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Abstract
Background—Arachidonic acid (AA, 20:4n-6), an important second messenger, is released from
membrane phospholipid following receptor mediated activation of phospholipase A2 (PLA2). This
signaling process can be imaged in brain as a regional brain AA incorporation coefficient K*.

Hypothesis— K* will be increased in brain visual areas of subjects submitted to visual stimulation.

Subjects and methods— Regional values of K* were measured with positron emission
tomography (PET), following the intravenous injection of [1-11C]AA, in 16 healthy volunteers
subjected to visual stimulation at flash frequencies 2.9 Hz (8 subjects) or 7.8 Hz (8 subjects),
compared with the dark (0 Hz) condition. Regional cerebral blood flow (rCBF) was measured with
intravenous [15O]water under comparable conditions.

Results— During flash stimulation at 2.9 Hz or 7.8 Hz vs. 0 Hz, K* was increased significantly by
2.3–8.9% in Brodmann areas 17, 18 and 19, and in additional frontal, parietal and temporal cortical
regions. rCBF was increased significantly by 3.1% – 22%, often in comparable regions. Increments
at 7.8 Hz often exceeded those at 2.9 Hz for both K* and rCBF. Decrements in both parameters also
were produced, particularly in frontal brain regions.

Conclusions— AA plays a role in signaling processes provoked by visual stimulation, since visual
stimulation at flash frequencies of 2.9 and 7.8 Hz compared to 0 Hz modifies both K* for AA and
rCBF in visual and related areas of the human brain. The two-stimulus condition paradigm of this
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study might be used with PET to image effects of other functional activations and of drugs on brain
signaling via AA.
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positron emission tomography; brain; human; arachidonic acid; stimulation; phospholipase A2;
signal; transduction; blood flow; visual; flash; sensory

Introduction
In the field of in vivo human neuroimaging, no reliable method currently exists to examine
regional brain signal transduction in response to pharmacological or functional activation. Yet
post-mortem and in vivo measurements of neuroreceptor and neurotransporter densities suggest
that disturbed brain signal transduction might contribute to changes in behavior involving
neurotransmission in a number of human diseases, including bipolar disorder, depression,
Parkinson disease, schizophrenia and attention deficit hyperactivity disorder (Cooper et al.
2003;Rakshi et al. 2002;Rapoport and Bosetti 2002;Solanto 2002).

In a series of in vivo studies in rodents, we have developed such a method to image brain signal
transduction that involves the second messenger, arachidonic acid (AA, 20:4n-6), using
quantitative autoradiography following the intravenous injection of radiolabeled AA. This
method measures the consequences of AA release from membrane phospholipids by the
neuroreceptor-mediated activation of phospholipase A2 (PLA2), in terms of a regional brain
incorporation coefficient K* (brain radioactivity/integrated plasma radioactivity). We reported
regional increments in K* following visual activation (Wakabayashi et al. 1995) or
administration to rats of agonists to cholinergic muscarinic M1,3,5 receptors (Basselin et al.
2006b), dopaminergic D2-like receptors (Bhattacharjee et al. 2005), serotonergic 5-HT2A/2C
receptors (Qu et al. 2003), N-methyl-D-aspartate (NMDA) receptors (Basselin et al. 2006a),
and nicotinic receptors (Nguyen et al. 2006), all of which can be coupled to activation of
Ca2+-dependent AA-selective cytosolic cPLA2 to release AA (Bayon et al. 1997;Clark et al.
1995;Stout et al. 2002;Vial and Piomelli 1995;Weichel et al. 1999). The increments following
drug occurred at regions with high densities of the targeted neuroreceptor, could be blocked
by pre-treatment with the receptor antagonist or a PLA2 inhibitor (Grange et al. 1998), were
shown to reflect incorporation of unesterified AA from plasma into synaptic membrane
phospholipid (Jones et al. 1996), and were unaffected by changes in regional cerebral blood
flow (rCBF) (Chang et al. 1997;DeGeorge et al. 1991;Robinson et al. 1992).

We also have extended our fatty acid method to image K* for AA using positron emission
tomography (PET) in human subjects at rest, following the intravenous injection of [1-11C]
AA (Chang et al. 1997;Channing and Simpson 1993;Giovacchini et al. 2002;Giovacchini et
al. 2004). In the present study, we further extend our PET method, when using a two-condition
stimulation paradigm, to image the effects of visual flash stimulation on K* for AA in relation
to effects on rCBF. Briefly, in the same PET session, we exposed healthy volunteers to light
flashes at frequencies of 0 Hz (dark condition) and of either 2.9 Hz or 7.8 Hz, and measured
K* for AA as well as rCBF with [15O]water in both conditions.

We chose visual flash stimulation for this study because we had used such stimulation
previously to show that rCBF changed in wide regions of the brain in healthy and Alzheimer
disease subjects exposed to flash frequencies between 0 Hz and 14 Hz (Mentis et al.
1997;Mentis et al. 1998;Mentis et al. 1996), thus giving us a published frame of reference for
expected rCBF and K* changes. In healthy subjects, we and others (Fox et al. 1984) reported
that rCBF in the primary (striate) visual cortex increased between flash stimulation frequencies
of 0 and 7–8 Hz, then declined at higher frequencies. Continually increasing, biphasic or
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decreasing frequency-dependent changes in rCBF occurred in other brain areas within the two
visual association streams, as well as in areas outside of these streams (Ungerleider and Mishkin
1982).

Functional activity in brain visual areas can involve neurotransmission via a number of
neuroreceptor subtypes, particularly glutamatergic receptors, that are coupled to cPLA2
activation and AA release (see above) (Edagawa et al. 2000;Yashiro et al. 2005;Zhao et al.
2001). We hypothesized that changes in K* at 3.9 and 7.8 Hz compared with 0 Hz would occur
largely in the regions in which rCBF was altered, reflecting such neurotransmitter-mediated
cPLA2 activation. As noted above, K* itself is not influenced by changes in rCBF, but measures
only the AA released and lost by metabolism during activation (Basselin et al. 2006b;Chang
et al. 1997;DeGeorge et al. 1991;Robinson et al. 1992). Part of our work has been presented
in abstract form (Esposito et al. 2003).

Material and Methods
Subjects

Sixteen healthy volunteers (age range 22–39 years; 11 M, 5 F) were studied under Protocol
No. 00-N-0057. The protocol was approved by the Institutional Review Board of the National
Institute on Neurological Diseases and Stroke, and by the NIH Radioactive Drug Research and
Radiation Safety Committees. Each subject gave informed written consent after the purpose
and risks of the study were explained. Exclusion criteria were a past or current medical
condition that could interfere with brain function, such as alcoholism, psychiatric illness, head
trauma, exposure to central nervous system toxin, hypertension or other cardiovascular
disorders, diabetes, malignancy and psychopharmacological treatment. Subjects were off
medication for 2 weeks, off aspirin for 2 days, and off caffeine and alcohol for at least 12 hours
prior to their PET session. Magnetic resonance imaging (MRI) of the head was performed to
exclude brain pathology and to analyze the functional PET scans.

Radiochemistry
[1-11C]AA was produced in one synthesis, as previously described (Chang et al.
1997;Channing and Simpson 1993;Giovacchini et al. 2002). The volume of synthesized tracer
was divided at a ratio of 1:8, then reconstituted into two equal volumes for the first and second
[1-11C]AA injections, respectively. This ratio provided roughly equivalent doses for the two
scans, given the 20.4-minute half-life of 11C. On average, a single [1-11C]AA synthesis yielded
10730 ± 107.3 (S.D.) mCi, allowing 554 ± 116 MBq (14.9 ± 3.1 mCi) of [1-11C]AA for the
first scan, and 507 ± 100 MBq (13.7 ± 2.7 mCi) for the second.

Positron emission tomography
A catheter was inserted into a radial artery for blood withdrawal, and a needle was inserted
into a forearm vein for radiotracer injection. PET scans were obtained with a General Electric
Advance Tomograph (Waukesha, WI), and a transmission scan was acquired to correct for
attenuation. Then, each subject received in fixed order four [15O]water scans to measure rCBF,
and two [1-11C]AA scans to measure K* for AA.

[15O]water scans
The [15O]water scans were performed every 15 min. For each scan, a bolus of 370 MBq (10
mCi) [15O]water was injected intravenously, and blood was withdrawn continuously through
the radial artery catheter, using an automated withdrawal and counting system. From initial 1-
min scans, rCBF was calculated by an autoradiographic method (Herscovitch et al. 1983).
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[1-11C]AA scans
The first [1-11C]AA scan was started 15 min after the last [15O]water injection, the second 60
min after the first [1-11C]AA injection. After each injection, serial dynamic 3-D scans (30 sec
to 5 min) were acquired during 1 hour. For each scan, [1-11C]AA was infused intravenously
for 3 min at a constant rate (Harvard Infusion Pump, South Natick, MA, USA), and the input
function was measured as previously described (Giovacchini et al. 2002;Giovacchini et al.
2004).

Visual stimulation paradigm
A subject was scanned during each of two visual stimulation conditions in the same PET
session, a dark condition (0 Hz) or when exposed to flashing lights at a frequency of 2.9 Hz or
7.8 Hz. Stimulation consisted of red flashing lights delivered by goggles (Model S10Vs B,
Grass Instruments, Quincy, MA), with eyepieces containing 30 monochromatic red light-
emitting diodes (LED) in a 6 × 5 rectilinear grid with a mean peak of 655 nm. The grids were
not centered over the fovea but formed an overlapping pattern on the visual fields. The flashes
were delivered as 5-ms square wave pulses, alternately to each eye (Mentis et al. 1997), and
frequency was defined as the number of flashes presented to one eye per second. Each LED
had a luminous intensity of 3.6 millicandela. As flash duration was 5 ms, increasing flash
frequency decreased the flash interval and increased luminosity.

In one session, eight subjects were stimulated at 0 Hz (dark) and 2.9 Hz, eight at 0 Hz and 7.8
Hz. A subject wore the goggles during the entire PET session. He was instructed to keep his
eyes closed under the dark condition (0 Hz), but to keep them open during stimulation at 2.9
or 7.8 Hz. The scan order was randomized across subjects according to two different sequences:

1. Dark (0 Hz) rCBF → stimulation rCBF → stimulation rCBF → dark rCBF → dark
K* for AA → stimulation K* for AA

or

2. Stimulation rCBF → dark (0 Hz) rCBF → dark rCBF → stimulation rCBF →
stimulation K* for AA → dark K* for AA

During the dark (0 Hz) condition, the steps to measure rCBF were as follows: 10 min before
[15O]water injection, dim lights in PET room; 5 min before injection, turn off lights in PET
room (staff will use side-shielded flashlights); inject [15O]water intravenously as bolus, and
remove arterial blood samples as scheduled and scan for 1 min; wait 15 min for next injection.
For the K* scan, infuse [1-11C]AA intravenously for 3 min, maintaining 0 Hz (dark) condition;
remove arterial blood samples and scan for 1 hour.

During the 2.9 Hz or 7.8 Hz stimulation condition, for the rCBF scan, follow the procedure
above to 15 min except stop stimulation after 2 min and go to dark condition for the following
13 min. For the K* scan, at 15 min after injecting [15O]water, start stimulation at 2.9 or 7.8
Hz; 15 sec later, infuse [1-11C]AA for 3 min intravenously, remove arterial blood samples and
scan for 1 hour. At 10 min after beginning [1-11C]AA infusion, change to dark (0 Hz) condition
for 1 min to minimize possible discomfort from continuously applied flashing lights; repeat 4
min of flash stimulation followed by 1 min of dark condition for 5 min, starting at 11 min after
initiating infusion, to full scan time of 1 hour.

Data Analysis
Functional image calculations

Functional PET images were obtained as previously described (Giovacchini et al. 2002). For
the first [1-11C]AA injection, parametric images of the AA incorporation coefficient K* and
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of cerebral blood volume Vb were derived by linearly fitting on a pixel-by-pixel basis the PET
data with the following operational equation, which is based on an irreversible uptake model,

Ci(t) = VbCb(t) + K ∗ ∫060Cp(s)ds + CCO2
(t) (1)

where Ci(t) is brain radioactivity at time t, Vb is cerebral blood volume (mL blood/mL brain),
Cb(t) is whole blood activity (nCi/mL) at time t, Cp(t) is the metabolite-corrected plasma input
function, CCO2(t) is the predicted brain tissue concentration of [11C]CO2, and K* is the
unidirectional incorporation coefficient of [1-11C]AA (μL/min/mL).

For the second [1-11C]AA scan, we modified equation (1) to take into account residual
radioactivity from the first [1-11C]AA scan,

Ci(t) = Vb
(2)Cb

(2)(t) + K∗(2) ∫060Cp(2)(s)ds + CCO2
(2)(t) + K∗(1) d∫060Cp(1)(s)ds (2)

where the correction term K∗(1) d∫0
60Cp(1)(s)ds represents irreversibly bound uptake of

tracer from the first scan and d equals the decay correction term between the two scans.

Image processing and statistical analysis
PET images of K*, Vb and rCBF were aligned to the structural MR image of each subject
(Giovacchini et al. 2002). The images then were stereotactically normalized and smoothed with
a 12 × 12 × 12 mm Gaussian filter using Statistical Parametric Mapping (SPM)-2 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm2/). rCBF and [1-11C]AA data were ratio normalized
to the global mean within SPM-2.

Statistical analyses tested for significant differences between visual stimulation at 2.9 or 7.8
Hz and the dark state (0 Hz), and between stimulation at 7.8 Hz and 2.9 Hz. Significant affected
regions on SPM were identified from a human brain atlas (Talairach and Tournoux 1988), and
are reported at p ≤ 0.001 or p ≤ 0.01 levels of significance. We also report absolute values of
rCBF (mL/100 g/min) and of K* (μL/min/mL) in the significantly affected regions, percent
differences as Δ% in these values, and cluster size (number of 2 mm × 2 mm × 2 mm voxels
(8 mm3)) of these regions. We did not correct the SPM-2 results for multiple comparisons,
because we investigated an a priori hypothesis that rCBF and K* for AA would be altered by
stimulation in widespread brain regions based on our prior measurements (Mentis et al.
1997), and because a prior study in unanesthetized rats indicated that percent changes in K*
during visual stimulation would be about half the percent changes in rCBF (Wakabayashi et
al. 1995).

Results
Regional cerebral blood flow

Figures 1A–1C illustrate regions on the surfaces of the cerebral hemispheres and in horizontal
brain sections in which rCBF was significantly increased by flash stimulation (p ≤ 0.01).
Stimulation at 2.9 Hz or 7.8 Hz vs. 0 Hz (dark) increased rCBF in visual cortical and more
anterior brain regions, and 7.8 Hz vs. 2.9 Hz increased rCBF in some of these regions as well.

Table 1 identifies Brodmann areas (BA) and their x-y-z coordinates in Talairach space, of the
regions in which Z scores for differences during activation vs. dark exceeded 2.69 (p ≤ 0.01)
or 3.29 (p ≤ 0.001). Stimulation at 7.8 Hz vs. 0 Hz significantly increased rCBF in the left-
sided cuneus (BA 17 and 18), lingual gyrus (BA 18) and middle gyrus (BA 19) of the occipital
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lobe, supramarginal gyrus of the parietal lobe (BA 40), fusiform gyrus of the temporal lobe
(BA 37) and precentral gyrus of the frontal lobe (BA 6). Not shown are findings that stimulation
at 7.8 Hz vs. 0 Hz significantly decreased rCBF in the anterior and posterior cingulate gyrus
(BA 24 and 31), right insula (BA 13), superior temporal gyrus bilaterally (BA 21, 36 and 38),
superior frontal gyrus bilaterally (BA 10 and 11), left premotor region (BA 4), right inferior
frontal gyrus (BA 11 and 47), and postcentral gyrus bilaterally (BA 2).

Stimulation at 2.9 Hz vs. 0 Hz increased rCBF in the left-sided cuneus (BA 17) and lingual
gyrus (BA 18) of the occipital lobe, precuneus (BA 31) and postcentral gyrus (BA 3) of the
parietal lobe, and precentral gyrus of the frontal lobe (BA 4) (Table 1). Not shown are the
findings that stimulation at 2.9 Hz vs. 0 Hz decreased rCBF in the right insula (BA 13), superior
temporal gyrus bilaterally (BA 22, 42 and 48), right inferior temporal gyrus (BA 20), cerebellar
vermis and right postcentral gyrus (BA 2 and 3), left superior parietal lobule (BA 7), right
inferior and middle frontal gyrus (BA 45), left superior frontal gyrus (BA 9), and right
supplementary motor area (BA 6). Stimulation at 7.8 Hz vs. 2.9 Hz increased rCBF in the
cuneus (BA 17), inferior (BA 18) and middle (BA 19) gyrus of the occipital lobe, postcentral
gyrus (BA 2) of the parietal lobe, and uncus (BA 38) of the limbic system (Table 1). Table 1
also summarizes cluster sizes of the positively affected regions, absolute values of rCBF and
percent differences in these regions. Stimulation at 7.8 Hz vs. 0 Hz increased rCBF by a
maximum of 22%, whereas stimulation at 2.9 Hz vs. 0 Hz increased rCBF by a maximum of
10%.

When the decreases in rCBF were considered in terms of absolute values (ml/100 g/min)
without proportional SPM scaling, stimulation at 7.8 Hz vs. 0 Hz showed significant decreases
of rCBF at p < 0.05 in the insula bilaterally (BA 13), the superior temporal gyrus bilaterally
(BA 21, 36 and 38), the left superior frontal gyrus (BA 10), the postcentral gyrus bilaterally
(BA 2), and both caudate nuclei. Stimulation at 2.9 Hz vs. 0 Hz showed decreases at p < 0.01
in the right insula (BA 13) and anterior cingulate gyrus (BA 31), and decreases at p < 0.05 in
the superior temporal gyrus bilaterally (BA 22, 42 and 48), temporal gyri bilaterally (BA 20),
in cerebellar vermis, postcentral gyri (BA 2 and 3), left superior parietal lobule (BA 7), inferior
and middle frontal gyri bilaterally (BA 45), left superior frontal gyrus (BA 9) and right
supplementary motor area (BA 6).

Arachidonic acid incorporation coefficients K*
Figures 2A–2C illustrate regions on the surface of the two hemispheres and in corresponding
horizontal brain sections, in which K* for AA was significantly (p ≤ 0.01) elevated as a function
of flash frequency. Changes are evident in occipital and other visual areas.

Table 2 identifies regions in which stimulation at 2.9 Hz or 7.8 Hz flash vs. 0 Hz (dark) changed
K* at the p ≤ 0.01 (Z ≥ 2.69) or p ≤ 0.001 (Z ≥ 3.29) level of significance, when considering
only regions with cluster sizes greater than 40 pixels. Significant increments during 2.9 Hz or
7.8 Hz stimulation vs. 0 Hz ranged from 4.8% to 8.1% (Table 2). Affected areas roughly
correspond to the areas in which rCBF was increased significantly (Table 1).

Significant elevations in K* at 7.8 Hz vs. 0 Hz were evident in the left cuneus (BA 19) and left
superior gyrus (BA 11) of the occipital lobe, the right precuneus (BA 7)) and angular gyrus
(BA 39) of the parietal lobe, right middle gyrus (BA 6 and 11), left paracentral lobule (BA 5),
right superior gyrus (BA 11) of the frontal lobe, and right parahippocampal gyrus (BA 28) of
the limbic lobe. Significant decreases at 7.8 Hz vs. 0 Hz (not shown) were seen in the right
posterior cingulate gyrus (BA 31), right precuneus (BA 7), left inferior parietal lobule (BA
40), middle frontal gyrus bilaterally (BA 10 and 47), parahippocampal gyrus bilaterally (BA
28), left middle and right superior temporal gyri (BA 21 and 38), and right insula (BA 13).
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At 2.9 Hz vs. 0 Hz, significant elevations in K* were found in the left cuneus of the occipital
lobe (BA 17 and 19), postcentral gyrus bilaterally of the parietal lobe (BA 1), right middle
gyrus of the temporal lobe (BA 21), medial gyrus of the frontal lobe (BA 6), claustrum, and
left cerebellum. Significant decreases at 2.9 Hz vs. 0 Hz (not shown) were seen in the left
precuneus (BA 30), left parahippocampal gyrus (BA 30), left fusiform gyrus (BA 19), anterior
and posterior cingulate (BA 24 and 32, respectively), left middle occipital gyrus (BA 19), and
left inferior frontal gyrus (BA 47), and cerebellum.

Comparison of Tables 2 and 1 indicates that the percent increments in absolute values of K*,
3.8–8.1%, were one-third to one-half percent increments in absolute values of rCBF.

When decreases in K* were considered in terms of absolute values (μL/min/mL), stimulation
at 2.9 Hz vs. 0 Hz showed decreases at p < 0.01 in the left thalamus and in the left inferior
frontal gyrus (BA 47) and at p < 0.05 in the left precuneus (BA 30), left parahippocampal gyrus
(BA 30), left fusiform gyrus (BA 19), both inferior temporal gyri (BA 21), anterior and
posterior cingulate (BA 24 and 32, respectively), and left middle occipital gyrus (BA 19).

Cerebral blood volume
There were many regions in which cerebral blood volume Vb was increased at p ≤ 0.01 by 2.9
Hz or 7.8 Hz stimulation vs. the dark condition (0 Hz) (data not shown). Even at p < 0.001,
Vb was elevated at 7.8 Hz vs. 0 Hz in the cerebellum, right frontal lobe (BA 10), lingual gyrus
of the left occipital lobe (BA 17 and 18), and left superior temporal gyrus (BA 42), whereas it
was elevated at 2.9 Hz vs. 0 Hz in the cerebellum, left pallidus, right thalamus, anterior and
posterior cingulate gyrus (BA 32 and 23, respectively), right insula (BA 13) and right
parahippocampal gyrus (BA 36), inferior and precentral gyrus of the right frontal lobe (BA 45
and 6, respectively), cuneus and lingual gyrus of the left occipital lobe (BA 17 and 18,
respectively), inferior gyrus of the right temporal lobe (BA 20).

Discussion
This study shows that it is technically feasible to perform brain activation studies with PET
and [1-11C]AA, by presenting two stimuli, dark and 2.9 or 7.8 flash stimulation, in the same
scan session. We used a linear irreversible model, which includes a correction for residual brain
and plasma radioactivity from the prior [1-11C]AA scan, to calculate K* for AA in the second
[1-11C]AA scan (Eq. 2). A single synthesis of [1-11C]AA reduced cyclotron time and personnel
needs, as well as the likelihood of technical problems.

Both K* for AA and rCBF were increased significantly in primary, association and related
visual processing brain areas during 2.9 Hz and 7.8 Hz flash stimulation vs. the dark condition
(0 Hz). Affected at both frequencies were regions in BA 17, 18 and 19, other areas in the two
visual association streams in temporal and parietal regions (Ungerleider and Mishkin 1982),
and certain frontal areas. Significant decrements, particularly in frontal areas not belonging to
the two streams, were noted in both parameters. Cluster sizes of regions in which K* was
altered were smaller than corresponding cluster sizes of regions in which rCBF was affected
(Tables 1 and 2). This reflected in part the smaller magnitude of the K* changes, which would
make their area of statistical significance smaller (centered towards the area of highest
activation after smoothing).

The statistically significant rCBF changes during flash stimulation at 2.9 and 7.8 Hz vs. 0 Hz
correspond in their location, magnitude and direction to changes reported in healthy subjects
stimulated at comparable frequencies (Fox and Raichle 1984;Mentis et al. 1997). In these
published studies, stimulation between 0 and 14 Hz produced biphasic increased and then
decreasing rCBF changes in the striate cortex (BA 17) [peak 7–8 Hz] and left cingulate gyrus

Esposito et al. Page 7

Neuroimage. Author manuscript; available in PMC 2008 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(BA 24/32) [peak 4 Hz]. rCBF increased monotonically with frequency in lateral (inferior and
medial occipital gyri and cuneus (BA 18 and 19) and inferior (lingual and fusiform gyri, BA
18 and 19) visual association areas, while decreasing monotonically in many anterior areas
(frontal lobes, cingulate (BA 24, 32), superior temporal cortex). The left middle temporal area
(BA 19/37) was activated at 1 Hz. It was suggested (Mentis et al. 1997) that the striate changes
reflected lateral geniculate input, the middle temporal area activation at 1 Hz perception of
apparent motion, and the posterior extrastriate rCBF monotonic increases a neural response to
increasing luminance intensity and form and color complexity with increasing pattern-flash
frequency.

Supporting our finding decreased rCBF and K* responses on SPM during stimulation at 2.9
Hz and 7.8 Hz, particularly in frontal areas, is that absolute values of these parameters also
were reduced. In a more extensive study at flash frequencies between 0 and 14 Hz, significant
reductions in absolute values of rCBF (ml/100g/min) also were found in many regions,
including the medial and lateral frontal lobes and anterior cingulate cortex (Mentis et al.
1997). It was argued that these areas mediate higher order processing during executive
functions, attention and language, and that their rCBF reductions represented cross-modal
repression of their functional activity during the passive flash stimulus (Mentis et al. 1997).
This explanation also could account for our reductions in K* for AA. Such cross-modal
repression has been reported in the animal literature (Hernandez-Peon et al. 1956), in studies
of evoked potentials in humans (Hackley et al. 1990), and in human imaging studies (Haxby
et al. 1994;Kawashima et al. 1995;Mazziotta et al. 1982;Shulman et al. 1997).

Many of the statistically significant changes in K* for AA were in regions corresponding to
those in which rCBF also was altered. Percent increments in K* in affected regions during
stimulation at 2.9 or 7.8 Hz ranged from 3.8% to 8.1%, compared with 4.1% to 21% for
significant rCBF increments. Smaller K* than rCBF increments were consistent with smaller
K* that glucose metabolic increments in unanesthetized rats subjected to visual stimulation
(Wakabayashi et al. 1995).

The increments in K* caused by visual stimulation likely arose by AA release from membrane
phospholipid, mediated by any of a number of neuroreceptors coupled to the activation of
cPLA2 (see Introduction). Dopaminergic, glutamatergic, cholinergic and serotonergic
neurotransmission can be involved in visual responses (Edagawa et al. 2000;Mentis et al.
2001;Yashiro et al. 2005;Zhao et al. 2001). However, glutamate is the main neurotransmitter
of the brain visual system (Yashiro et al. 2005), and when acting at ionotropic NMDA receptors,
glutamate allows Ca2+ into neurons to stimulate cPLA2, release AA, and increase prostaglandin
E2 (PGE2) formation (Basselin et al. 2006a;Pepicelli et al. 2002;Weichel et al. 1999). Thus,
glutamatergic signaling via NMDA receptors likely was the major contributor to the significant
changes in K* in this study.

rCBF is coupled to regional brain glucose metabolism (Reivich 1974), which is considered to
reflect energy consumption largely by activation of pre-synaptic axon terminals (Sokoloff
1977;Sokoloff 1999). On the other hand, increments in K* represent the quantity of PLA2-
induced release of unesterified AA from synaptic membrane phospholipid and converted to
eicosanoids such as PGE2 (Basselin et al. 2006b;Jones et al. 1996;Rapoport 2003;Robinson et
al. 1992). Thus, percent changes in rCBF and K* during activation need not be identical or
exactly co-localized.

K* for AA is unaffected by changes in rCBF (Chang et al. 1997;DeGeorge et al. 1991;Rapoport
2003;Robinson et al. 1992), but is determined by brain metabolic demand (Basselin et al.
2006b;Jones et al. 1996;McArthur et al. 1999;Rapoport 2003). On the other hand, rCBF may
be modified by PGE2 and other vasoactive eicosanoids produced via cyclooxygenase-2 from
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the AA released by PLA2 activation. Thus, inhibiting cyclooxygenase-2 in rat brain with a
nonsteroidal anti-inflammatory drug reduces rCBF increments during somatosensory
stimulation (Li et al. 1995;Niwa et al. 2000).

In summary, we have established a two-condition paradigm in the same PET session to examine
K* for AA and rCBF during sensory stimulation. We found that visual flash stimulation at 2.9
and 7.8 Hz produced significant changes in K* in areas in which significant changes in rCBF
also were produced. The ability to image brain signal transduction involving AA should make
the two-condition PET paradigm useful for examining regional effects of other sensory stimuli
as well as of drug induced neuroreceptor activation (Basselin et al. 2006a;Basselin et al.
2006b;Bhattacharjee et al. 2005;Qu et al. 2003) in human subjects, under normal conditions
and in diseases where neurotransmission via AA likely is disturbed (Hayakawa et al.
2001;Nariai et al. 1991).

In this regard, our studies in rat models of Parkinson disease (rats with a chronic unilateral
lesion of the substantia nigra) and of Alzheimer disease (rats with a chronic unilateral lesion
of the nucleus basalis) have demonstrated upregulated K* responses in brain regions ipsilateral
to the lesion following administration of a dopaminergic D2 receptor agonist or a muscarinic
M1,3,5 receptor agonist, respectively. Both D2 and M1,3,5 receptor subtypes can be coupled to
cPLA2 to release AA as a second messenger (Bhattacharjee et al. 2005;Felder et al. 1990;Vial
and Piomelli 1995). Additionally, nicotine, given to rats at a dose equivalent to smoking one
cigarette and saturating 85% of brain α4β2 nicotinic receptors in humans (Brody et al. 2006),
elevates K* for AA in widespread brain regions, including the nucleus accumbens (Nguyen et
al. 2006). These animal studies suggest that PET can be used with our two-condition
stimulation paradigm to image dopaminergic, muscarinic or nicotinic receptor-initiated AA
signaling and concurrent changes in rCBF under normal or pathological human conditions,
using receptor-directed drugs that have been reported to acutely change human rCBF or brain
glucose metabolism (Furey et al. 2000;Grasby et al. 1993;Zubieta et al. 2005).
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MRI  
magnetic resonance imaging

NMDA  
N-methyl-D-aspartic acid

PET  
positron emission tomography

PGE2  
prostaglandin E2

PLA2  
phospholipase A2

cPLA2  
cytosolic PLA2

SPM  
statistical parametric mapping

rCBF  
regional cerebral blood flow
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Figures 1A-1C. Hemispheric and horizontal renderings from MRI template of significant increases
of rCBF between 2.9 Hz and 0 Hz (dark condition), 7.8 Hz and 0 Hz, and 7.8 Hz and 2.9 Hz flash
stimulation
Significant differences at p ≤ 0.01 are displayed in red. Eight different slices are displayed from
the −16 mm level to the +40 mm level with regard to the anterior-posterior commissure line
in Talairach space are shown (Talairach and Tournoux 1988).
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Figures 2A-2C. Hemispheric and horizontal renderings from MRI template of significant increases
of K* for AA between 2.9 Hz and 0 Hz (dark condition), 7.8 Hz and 0 Hz, and 7.8 Hz and 2.9 Hz
flash stimulation
Significant differences at p ≤ 0.01 are displayed in red. Eight different slices are displayed from
the −16 mm level to the +40 mm level in Talairach space are shown (Talairach and Tournoux
1988).
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