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Abstract
The spatiotemporal structure of brain oscillations are important in understanding neural function.
We analyze oscillatory episodes from isotropic preparations from the middle layers of mammalian
cortex which display irregular and chaotic spatiotemporal wave activity, within which spontaneously
emerge spiral and plane waves. The dimensionality of these dynamics show a consistent decrease
during the middle of these episodes, regardless of the presence of simple spiral or plane waves. It is
important to define the relevant biological order parameters which govern these dynamical
bifurcations.

Neural systems think through patterns of activity. Recent work in primate cortex reinforces the
growing evidence that aspects of cortical motor control and information transfer may need to
be understood with respect to spatiotemporal patterns of oscillatory activity [1]. In human
seizures, spatiotemporal patterns have been shown to have a consistent dynamical evolution
as the seizure episodes initiate, develop, and terminate [2]. We have recently discovered that
in an isotropic preparation of tangential slices of the middle cortical layers of mammalian brain,
that spontaneously organizing episodes of activity also demonstrate a dynamical evolution:
such episodes initiate with irregular and chaotic wave activity, followed by the frequent
emergence of plane and spiral waves, and terminate with the recurrence of irregular wave
patterns [3]. The spirals have true drifting phase singularities, behavior replicated in mean field
continuum models of cortex [3]. An example of sequential experimental optical images of
voltage sensitive dye response from such an experiment are shown in Fig 1.

Nevertheless, understanding pattern formation in nonlinear systems outside of equilibrium
remains a largely open problem [4]. We find that the analogy of such brain pattern formation
with patterns from fluid turbulence is striking. Accordingly, we have explored techniques
drawn from experimental fluid dynamics to better understand these phenomena. In voltage
sensitive dye imaging from fields of neurons, we have applied an empirical eigenfunction
approach, using singular value decomposition (SVD), f (t, x) = UΣVT , where f (t, x) represents
a matrix of sequential spatial values from the detectors measuring the average transmembrane
potentials from the volume of neurons beneath each detector, U and V represent matrices of
columnar orthogonal bases in time (ui) and space (vi), respectively, Σ indicates a diagonal
matrix of singular values (σi), and T represents transpose [5]. The singular values weight the
spatial eigenmodes vi, and σi

2 would be proportional to the kinetic energy of vi were it derived
from a velocity field of an incompressible fluid. Each vi has a time evolution in a corresponding
ui, and together they track the evolution of the coherent structures that comprise the full
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dynamics. The vi are the statistically most likely spatial basis upon which to project the
dynamics [6]. Indeed, one can often identify in turbulent systems that the overwhelming
amount of energy expressed in this basis is found within a significantly confined region of the
total phase space [7].

For long datasets the computation can become intractable. One greatly simplifies such analysis
by collapsing time, for instance, by left multiplying by f (t, x)T

f (t, x)T f (t, x) = VΣUT UΣVT

and subsequently right multiplying by V, fT f V = VΣ2 , creating an eigenvalue problem from
the correlation matrix fT f and its eigenvector V, and then solving for U [6]

U = f (t, x)VΣ−1

One can examine the trajectories of the ui to visually inspect changes in the dynamical
complexity as the episodes evolve. Such a technique was used by [8] in examination of wave
formation in turtle cortex.

We here analyze data from 500 μm thick slices from the visual cortex of rats [9] stained with
the absorbance voltage sensitive dye NK3630, and with exposure to carbachol and bicuculline
to activate the neurons and remove inhibition respectively (full details on experimental
preparation are in [3]). We select 13 experiments collected on separate days for detailed
dynamical study, chosen because the recording captured with minimal artifact a complete
oscillatory episode. We archive essential code and a data sample in [10].

We first form a new SVD on every 1 sec of data (1000 or 1600 frames using a 12x12 or 25x25
diode array respectively, removing the mean and linear trend from each channel), and project
the trajectory amplitudes of the first 3 temporal modes ui. When the dynamics are high
dimensional, the modal trajectories plot out a complex path, and when low dimensional, the
geometry of the trajectories simplifies considerably.

In Fig. 2, each plot of trajectories (3rd column from right) is from 1 nonoverlapping second of
data from a 7 sec self-organizing episode. By the fourth second, there are well-formed spiral
waves, which are represented by alternating activation of the first 3 spatial modes vi. By the
fifth second, there are plane waves crossing from one side to the other, and there is periodic
oscillation of only 2 dominant modes, simplifying to a limit cycle showing such 2-dimensional
behavior. By the sixth panel, 3-dimensional behavior is again evident, followed by more
complex dynamics as the episode nears termination.

The first 6 spatial eigenmodes vi for 3 of the 1 sec segments of data, corresponding to the initial
and final irregular wave dynamics, and the middle spiral dynamics, are shown in the left half
of Fig. 2. The eigenvalues σi corresponding to these dominant modes are shown along the left
of the figure. Note that during irregular dynamics there is significant structure throughout all
6 of the eigenmodes shown. During the spiral dynamics, the dynamics are concentrated on the
first 4–5 modes, with no significant structure evident to visual inspection in the 6th mode. We
perform a spatial Fourier transform on each frame, and repeat this analysis in wave number
space. The plots of the comparable eigenmodes based on spatial frequency are shown beneath
each amplitude mode. Again, the concentration of dynamics upon the first 5 modes are apparent
during spiral dynamics.

The projection of a single image from the spiral dynamics onto the first 3 spatial eigenmodes,
weighted by the corresponding eigenvalue, is shown in Fig. 3. A movie of the full sequence of
images from these spiral dynamics is archived at [10]. The modal movie emphasizes the
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crystalline nature of the brain lattice – neurons are fixed in space, and 'wave' activity is a
function of the phase relationships of the firing neurons.

The spatial eigenmodes vi are linear combinations of the raw data snapshots f (t, x) , and as
such can only reflect the dynamics observed within the sample of data used for the SVD. We
can use all of the observed data to construct this basis, and the result of such global SVD
analysis are shown in the first 6 amplitude and frequency eigenmodes along the right side of
the Fig 2. The waves tend to have more compact spatial frequency representations, reflected
in the contrast between these global frequency versus amplitude eigenmodes (such wave
number representations also have advantages in image correlation spectroscopy of ensembles
of fluorophores [11]).

In analogy with incompressible fluid dynamics, one can quantify the number of modes required
to account for 90% of the energy in the signal as

E(m) =
∑

i=1

m
λi

2

∑
i=1

n
λi

2
, m < n, m = min (m ∣ E(m) > 0.9)

where n are the total number of modes in the decomposition.

Sirovich [12] suggested that E(m) is an effective dimension for a dynamical system. We plot

in Fig. 4A the partial sums of all ∑
i=1

n
λi

2, i = 1, … , n, for each value of n. Whereas for the

first second (frames 1500–2500) 7 modes are required to account for 90% of the energy, by
the fourth second, only 3 modes are required. The dimensional estimates of such an analysis
follow closely the trajectory projections in Fig. 2 – spiral and plane wave dynamics within the
middle of these episodes live within a slab of phase space corresponding to an effective 2–3
dimensions. We find that the energy tends to concentrate onto a small number of dominant
coherent modes as these episodes organize, and then disseminates onto a larger number of
modes prior to termination.

Although the 6 of 13 experiments selected for spiral wave dynamics show a statistically
significant reduction in dimension (ANOVA, df=15, F=3.69, p<0.0001) during the spirals
analyzed in 1 sec segments (resampled [13] so that all episodes are the same length), we seek
a more general description of these dynamics. Instead of recalculating the eigenmodes for 1
sec segments, we employ the global eigenmodes calculated from all of the data (right 2 columns
Fig. 2). One can then project each snapshot of the data onto the global eigenmodes, and follow
the time sequence of the inner product projections of f(t,x) onto each global vi , as
( f , vi)2 = σi

2ui
2.

We then create an instantaneous effective dimension, d(t)eff, by projecting each frame onto the
minimum number of sequential eigenmodes required to account for 90% of the instantaneous
energy in the signal
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( f (t, x), vi)2 = σi
2u(t)i

2, i = 1 … n

E(t)m =
∑

i=1

m
σi

2u(t)i
2

∑
i=1

n
σi

2u(t)i
2

, m < n

d(t)eff = min {m ∣ E(t)m ≥ 0.9}
In the plots in Fig. 4B and 4C, the lower plot shows d(t)eff for individual experiments, while
the upper plot shows the ensemble mean and standard deviation at each point in time. For
modes composed of voltage amplitude (Fig. 4B), or spatial frequency (Fig. 4C), the dynamics
of these phenomena show a monotonic and significant decrease in dimension during the middle
of the events (ANOVA: amplitude, F=1950, p<0.00001; frequency, F=2058, p<0.00001), and
post-hoc Tukey multiple comparison testing confirms that there is a significant decrease in
dimensionality during the middle of these episodes. A box and whisker plot for d(t)eff calculated
from spatial frequency is shown in Fig. 4D (amplitude results are similar). Such simplification,
evident when clear spirals and plane waves form, is not at all apparent when more complex
patterns are otherwise seen. This analysis demonstrates that the key factor in this dimensional
evolution is not the appearance of qualitative spirals or plane waves, but rather depends on
more subtle features within the interactions of these neurons.

Our preparation is unusual in that by tangentially cutting a slab of the middle cortical layers,
we create as isotropic a piece of mammalian brain as possible, without the masking of activity
by superficial cortical layers. Previous optical imaging work analyzing waves from turtle cortex
needed to deal with complex signals from the full thickness of the turtle cortex [14]. A recent
alternative to optical imaging utilized an array of penetrating electrodes, revealing plane wave
structures from a narrow layer beneath the cortical surface carrying motor information in
primates [1].

Each of our observed patterns can be composited from the elemental building blocks of the
spatial eigenmodes, as seen in projections such as Fig. 3. On the other hand, we recognize that
the time sequence of waves such as spirals have a degree of radial symmetry for which SVD
may not yield the optimal basis. An alternative radial basis might lead to further simplification
of our representation [15], which might have further simplified the characterization of the basic
dynamical repertoire of the cortex in these experiments.

There are a variety of events seen in complex nervous systems such as up states [16], spinal
cord burst firing [17], and these cortical wavelike events [3], which share the properties that
they are episodic, oscillatory, and have apparent refractory periods following which small
stimuli can both start and stop such events. We here demonstrate that the wave events have a
smooth dynamical evolution where the dimensional complexity decreases and then increases
prior to termination. When the dimensionality decreases, the dynamics often exhibit spiral and
plane waves.

The biological importance of the dimensional evolution in our findings are likely related to ion
shifts into and out of active neurons. We presume that, as shown for intracellular chloride
concentration in spinal cord experiments [17], there are one or more order parameters whose
temporal course corresponds to the sequence of events shown here. In numerical work, we
have shown that using a local mean field model [from Ref. 3], we can demonstrate each of the
dynamics described here (irregular, spiral, and plane waves) depending upon the initial
conditions (data not shown). Although such basins of attraction exist for such models, without
a changing parameter, each pattern would be stable and not evolve in stages as seen here. Since
neurons produce a variety of metabolic products, neurotransmitters, and ion shifts as they
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become more active, there are a variety of candidate parameters available to effect such a
sequence of events. On a much larger spatial and far cruder measurement scale, human epileptic
seizures also progress through a consistent sequence of dynamical stages [2], and how ion shifts
coupled to activity orchestrate such temporal progression remains an open problem.

Nervous systems produce oscillatory patterns on very different scales, whether seizures, motor
commands, or wave formation in middle cortical layer slices, which have consistent dynamical
evolutions. Further work to define the relevant order parameters that control the evolution of
these spatiotemporal dynamics will lead to a better understanding of cortical information
processing.
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Figure 1.
Example of oscillatory episode from middle cortical layers. Upper trace reflects a time series
from a single photodetector within the array (extracellular microelectrode recordings follow a
nearly identical pattern). Below this trace are sequences of optical frames from the different
qualitative regimes (each row has 15 ms interframe interval from images collected at 1 kHz,
imaging field 5 mm diameter). Spectral colormap proportional to voltage dye absorbance.
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Figure 2.
Dynamics from 7 sec oscillatory episode in Fig. 1. At the left side are shown the eigenvalues
corresponding to the first 6 spatial eigenmodes vi based upon the photodetector amplitudes.
Below the amplitude eigenmodes are shown the corresponding spatial frequency eigenmodes.
These 3 sets of eigenmodes correspond to seconds 1, 4, and 7 from the episode. The column
of trajectory plots from each of the 7 sec shows the relationship between the first three temporal
modes ui. Note the simplification of dynamics during seconds 4–6. On the right are global
amplitude and spatial frequency eigenmodes calculated from all 7000 images collected. Gray
scale proportional to scaled eigenmode amplitudes.
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Figure 3.
Data from second 4 from Fig. 2 during a rotational spiral. Top panel shows a single spatial
image of raw data, while bottom rows show inner product of spatial image on eigenmodes 1,
2, and 3. A movie showing the temporal sequence of these projections is archived at [10].
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Figure 4.
A: Energy fraction plotted for partial sums of modes for example from Figs. 1–3. B: Effective
instantaneous dimension d(t)eff shown for each resampled data set below and as mean and
standard deviation above for amplitude, and for spatial frequency in C. D: Box and whisker
plot for spatial frequency data shown in C. Each box bounds the 25% and 75% percentiles, and
outliers greater than 1.5 times the interquartile range are shown as + signs.
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