Rapid Development of Medical Imaging Tools with Open-Source
Libraries

Jesus J. Caban,"3Alark Joshi," and Paul Nagy?

Received: 18 June 2007; Revised: 12 July 2007; Accepted: 15 July 2007

Rapid prototyping is an important element in researching
new imaging analysis techniques and developing custom
medical applications. In the last ten years, the open
source community and the number of open source
libraries and freely available frameworks for biomedical
research have grown significantly. What they offer are
now considered standards in medical image analysis,
computer-aided diagnosis, and medical visualization. A
cursory review of the peer-reviewed literature in imaging
informatics (indeed, in almost any information technol-
ogy-dependent scientific discipline) indicates the current
reliance on open source libraries to accelerate develop-
ment and validation of processes and techniques. In this
survey paper, we review and compare a few of the most
successful open source libraries and frameworks for
medical application development. Our dual intentions are
to provide evidence that these approaches already
constitute a vital and essential part of medical image
analysis, diagnosis, and visualization and to motivate
the reader to use open source libraries and software for
rapid prototyping of medical applications and tools.

KEY WORDS: Open source, image processing,
programming language

INTRODUCTION

R apid development of software programs,
tools, and applications is essential to the
advancement of research and innovation in medi-
cal imaging. Open source libraries and freely
available frameworks play a crucial role in many
biomedical and radiologic advances. Open source
programs are usually developed as a public
collaboration and made available for use, modifi-
cation, and redistribution. Currently, even the
largest commercial companies in medical imaging
contribute to and rely on open source software to
develop flexible and robust systems.'*

Journal of Digital Imaging, Vol 20, Suppl 1, 2007: pp 83-93

A growing amount of interest is focused on
developing new techniques, algorithms, and appli-
cations that can be used with medical images, and
the burden of proof for these innovations falls on
the researchers. The development of robust and
stable applications to load different medical image
modalities, manipulate 2-dimensional/3-dimensional
images, convert images, and effectively visualize
them can take a significant amount of time. A clear
need exists for tools and libraries that can push
forward both the development and certainty of
medical imaging by sparing researchers the time
and effort required to revisit already-solved problems
or to redevelop existing programs.

Several open source libraries and frameworks
play particularly important roles in the rapid
development of medical imaging tools. Moreover,
extensive support is now provided by universities,
federal agencies, and companies to the develop-
ment of open tools, libraries, and software pro-
grams for biomedical research and innovation.’
Such commitment has made a number of flexible

'From the Department of Computer Science, University of
Maryland, Baltimore County, Baltimore, Maryland, USA.

2From the Associate Professor of Radiology, University of
Maryland School of Medicine, Baltimore, Maryland, USA.

3From the Computer Science and Electrical Engineering,
University of Maryland, Baltimore County, 1000 Hilltop Circle,
Baltimore, MD, 21250, USA.

Correspondence to: Jesus J. Caban, Computer Science and
Electrical Engineering, University of Maryland, Baltimore
County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA;
e-mail: cabanl@cs.umbc.edu

Copyright © 2007 by Society for Imaging Informatics in
Medicine

Online publication 7 August 2007

doi: 10.1007/s10278-007-9062-3

83

84

and robust application program interfaces (APIs)
and libraries freely available for medical image
analysis and processing.

To motivate the reader to investigate and use these
freely available libraries and software programs for
custom-designed medical imaging tools, we survey
and compare several open source libraries. In doing
so, we explain the importance of these libraries for
medical imaging and weigh the advantages and
limitations of each. The overall intent of this paper
is to show the benefits of open source libraries for
rapid development of biomedical applications and, in
the process, decrease the frequency that developers
and researchers find themselves reinventing the
imaging informatics wheel.

OPEN SOURCE LIBRARIES

A number of open source libraries are available for
medical imaging processing and analysis. Many
smaller open source libraries are limited by excess
specificity, inflexibility, and lack of cross-platform
access. The four related cross-platform libraries
profiled here, VTK, ITK, KWWidgets, and IGSTK,
are widely used and well tested, guaranteeing their
robustness, flexibility, and extensibility—character-
istics that establish them as standard setters.

Visualization Toolkit (VTK)

The Visualization Toolkit (VTK), a widely used
library for visualization, is a primary resource for
achieving rapid development of medical imaging
tools in a cost-effective way.! VTK contains a
number of functionalities for 2-D/3D image pro-
cessing, isosurface generation, and 3D volumetric
visualization. Developed in C++, the toolkit
provides a number of high-level classes, extensive
documentation, and examples, thereby making it
easy for practitioners and developers to use its

direction of Update() method

CABAN ET AL.

codebase. To facilitate rapid development, VTK
provides binding for popular scripting languages
including support for Tcl (Tool Command Lan-
guage) and Python. Kitware, Inc. (Clifton Park,
NJ) provides commercial and expert support for
VTK and custom-designed software for companies
and customers.’

VTK is capable of handling different types of
data, such as image data (vtkImageData), rectilin-
ear grid (vtkRectilinearGrid), structured grid
(vtkStructuredGrid), unstructured grid (vtkUn-
structuredGrid), and unstructured points (vtkPoly-
Data). A structured grid or a rectilinear grid (based
on the spacing between subsequent sizes) is
suitable for visualizing computed tomography
(CT) and magnetic resonance (MR) imaging data,
whereas an unstructured grid is more suitable for
ultrasound data.

The toolkit uses a data flow approach to obtain a
visual representation of underlying data. Once one
understands the pipeline and architecture to VTK,
it is easy to see how medical imaging software can
be developed rapidly. Figure 1 shows a conceptual
overview of the VTK pipeline. Data are read in the
source module and then filtered by one or many of
the vast number of filters available in VTK. A
mapper is then used to create a visual representa-
tion that can be interacted with and transformed
through the use of the actor.

Image Processing in VIK

Computed tomography (CT), magnetic reso-
nance (MR) imaging, and ultrasound scans are
among the types of medical imaging supported by
VTK. A special data type (vtkImageData) per-
forms basic image processing and handling on
image data. Figure 2 shows simple source code
used to render digital imaging and communica-
tions in medicine (DICOM) images with VTK.
Figure 3 shows two MRI images rendered with the

Render()

Source Filter

v

A 4

Mapper

/

Actor

A 4

direction of data flow

Fig 1. Conceptual overview of the VTK pipeline.

RAPID DEVELOPMENT OF MEDICAL IMAGING TOOLS

85

Example: Display a DICOM image using VTK and TCL

FILE: Image_reader.tcl
package require vtk

Read the image
vtkDICOMImageReader reader
reader SetFileName "$VTK_DATA_ROOT/Data/mr.001"

Shift and scale the image
vtkImageShiftScale shiftScale
shiftScale SetInputConnection [reader GetOutputPort]
shiftScale SetShift 0
shiftScale SetScale 0.07
shiftScale SetOutputScalarTypeToUnsignedChar

Create the RenderWindow, Renderer and Actors
vtkImageActor ia
ia SetInput [shiftScale GetOutput]

vtkRenderer ren1
vtkRenderWindow renWin
renWin AddRenderer renl

Add the actors to the renderer, set the background and size
renl AddActor ia

renl SetBackground 0.1 0.2 0.4

renWin SetSize 400 400

render the image
renWin Render

prevent the tk window from showing up then start the event loop
wm withdraw .

Fig 2. Source code for a custom-designed DICOM image viewer using VTK and TCL.

VTK program presented in Figure 2. These
examples show the simplicity and rapid develop-
ment possible with VTK and its Tcl binding to
load, manipulate, and visualize medical images.

Other useful image-processing utilities built into
VTK permit are: coloring images based on a
prespecified colormap (vtkimageMapToColors),
producing and visualizing histograms (vtkIma-
geAccumulate), Gaussian smoothing (vtkImage-
GaussianSmooth), image reslicing/resampling
along an arbitrary axis from volumes (vtkImageR-
eslice), appending images to create a volume
(vtkImageAppend), and extracting and visualizing
a region of interest (vtkExtractVOI).

Volume Rendering Using VTK

Volume rendering allows visualization of 3D
data such as that captured by CT and MR imaging.

M Visualization Toolkit - Win320penGL #1 E@E|

In volume rendering, a color and opacity are
assigned to each 3D point (voxel) to allow
simultaneous visualization of external and internal
structure. To represent and interact with the data in
the scene, the VTK pipeline uses a mapper in
conjunction with vtkVolume, which in this in-
stance replaces vtkActor. To guarantee flexibility,
particularly in terms of speed and quality, VTK
provides two primary volume mappers. vtkVolu-
meRayCastMapper is the mapper for obtaining an
image using raycasting, and vtkVolumeTexture-
Mapper2D is the mapper for texture mapping
based on volume rendering.

Like vtkActor, vtkVolume contains information
about the position, orientation, and scaling of data
within a scene. In addition, its attribute vtkVolu-
meProperty represents parameters such as color and
opacity that affect the appearance of the data. A
transfer function is often attached to this attribute

M Visualization Toolkit - Win320penGL #1 (=13

Fig 3. MR images rendered with VTK and its Tcl binding using the source code presented in Figure 2.

86

and used to more specifically define the appearance
of the volume properties, thus making possible
translucent skin, opaque skulls, and red vessels.

Figure 4 shows a schematic of the VTK volume-
rendering pipeline. The volume rendering pipeline
starts with the data reader. A transfer function is
used to map intensity values to color and opacity.
The composite function defines the order of
interpolation and classification used by the raycast
function. Then, a mapper assembles all the
information from the compositing function and
reader and sends it to vtkVolume, which renders
the resulting volume onto the screen. Figure 5
includes the TCL source code to create a VIK
volume rendering. Figure 6 shows two volumes
rendered with VTK.

Insight Registration and Segmentation
Toolkit (ITK)

The open-source Insight Registration and Segmen-
tation Toolkit (ITK) expands the possibilities of
medical image processing.® Developed and imple-
mented in C++, ITK guarantees cross-platform
support by relying on CMake for the compilation
and configuration process. To enable and support
flexibility and rapid development, ITK has wrap-
pers for Java, Tcl, and Python. ITK provides
extensive segmentation, registration, and image-
filtering techniques, but does not provide graphical
interface or methods for visualizing data. There is,
however, a well-defined and established process
available to integrate the power of ITK with the
robustness of VTK for visualization.

ITK was developed from the concept of generic
programming and efficient memory management
techniques. Generic programming allows the ef-
fective reuse of software components by abstract-
ing core classes and permitting the same software
modules to be used with different data types. For

CABAN ET AL.

memory efficiency, ITK uses smart pointers with
reference counting. Each object, such as 2D and
3D DICOM images, has a counter with the number
of references to that specific instance. When the
reference goes to zero, the object destroys itself.
This memory management technique gives ITK
the flexibility, robustness, and efficiency to handle
large and time-variant data sets.’

ITK follows a simple data flow and processing
pipeline. The general idea of the pipeline is that the
user defines process objects that operate on
specific data objects. Images, polynomial meshes,
and point clouds are represented as data objects,
whereas image filters, processing algorithms, and
registration techniques are represented as process
objects. Figure 7 shows the general data flow and
pipeline followed by ITK.

The generic programming style, flexibility, and
robustness of ITK can be seen in the data objects.
In ITK, the data object itk::Image represents an -
dimensional sample of data, and the same function
(method) can be used to handle 2D joint photo-
graphic experts group (JPEG) images with 8-bit
pixels as well as 4D functional MR imaging data
sets with 12 bits per voxel.

The second class of objects within the ITK pipeline
is the process objects. An ITK process object is a
class that operates on data objects such as itk:Image to
transform the data, analyze the data, or produce new
data objects. ITK divides the process object class into
three groups: sources, filters, and mappers.

Data sources are divided into image readers and
writers. To enable rapid development and proto-
typing of medical image applications, ITK sup-
ports a number of file formats and image
modalities, including DICOM, PNG, VTK, BMP,
JPEG, Siemens, Tiff, RAW, GE4x, and many
others. The user frequently calls on itk::Image-
FileReader and itk::ImageFileWriter to read and
write images, and, behind the scenes, the itk::

Render()

Volume Property]—>[vthqume]/

R Tran;fer
function

|Volume Mapper

i

[Composite function]

Fig 4. Overview of the volume-rendering pipeline in VTK.

RAPID DEVELOPMENT OF MEDICAL IMAGING TOOLS

87

Example: Volume Rendering using VTK and TCL

This is a simple volume rendering example that uses a
vtkVolumeRayCast mapper

package require vtk
package require vtkinteraction

Create the standard renderer, render window
and interactor
vtkRenderer renl
vtkRenderWindow renWin

renWin AddRenderer renl
vtkRenderWindowInteractor iren

iren SetRenderWindow renWin

Create the reader for the data
vtkStructuredPointsReader reader
reader SetFileName "$VTK_DATA_ROOT/Data/foot.vtk"

Create transfer mapping scalar value to opacity

vtkPiecewiseFunction opacityTransferFunction
opacityTransferFunction AddPoint 50 0.0
opacityTransferFunction AddPoint 100 0.3
opacityTransferFunction AddPoint 255 1.0

Create transfer mapping scalar value to color
vtkColorTransferFunction colorTransferFunction

colorTransferFunction AddRGBPoint 0.00.00.00.0
colorTransferFunction AddRGBPoint ~ 50.0 .0 0.0 0.0
colorTransferFunction AddRGBPoint 100.0 .5 0.25 0.15
colorTransferFunction AddRGBPoint 255.0 1.0 0.5 0.25

vtkPiecewiseFunction gradientTransferFunction
gradientTransferFunction AddPoint 10 0.0
gradientTransferFunction AddPoint 55 1.

The property describes how the data will look
vtkVolumeProperty volumeProperty
volumeProperty SetColor colorTransferFunction
volumeProperty SetScalarOpacity opacityTransferFunction
#volumeProperty SetGradientOpacity
gradientTransferFunction
volumeProperty ShadeOn
volumeProperty SetlnterpolationTypeToLinear

The mapper / ray cast function know how to render the data
vtkVolumeRayCastCompositeFunction compositeFunction
compositeFunction SetCompositeMethodToClassifyFirst
vtkVolumeRayCastMapper volumeMapper
volumeMapper SetVolumeRayCastFunction compositeFunction
volumeMapper SetInputConnection [reader GetOutputPort]

The volume holds the mapper and the property and
can be used to position/orient the volume
vtkVolume volume

volume SetMapper volumeMapper

volume SetProperty volumeProperty

renl AddVolume volume
renl SetBackground 1 11
renWin SetSize 600 600
renWin Render

proc TkCheckAbort {} {
set foo [renWin GetEventPending]
if {$foo != 0} {renWin SetAbortRender 1}
b
renWin AddObserver AbortCheckEvent {TkCheckAbort}

iren AddObserver UserEvent {wm deiconify .vtkInteract}
iren Initialize

wm withdraw .

Fig 5. Volume rendering using VTK and Tecl.

ImagelO class picks the corresponding file format,
compression, and low-level details required to load
or write the corresponding image.

Once a data object has been loaded, filters and
image processing algorithms are used to manipu-
late the data. ITK provides a number of filters,
registration, and segmentation algorithms to enhance
and process medical images. Examples of image
filters implemented in ITK include image thresh-
olding, edge detection, gradient estimation, smooth-
ing algorithms, and frequency transformations.
Examples of registration techniques implemented in
ITK include rigid registration, multimodal registra-
tion, multiresolution registration, and deformable
registration. Some of the segmentation techniques

implemented in ITK are region-growing, water-
sheds, level sets, and hybrid methods.

Mappers are the third classification of the ITK’s
process objects. Mappers terminate the data pro-
cessing pipeline by outputting the data. A mapper
usually has one or more data outputs; for example,
a mapper writes the image data to a file and sends
it to a graphical interface. Figure 7 shows the ITK
pipeline followed to filter an image and save it to a
file while displaying it.

Figure 8 shows the ITK C++ source code
needed to apply a Gaussian smoothing algorithm
to 3D volumes. The program loads an image,
applies the smoothing algorithm in each direction,
and then creates a new file with the smooth image.

Fig 6. (Left) Volumetric foot rendered with the VTK/TCL source-code presented in Figure 5. (Right) By changing the raycast function it

is possible to highlight specific anatomy.

88

CABAN ET AL.

Display

Image
File

Window

Image
File

Fig 7. General data pipeline followed by ITK.

Figure 9 shows the original and resulting images
after applying the code presented in Figure 8.

KWWidgets

KWWidget is a cross-platform open-source
graphical interface toolkit mainly developed to
support rapid development of graphical applica-
tions that use VTK and ITK.*’ KWWidgets was
developed by Kitware, Inc. and has been used in

multiple software applications, including Para-
View, VolView, and 3D Slicer.!*7!7

Developed in Tcl/TK, the primary advantage of
KWWidgets is that, in addition to the standard
features provided by most graphical user interfaces
(menus, buttons, and tabs), it also provides
composite widgets to facilitate the rapid develop-
ment of medical image analysis tools. New
widgets provided by KWWidgets are surface
material editors, video generation, transfer function

Example: Gaussian Smoothing using ITK and C++

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkRescaleIntensityImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"

int main(int argc, char * argv[]){
if(arge < 4){
printf ("Usage: \n”);
printf(“%s inputImageFile outputImageFile sigma\n"
argv(0]);
return 1;

}

/*Define pixel type and create images*/
const int dimension = 3;

typedef float InputPType;

typedef float OutputPType;

typedef itk::Image<InputPType, dimension>
InputImageType;

typedef itk::Image<OutputPType, dimension>
OutputImageType;

/*Define image reader */

typedef itk::ImageFileReader< InputlImageType >
ReaderType;

ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName (argv[l]);

/*Define filter in each direction*/

typedef itk::RecursiveGaussianImageFilter<
InputImageType, OutputlImageType >

FilterType;

FilterType::Pointer filterX
FilterType::Pointer filterY
FilterType::Pointer filterZ

FilterType::New();
FilterType::New();
FilterType::New();

filterX->SetDirection(0); // X
filterY->SetDirection(1); // Y
filterZ->SetDirection(2); // Z

filterX->SetOrder (FilterType::ZeroOrder);
filterY->SetOrder (FilterType::ZeroOrder);
)i

filterZ->SetOrder (FilterType::ZeroOrder
filterZ->SetNormalizeAcrossScale(false)

filterX->SetNormalizeAcrossScale(false);
filterY->SetNormalizeAcrossScale(false);
/*Data pipeline. Apply filter to X, Y, and Z*/
filterX->SetInput(reader->GetOutput ());
filterY->SetInput(filterX->GetOutput());
filterZ->SetInput(filterY->GetOutput());

/*Define filter’s window size */
const double sigma = atof(argv([3]);
filterX->SetSigma(sigma);
filtery->SetSigma(sigma);
filterzZ->SetSigma(sigma);

/*Execute the pipeline*/
filterz->Update () ;

/*Create output image*/

typedef unsigned char WritePixType;

typedef itk::Image<WritePixType, 3> WriteImgT;

typedef itk::RescaleIntensityImageFilter
<OutputImageType,WriteImgT> RescaleFilterType;

RescaleFilterType::Pointer rescaler =
RescaleFilterType::New();

/*Rescale values to 0-255%/
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255) ;

typedef itk::ImageFileWriter<WriteImgT>

WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName (argv([2]);

/*Write filtered*/

rescaler->SetInput(filterZ->GetOutput ());
writer->SetInput(rescaler->GetOutput());
writer->Update();

return 0;

Fig 8. ITK/C+ + source code to apply a Gaussian filter to a given 2D/3D image.

RAPID DEVELOPMENT OF MEDICAL IMAGING TOOLS

89

Fig 9. Resulting image (/eft) after applying the Gaussian smoothing filter presented in Figure 8 to the original image (right).

editor, image annotators, and others. Figure 10
shows three composite widgets included in
KWWidgets to enable rapid development of
medical image analysis applications.

The Image-Guided Surgery Toolkit (IGSTK)

The open source libraries we have reviewed so
far mainly target effective ways to accomplish
visualization, filtering, registration, and transforma-
tion of medical images. State-of-the-art interven-
tional radiology suites are increasingly becoming
integral parts of radiology centers and hospitals and
require their own specialized computational and IT
resources. Research, software development, and
rapid prototyping for such facilities are currently
possible with open source libraries.

The Image-Guided Surgery Toolkit (IGSTK) is
a cross-platform open source C++ software library

Vel (g sraecs St ®

g hos Sl
-

[Fon——— 4

bastorad ‘ Maleriad Pripertees. = |
B oW =
ot Shatiog 5
Seader Opacity Mappng: P, 225 pP—— —
Docmefi sfiaT o e 2]
[P e
M Specutar: u
: ; Fower: [=
Scalwr Calor appg; B
wsvi g T
S
Mt ':
Gracbent, Opacity Moypg: e 2
L)
1
Compemnt Wenghtn: 1 [= T

that provides the basic components required to
develop applications for image-guided surgery and
interventional radiology procedures.'®!'" IGSTK is
built on top of several open source software
packages, including ITK, VTK, and the Fast Light
Toolkit (FLTK). In addition, cross-platform support
is accomplished by relying on CMake to configure
and compile the different components of the library.

Systems that integrate medical images, visuali-
zation, and external input devices have proven to
be highly beneficial in medical image analysis and
minimal interventional radiology. IGSTK has been
designed as a collection of modules to facilitate
such integration. Four core components make
IGSTK an open source solution that can be used to
integrate medical image analysis with external
tracking systems. These components are tracker,
spatial object, spatial object representation, and the
view module.

Fig 10. Three of the additional widgets provided by KWWidgets to enable rapid development of medical imaging tools.

90

One of the most important requirements within
applications intended for interventional radiology
suites is the capability to reliably correlate specific
features and objects within a medical image with
the same features on a patient’s body. To accom-
plish this, it is necessary to assign a coordinate
system to the images, accurately correlate the
patient’s anatomy to that coordinate system,
compensate for deformable anatomy, and mean-
ingfully render and show the results.

Interventional radiological tools are commonly
tracked with devices that can determine the relative
position of the instruments. Those devices usually
provide six degrees of freedom, outputting the
relative position of the instrument within the
calibrated volume. The first core component of
IGSTK is the tracker module. The IGSTK tracker
module supports several widely used optical and
magnetic trackers to enable the rapid development,
integration, and testing of new techniques and
algorithms. The main role of the tracker is to acquire
and make the data available to other IGSTK
components, such as spatial object or view. For
example, by using IGSTK and a simple calibrated
instrument, we can rapidly develop an application
that updates the DICOM slice number according to
the specific anatomical area being analyzed.

The second core component of IGSTK includes
the spatial objects. The spatial object component
mainly provides manipulation and interconnection
between objects in a given space. The general
concept behind spatial object is that by describing
different sections of the visual space as a spatial
object, a number of different image analysis,
transformations, and studies (such image registra-
tion, atlas formation, model approximation, and
simple image annotation) are now possible. The
characteristics, visual representation, and rendering
aspects of each spatial object are defined with the
third core component of IGSTK: spatial object
representations. A spatial object defines the geom-
etry of a given object, whereas a spatial object
representation describes how the object should be
displayed on the screen.

The fourth core module of IGSTK is the view
component. The main purpose of medical image
analysis and applications for interventional radiol-
ogy suites is to provide radiologists and physicians
with more information to assist them during the
procedure. The way in which images, tracking
information, and different views are displayed

CABAN ET AL.

plays a critical role in the overall benefit of the
application. IGSTK encapsulates VTK classes into
their API to robustly display, show, and illustrate
medical images.

OPEN SOURCE PROGRAMS

Access to a means of avoiding the reinvention
of existing tools and facilitating the identification
and reuse of existing software modules are two
key elements in the rapid development of applica-
tions used to process medical images. To enable
those elements, medical imaging frameworks can
be used. Various types of software, applications,
and tools for medical image analysis are freely
available. Most of the freely available software
programs are limited to a specific application or
type of image analysis.'? In this section, we briefly
present five open source and freely available frame-
works that are robust, cross-platform, and extendable
to custom-designed medical applications. The five
open source frameworks we describe are Volview,
Paraview, MeVisLab, SciRun, and Slicer.

Volview

Volview is a graphical interface for volume
rendering and data visualization.'> Volview was
developed by Kitware and designed primarily to
enable easy and effective exploration of 3D
medical data sets and scientific volumetric data.
The software allows the data to be visualized
through synchronized multiple-view layout. The
data can be annotated, and opacity, gradient, and
color-transfer functions are supported. No
programming skills are required to use Volview;
however, the framework offers a plug-in interface
that programmers can use to create, incorporate,
and test their own image filters. Thirty-seven ITK
and VTK filters are currently incorporated with the
regular Volview framework, and these filters can
be used in connection with user-defined image
filters. Kitware has free and commercial versions
of Volview. Figure 11a shows a CT image of the
heart visualized with Volview.

Paraview

ParaView is an open source application built on
top of VTK and ITK.'" It uses the underlying
functionality of VTK and adds other desirable

RAPID DEVELOPMENT OF MEDICAL IMAGING TOOLS

features, such as support for visualization using
parallel processing and large data handling capac-
ity. ParaView provides support for advanced
rendering, such as tiled displays, as well as the
ability to automatically switch to using parallel
composite rendering when data become huge.
Paraview has a number of built-in filters and
image analysis techniques that can be extended

91

through a plug-in interface to include user-defined
filters. One advantage of Paraview is that it can
handle and annotate vector images. That is, given a
flow volumetric data set, Paraview has built-in
techniques to visualize motion and annotate with
arrows the direction and magnitude of the motion
between timesteps. Figure 11b shows the isosur-
face of a CT of the head visualized with Paraview.

b .

Fig 11. Five flexible and extendable open source frameworks with VTK and ITK modules.

92

Slicer3

Slicer (also called 3D Slicer) is an open source
software developed to enable flexible radiological
and biomedical medical imaging research.'>!'®
Developed with KWWidgets, TCL, VTK, ITK,
and IGSTK, Slicer inherits exceptional robustness,
flexibility, and functionality. Slicer3 is still in beta
testing and under development. However, because
it has been the result of a productive collaboration
between engineers and physicians, Slicer3 pro-
vides a number of modules, filtering, and compo-
nents essential for medical imaging analysis.
Figure 11c shows a CT of the heart visualized
with Slicer3.

MeVisLab

MeVisLab is a graphical interface that uses
visual dataflow programming to create custom
applications and visualization tools.'> With more
than 500 modules, MeVisLab provides an interface
in which the user visually connects loading,
filtering, registration, and visualization modules
to create a pipeline. Once the pipeline is created,
the user can run the pipeline and analyze the
resulting image and data. MeVisLab supports 2D,
3D, and 3D-+time data and 2D/3D visualization
with Open Inventor, OpenGL fragment shaders, or
VTK. Figure 11d shows a four-step pipeline that
loads a DICOM image, applies a filter to it, and
sends the resulting image to a window and to a
file.

3.5 SciRun

SCIRun is a problem-solving environment that
can be used for a wide variety of applications,
ranging from bioelectric field simulation and
cognitive neuroscience to image processing and
3D volume rendering of medical data.'®

Image processing in the SCIRun framework can
be performed by using the native SCIRun capabil-
ities for interpolation, gradient finding, and so on.
ITK integration facilitates segmentation (threshold,
confidence-connected, level sets) and registration.
At the same time, MATLAB integration facilitates
other customizable image processing that a user
may wish to perform.

SCIRun provides extensive support for volume
rendering. It features slice-based volume render-

CABAN ET AL.

ing, maximum-intensity projection (MIP)-based
volume rendering, and direct volume rendering.
Advanced volume rendering features, such as
multidimensional transfer functions, are built into
SCIRun.

The framework contains PowerApps, which are
specialized programs built onto SCIRun. One such
PowerApp is Biolmage, a tool for visualizing
regular, 3D scalar volumes such as CT and MR
data. Biolmage also provides a number of dynamic
filters for resampling and cropping. These filters
help the user accentuate important features.

Biolmage also offers 2D visualization of axial,
sagittal, and coronal planes. Radiologists and other
biomedical practitioners can use these 2D visual-
izations to investigate a volume slice by slice or as
MIPs and interact with them using window level.
Figure 11e shows a screenshot of SciRun and a
specific pipeline and its resulting image.

CONCLUSION

Open source software, libraries and APIs play a
critical role in medical imaging and analysis. In
this paper we described 4cross-platform, flexible,
and robust open source libraries that can be used
for rapid development of medical imaging tools
and applications. Furthermore, we have com-
mented on five open source frameworks that can
be used to develop custom medical imaging
applications and require little or no programming
skills.

ACKNOWLEDGEMENTS

This work was supported by Telemedicine and Advanced
Technology Research Center (TATRC) through protocol
#06151004. We deeply appreciate Nancy Knight, PhD for her
guidance and help in preparing and writing this manuscript.

REFERENCES

1. GE Healthcare: MicroCT Sofware: MicroView. Available
at: http://www.gehealthcare.com/usen/fun_img/pcimaging/
products/microview.html . Accessed on June 16, 2007

2. GE Healthcare: Preclinical Imaging. Available at: http://
www.gehealthcare.com/usen/fun_img/pcimaging/products/
microctscanner.html . Accessed on June 16, 2007

3. Kikinis R: The National Alliance for Medical Imaging
Computing (NA-MIC). In: Proceedings of the 2005 IEEE Compu-
tational Systems Bioinformatics Conference, Aug. 8—11, 2005, p 8

http://www.gehealthcare.com/usen/fun_img/pcimaging/products/microview.html
http://www.gehealthcare.com/usen/fun_img/pcimaging/products/microview.html
http://www.gehealthcare.com/usen/fun_img/pcimaging/products/microctscanner.html
http://www.gehealthcare.com/usen/fun_img/pcimaging/products/microctscanner.html
http://www.gehealthcare.com/usen/fun_img/pcimaging/products/microctscanner.html

RAPID DEVELOPMENT OF MEDICAL IMAGING TOOLS

4. Kitware, Inc.: VTK User's Guide Version 5. Clifton Park,
NJ: Kitware, Inc., September 19, 2006

5. Kitware, Inc.: About Kitware. Available at: http://kitware.
com/profile/about.html . Accessed on June 15, 2007

6. National Library of Medicine: National Library of Medi-
cine Insight Segmentation and Registration Toolkit (ITK).
Available at: http:/www.itk.org . Accessed on June 15, 2007

7. Ibanez L, Schroeder W: The ITK Software Guide 2.4.
Clifton Park, NJ: Kitware, Inc., November 21, 2005

8. KWWidgets Web site. Available at: http://www.kwwidgets.
org . Accessed on June 15, 2007

9. Barre S: An Introduction to KWWidgets. Clifton Park,
NIJ: Kitware Source; July 2006

10. The Image-Guided Surgery Toolkit (IGSTK) Web site.
Available at: http://www.igstk.org . Accessed on June 15, 2007

11. Gary K, Ibanez L, Aylward S, Gobbi D, Blake MB,
Cleary K: GSTK: An open source software toolkit for image-
guided surgery. Computer 39(4):46-53, 2006

12. Bitter I, van Uitert R, Wolf I, Ibanez L, Kuhnigk JM:
Comparison of four freely available frameworks for image

93

processing and visualization that use ITK. IEEE Trans Vis
Comput Graph 13:483-493, 2007

13. Kitware, Inc. Interactive and intuitive volume visualiza-
tion. Available at: http://www.kitware.com/products/volview.
html . Accessed on June 15, 2007

14. ParaView: Parallel Visualization Application Web
page. Available at: http://www.paraview.org . Accessed on
June 15, 2007

15. MeVisLab: Medical Image Processing and Visualization
Web page. Available at: http://www.mevislab.de . Accessed on
June 15, 2007.

16. Parker SG, Johnson C: SCIRun: A scientific program-
ming environment for computational steering. Proceedings of
the 1995 ACM/IEEE Conference on Supercomputing, 1995

17. 3D Slicer Web page. Available at: http://www.slicer.org .
Accessed on June 15, 2007

18. Pieper S, Lorensen W, Schroeder W, Kikinis R: The
NA-MIC Kit: ITK, VTK, pipelines, grids and 3D Slicer as an
open platform for the medical image computing community.
IEEE Symp Biomed Imaging 698-701, 2006

http://kitware.com/profile/about.html
http://kitware.com/profile/about.html
http://www.itk.org
http://www.kwwidgets.org
http://www.kwwidgets.org
http://www.igstk.org
http://www.kitware.com/products/volview.html
http://www.kitware.com/products/volview.html
http://www.paraview.org
http://www.mevislab.de
http://www.slicer.org

	Rapid Development of Medical Imaging Tools with Open-Source Libraries
	Abstract
	INTRODUCTION
	OPEN SOURCE LIBRARIES
	Visualization Toolkit (VTK)
	Image Processing in VTK
	Volume Rendering Using VTK

	Insight Registration and Segmentation Toolkit (ITK)
	KWWidgets
	The Image-Guided Surgery Toolkit (IGSTK)

	OPEN SOURCE PROGRAMS
	Volview
	Paraview
	Slicer3
	MeVisLab
	3.5 SciRun

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

