymorphism of DNA with
population size changing in time. Li (5) derived formulae for
distributions of pairwise differences between alleles. Tajima
(6) found expected values of some important statistics for a
random sample of n individuals drawn from the population. It
was demonstrated by Chakraborty and Nei (7) that a bottle-
neck in the population’s size results in a rapid reduction of
DNA diversity. Several researchers studied the effects of

population growth on the distribution of nucleotide differ-
ences in pairwise comparisons of mtDNA sequences. Di
Rienzo and Wilson (8) and Slatkin and Hudson (9) reported
difficulties in differentiating between different types of growth
and between the effect of growth and other factors like
geographic structure or fixation of the fittest allele some time
ago. They argued that these factors all led to star-like gene-
alogies in populations, and therefore the distributions of
pairwise differences were all close to Poisson. Rogers and
Harpending (10), Rogers (11), and Rogers et al. (12) developed
a method of fitting the model of sudden population expansion
to the existing data. Simulations studies also were conducted
to compare outcomes of simulations experiments of popula-
tions growing with time with the observed distributions of
nucleotide differences among pairwise comparison of DNA
sequences (9,12,13).

In the present paper, we reexamined hypotheses about
different types of growth considered in the cited references.
We assumed the infinite sites mutation model. We developed
the results of Chakraborty and Nei (7) and Slatkin and Hudson
(9) to obtain a time-dependent coalescence model describing
statistical properties of pairwise differences. We studied prop-
erties of this model, focusing on the following problems: (i) Is
the history of the past population size change encoded in the
present distribution of allelic differences, and (ii) is it possible
to find the inverse relation? We demonstrated that the inverse
relation is unstable, i.e., large deviations in the history of the
population size may result in only small changes of the
distribution of pairwise differences. This observation is con-
sistent with the previous findings (8, 9). We also used the
time-dependent coalescence process to develop an algorithm
to estimate the history of the population size change. We
examined the performance of our algorithm for simulated
data, and we also compared its output with the results previ-
ously published for data on human mtDNA sequences.

METHODS

A model of the time-dependent coalescence process can be
derived using the fact that the generating function of pairwise
differences between DNA sequences is identical with the
Laplace transform of the coalescence intensity function. Let us
assume that we have data on the distribution of pairwise
differences for a specific DNA sequence within a population.
The population is assumed to be diploid and effective size and,
at present, is denoted by N0. Also, we suppose that this
population’s size has changed in time. We ask how the history
of population size change is encoded in the distribution of
number of differences between pairs of DNA sequences.

Assuming that population size was always large enough to
allow the diffusion approximation we can use a continuous
time scale, t, representing the number of generations counted

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

© 1998 by The National Academy of Sciences 0027-8424y98y955456-6$2.00y0
PNAS is available online at http:yywww.pnas.org.

‡To whom reprint requests should be addressed. e-mail: rc@hge9.sph.
uth.tmc.edu.

5456



backward from the present. The population size at generation
t is N(t). If two DNA sequences are randomly drawn from the
present population, the distribution density p(t) of the time t
to their most recent common ancestor can be represented by

p~t! 5
1

2N~t!
e2*

0
t 1

2N~s!
ds, [1]

which is called the coalescence intensity function in this work.
This equation relates the coalescence intensity function p(t) to
a given history of population size change N(t). The inverse
relationship

2N~t! 5 P# ~t!/p~t!, [2]

where P# (t) 5 *t
` p(s)ds is the tail function, follows from the

usual definition of the hazard rate, here equal to [2N(t)]21

(14). The above expression enables calculating N(t) from the
coalescence intensity function.

The genetic drift described by Eq. 1 is accompanied by
mutation with rate n. The mutation events at the analyzed
locus constitute a homogeneous Poisson process with intensity
n. Under the infinite sites mutation model (1), for two DNA
sequences randomly drawn from the population, the number
of mutations since their most recent common ancestor is equal,
in expectation, to the number of segregating sites between
these two sequences.

Denote the probability generating function of the number of
segregating sites by a(s). Conditional on t, the number of
segregating sites in the two alleles is Poisson with parameter
2nt. Therefore the probability generating function (pgf) of the
number of segregating sites is (14)

a~s! 5 E
0

`

e2nt~s21!p~t!dt. [3]

This pgf can be rewritten in the scale of mutational time by
substituting t 5 2nt

a~s! 5 E
0

`

e~s21!tp~t!dt . [4]

In the above equation,

p~t! 5
1

2n
pS t

2n
D [5]

is the coalescence intensity function in the mutational time
scale.

Observe now that setting z 5 2(s 2 1) we can interpret the
probability generating function on left-hand side of Eq. 4 as the
Laplace transform p̂(z) 5 a(1 2 z) of the coalescence
intensity function p(t).

Inverse Relation. The above model can be used to develop
a two-step method for estimating the change of the population
size from the data on the distribution of nucleotide differences
between pairwise comparison of DNA sequences. First the
coalescence intensity p(t) is estimated by an inverse Laplace
transform and then the inverse relation (Eq. 2) is used to
calculate the history of the population size change. If the
mutation intensity is not known, we can rescale Eq. 2 as

u~t! 5 P# ~t!/p~t!, [6]

where u(t) 5 4nN(t), P# (t) 5 P# (ty2n). Using Eq. 6, we can
estimate the history of change of the composite growth
parameter u(t).

However, applying this method to data, we realize that the
inverse relations in both steps are unstable. Small changes in

the data can cause large deviations in the final estimate. This
is obvious for the inverse relation for coalescence intensity
(Eq. 2 or Eq. 6). The denominator is the probability density
function, which may be very close to zero for substantial time
intervals. Small errors in estimating this density will result in
large errors for N(t) or u(t). In other words, a population size
change that occurred in the distant past is poorly estimated
from extant DNA sequence polymorphism.

The problem of inverting the Laplace transform (Eq. 4) can
be equivalently formulated as the problem of moments (16).
Indeed, expanding est in Eq. 4 into the power series, and using

a~s! 5 O
i50

`

siqi, [7]

where qi denotes the probability that the number of segregat-
ing sites in two randomly chosen sequences is i, we get the
system of relations

qi 5 E
0

` 1
i!

tie2tp~t!dt , [8]

for i 5 0, 1, . . . , that must be satisfied by p(t).
To explain the instability in calculating p(t) either from Eq.

8 or from Eq. 4 let us quote the properties of the Laplace
transform (17). Function a(s) given by the integral on the
right-hand side of Eq. 4 is defined and analytic in the half-plane
R(s) , 1, since p(t) is integrable. For a reliable inverse
transform, we need the values of a(s) in a large region in R(s)
, 1. However, the available data enable calculation of a(s)
only in the unit disc usu # 1. This is because the pgf a(s) in the
left hand side of Eq. 4 results from the series expansion (Eq.
7), which converges for usu # 1. We cannot use Eq. 7 to evaluate
a(s) outside the unit disc usu # 1 because the series generally
diverges. Estimating a(s) outside the unit disc as an analytical
continuation of the function defined on the unit disc is an
unstable process. As an example assume that a(s) is given by
Eq. 4 with some p(t) and consider another time function p(t)
1 cos(vt). The corresponding Laplace transform is a(s) 1
[(1 2 s)2 1 v2]21. For large enough values of v, the maximum
absolute difference between Laplace transforms a(s) and a(s)
1 [(1 2 s)2 1 v2]21 is arbitrarily small inside the unit disc,
while the maximum absolute difference between p(t) and p(t)
1 cos(vt) is always equal to 1.

An Algorithm for Estimating the History of Population Size.
Let us assume that p(t) changes only at discrete time instants
t0, t1, . . . and that it is constant in between. We take tk 5 kDt,
k 5 0, 1, . . . . In order to describe the time function p(t) by
its values pk at t 5 kDt we introduce the bar function bk(t) 5
1/Dt for kDt # t , (k 1 1)Dt and bk(t) 5 0 otherwise. Using
bk(t) we can represent p(t) as

p~t! 5 O
k50

`

pkbk~t!. [9]

Substituting Eq. 9 in Eq. 8 yields an infinite system of linear
equations relating qi, and pk

qi 5 O
k50

`

pk

1
Dt E

kzDt

~k11!zDt
1
i!

t2ie2tdt [10]

i 5 0, 1, . . . ; k 5 0, 1, . . . . In numerical calculations we
confine the range of k to k # Kmax and we assume that
probabilities qi are greater then zero only for i # Imax. This
allows us to consider a finite-dimensional system of equations
of the form

q 5 Cp. [11]
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in which q is the Imax 1 1 dimensional column vector with
elements q0, q1, . . . , qImax

, p is the Kmax 1 1 dimensional
column vector with elements p0, p1, . . . , pKmax

, and C is the
(Imax 1 1) 3 (Kmax 1 1) dimensional matrix of coefficients with
entries cik given by

cik 5
1
Dt E

kzDt

~k11!zDt
1
i!

t2ie2tdt . [12]

Elements of the vector p cannot be calculated from the system
of Eq. 11 because this system is always (for all choices of Dt,
Imax and Kmax) ill conditioned. To reduce instability, we add
constraints on p:

pk $ 0, k 5 0, 1, . . . Kmax, with O
k50

Kmax

pk 5 1. [13]

Following the methodology of L1 estimation (18), we can then
estimate the vector p by minimizing the sum of absolute
differences,

O
i50

Imax U qi 2 O
k50

Kmax

cikpkU [14]

with respect to pk, k 5 0, 1, . . . , Kmax, subject to constraints
given by Eq. 13.

However, numerical calculations prove that estimates of pi
obtained by solving the minimization problem (Eqs. 13 and 14)
are still insufficient to estimate the history of population size.
The reason is that, without regularity assumptions, the se-
quence {pi} that minimizes Eq. 14 is subject to much random
fluctuation. Aiming at further regularization of the problem,
we assume that population size was always increasing. This
gives additional constraints described below.

Denote the estimates of values of the survival function by

P# k 5 O
m5k

Kmax

pm, k 5 0, 1, . . . , Kmax, with P# Kmax11 5 0. [15]

We can substitute variables P# k in the expressions for con-
straints (Eq. 13) and in the index function (Eq. 14) to obtain
the equivalent problem: Minimize

O
i50

Imax U qi 2 O
k50

Kmax11

dikP# kU [16]

with respect to P# k, k 5 0, 1, . . . , Kmax 1 1, subject to
constraints

P# 0 5 1, P# k $ P# k11, k 5 0, . . . , Kmax, P# Kmax11 5 0. [17]

The coefficients dik in the index function (Eq. 16) can be
calculated as

di0 5 2ci0, dik 5 cik21 2 cik, k 5 1, 2, . . . , Kmax 1 1.

We now regularize estimates of P# (t) by assuming that popu-
lation size was always increasing, i.e., N(t) is decreasing with
the backward time t. This assumption yields convexity of
2ln[P# (t)] (19), and further due to the monotone property of
P# (t),

ln P# k11 2 ln P# k # ln P# k 2 ln P# k21, k 5 1, 2, . . . Kmax.
[18]

Adding these constraints (Eq. 18) to problem (Eqs. 16 and 17)
would lead to a nonlinear, nonconvex, multidimensional min-
imization, difficult to solve. We propose an alternative ap-
proximate approach based on the assumption that we only
need to make small corrections of P# k in order that the

constraints (Eq. 18) be satisfied. Denote the corrected esti-
mates by P̂k, and set

ln P̂k 5 ln P# k 1 Dk. [19]

Constraints (Eq. 18) applied to P̂k yield

Dk11 2 2Dk 1 Dk21 # 2ln P# k11 1 2 ln P# k 2 ln P# k21,

k 5 1, 2, . . . Kmax. [20]

We want to choose the corrected values P̂k, such that

O
i50

Imax U qi 2 O
k50

Kmax11

dikP̂kU [21]

is minimized. Let us replace qi by their estimates ¥k50
Kmax11 dikP# k.

Substituting Eq. 19 in Eq. 21 we get the following problem:
Minimize

O
i50

Imax U O
k50

Kmax11

dikP# k~1 2 eDk!U
with respect to Dk, k 5 0, 1, . . . , Kmax 1 1, subject to the
constraints (Eq. 20). By our assumption, corrections Dk are
small, i.e., 1 2 eDk > 2Dk. Finally we solve the following
problem: Minimize

O
i50

Imax U O
k50

Kmax11

dikP# kDkU [22]

with respect to Dk, k 5 0, 1, . . . , Kmax 1 1, subject to the
constraints (Eq. 20).

Estimates P# k obtained in the first minimization step (Eqs. 16
and 17) appear in the problem (Eqs. 22 and 20) as parameters.
Both minimizations are linear programming problems (20) and
can be efficiently solved for the required dimensions Imax, Kmax.

RESULTS

In this section, we give numerical examples of estimating
histories of the populations sizes with the use of the proposed
method. We simulate distributions of pairwise differences for
three scenarios of the population growth. Then, we compare
the estimated histories to the original. We also use our
algorithm for pairwise differences data for mtDNA from Cann
et al. (21). We compare our estimation of u(t) to the result
published by Rogers and Harpending (10).

Simulated Data. We assumed the following three scenarios of
population growth: stepwise change, exponential, and logistic.
Using our mathematical model, we obtained the following.
Stepwise change ts generations ago: Ns(t) is defined as follows: For
t . ts the population size was Nb (before) and for t , ts it was
Nn (now),

ps~t! 5 5
1
un

expS2
t

un
D ; t , ts

1
ub

expS2
t

un
2

t 2 ts

ub
D ; t . ts

and

as~s! 5
1

1 2 un~s 2 1!
1 expF2

ts

un
1 ts~s 2 1!G

3 F 1
1 2 ub~s 2 1!

2
1

1 2 un~s 2 1!G . [23]

In the above expressions, we used un 5 4Nnn, ub 5 4Nbn,
ts 5 2nts.
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Exponential growth: Ne(t) 5 N0e2rt. Here,

pe~t! 5
1
u0

expF2
1

u0g

~egt 2 1! 1 gtG ,

and

ae~s! 5 expF ~s 2 1!
1
g

ln~u0g!G
3 expS 1

u0g
DGS1 1

s 2 1
g

,
1

u0g
D , [24]

where u0 5 4N0n, g 5 r/2n, and G(.,.) is the incomplete
complementary gamma function: G(a, b) 5 Pb

` ta21e2tdt (22).
Logistic growth: Nl(t) 5 K/(1 1 Cebt) results in the following
expressions:

pl~t! 5 S1
k

1
C
k

ebtDexpF2
1
k

t 2
C

kb
~ebt 2 1!G ,

al~s! 5 1 1
~s 2 1!

b
expS C

kb
DexpFS s 2 1

b
2

1
kb

D ln
kb

C G
3 GS s 2 1

b
2

1
kb

,
C

kb
D , [25]

where k 5 4Kn, b 5 b/2n, and C 5 K/Nl(0) 2 1.

All three distributions (Eqs. 23–25), under appropriate
conditions, can resemble the Poisson distribution. They all
have Poisson components.

We assumed the following parameters. For stepwise change:
un 5 100, ub 5 1, ts 5 10. For exponential growth: u0 5 200,
g 5 0.35. For logistic growth: k 5 100, C 5 0.005, b 5 0.8.
We used our algorithm for probabilities qi following from the
distributions given by Eqs. 23–25, and compared estimated
histories with the true functions. In our algorithm we assumed
Imax 5 Kmax 5 30 and Dt 5 1. The results are presented in Fig.
1. The plots on the left depict the function u(t) (smooth line)
and its estimate û(t) obtained using our algorithm (irregular
line). The plots on the right depict probabilities qi (open
circles) together with their estimates q̂i 5 ¥k50

Kmax11 dikP̂k (solid
line). The plots a and b, c and d, and e and f correspond,
respectively, to the stepwise, exponential and logistic growth.
The agreement between q̂i and qi is excellent and the con-
straint of increasing population size is satisfied.

Comparing true and estimated histories of the parameter
u(t) allows to contemplate the effects of instability. With
perfect data and additional order restrictions, errors are still
present, although the growth pattern is predicted reasonably
well.

mtDNA Data. We used data on worldwide pairwise differ-
ences of mitochondrial alleles from Cann et al. (21). Applica-
tion of our algorithm (Imax 5 Kmax 5 30 and Dt 5 1) to this
data is presented in Fig. 2. Fig. 2a depicts the estimated history
of the composite parameter u(t) 5 2nN(t). Fig. 2b depicts

FIG. 1. Application of the algorithm for estimating the history of the population size for simulated data. The plots in the column on the left
depict functions u(t) (dotted line) and their estimates û(t) (solid line) calculated using our method. The plots in the column on the right depict
the corresponding probabilities qi (open circles) together with their estimates q̂i (solid line). The assumed scenarios of growth were stepwise (plots
a and b), exponential (plots c, and d) and logistic (plots e and f ). Parameters: For stepwise change, un 5 100, ub 5 1, ts 5 10. For exponential
growth: u0 5 200, g 5 0.35. For logistic growth: k 5 100, C 5 0.005, b 5 0.8.
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presents probabilities qi based on Cann et al. (21) (open circles)
together with their estimates q̂i 5 ¥k50

Kmax11 dikP̂k (solid line).
It seems interesting to compare our estimate with that

obtained by Rogers and Harpending (10). They fitted a model
of sudden expansion to the data from Cann et al. (21) obtaining
un 5 410.69, ub 5 2.44, ts 5 7.18, in our notation. Comparing
these numbers to the plot in Fig. 2a, we find our estimation
quite consistent with their result. Our estimate would, how-
ever, suggest a gradual increase in population size starting
from t > 7, rather than a stepwise change.

In order to determine the sensitivity of our estimates, we
conducted a resampling study in which 200 sequences were
simulated under the infinite site model with a stepwise growth
of a population, corresponding to parameter values of un, ub,
and ts as the ones obtained by Rogers and Harpending (10). In
50 replications of simulations, all of the estimates of u(t) were
stepwise functions (with several exceptions in which the step
was divided between two or three successive time points). The
estimate t̂s had a mean of 6.29 (as compared to the assumed
value of 7.2) with SD of 1.73. The estimate ln ûn had a mean
of 7.28 (as compared to the assumed value of 6.02) with SD of
0.78. The estimate ln ûb had a mean of 1.54 (as compared to
the assumed value of 0.89) with SD of 1.17. Logarithmic
transformation was used to account for the skewed distribu-
tions of ûn and ûb.

We also carried out simulations assuming exponential
growth of the population. As an example, in one of them, the
assumed values of parameters were u0 5 800 and g 5 0.7 (Eq.
24). In 50 replications of simulations, the logarithmic trans-
formations of the estimated u(t) were fitted by linear regres-
sion, to obtain estimates of lnu0 and of g. The estimate ln û0
had a mean of 7.66 (as compared to the assumed value of 6.68)
with SD of 1.47. The estimate ĝ had a mean of 0.75 (as
compared to the assumed value of 0.70) with SD of 0.20.

DISCUSSION

In the present paper, we investigated whether or not the
signature of the past population change existing in the DNA
sequence data is sufficiently accurate to help decipher the
pattern of this change. The issue was considered by others
(8–13) who provided estimates of the amplitudes and dates of
changes of different world populations based on distributions
of nucleotide differences in pairwise comparisons of DNA
sequences. In these papers, estimation was carried out under
assumptions of parametric models of growth, usually having
the form of a stepwise change. Although the observed distri-
butions of nucleotide differences in pairwise comparisons of
sequences were in agreement with a stepwise growth of
populations, Bertorelle and Slatkin (13) pointed out that the
observed number of segregating sites is significantly lower than
that expected under a population expansion model, which
cannot be accounted for even if recurrent mutations occur at
each nucleotide site. In addition, Marjoram and Donnelly (23)

showed that a unimodal distribution of qi (Eq. 7) also can be
caused by the presence of population substructure as opposed
to expansion, although the extent of substructure required has
to be very severe.

Griffiths and Tavaré (24), in contrast, considered a complete
likelihood function of the sample under a variety of mutation
models, including the infinite site model. However, their
inference regarding population growth depends on the para-
metric form of the population growth as well as the specific
mutation model.

Our contribution involves using a general pattern of popu-
lation change in conjunction with the infinite sites model of
nucleotide substitution. The only regularizing assumption we
use is that of the monotonic growth of the population. An
approximate numerical procedure allows to solve the estima-
tion problem, posed as a two stage optimization. Examples
using simulated data demonstrate that under ideal conditions,
corresponding to very large samples, the method can resolve
different growth patterns. Application to the data set of Cann
et al. (21) suggests a growth pattern not unlike logistic.

Although the present work explicitly uses the infinite sites
model of nucleotide substitutions, we remark that the estima-
tion procedure proposed here is more general, and should be
applicable for other types of mutation models. For example,
recent work (14, 23–27) indicates that the within population
polymorphism at the microsatellite loci can be represented by
the distribution of repeat size differences among pairwise
comparisons of alleles, which can be characterized by a co-
alescence process.

Such a characterization is valid even when new microsatellite
alleles evolve via a general forward–backward mutation model
in which asymmetry is allowed (14, 26). If temporal variation
in the effective population size is introduced, the coalescence
process becomes time-dependent. Thus, in principle, the
method proposed here should be applicable to microsatellite
polymorphism for which data is abundant in the literature. Of
course, the details of the numerical method to deal with the
instability of prediction of N(t) may be different for the
stepwise mutation model. This requires further studies.
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