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Abstract
Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these
relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the
presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global
histone deacetylation, a process critical for their functional differentiation. However, it remains
unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of
a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and
micropatterned substrata, here we showed that the cell ‘rounding’ caused by lrECM was sufficient
to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and
confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global
increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on
plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked
these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-
induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-
controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in
the actin cytoskeleton.
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Introduction
Cell structure and function were postulated to be intimately connected in maintenance of tissue
homeostasis [1]. Manipulating cellular and nuclear morphology in culture can induce a variety
of functional changes, including glucose uptake and metabolism [2], proliferation [3–5],
apoptosis [4], differentiation and gene expression [6–10]. These morphologically driven
processes are controlled by the local microenvironment as exemplified in the mammary gland
and mammary epithelial cells (for review see [11]). Isolated mouse mammary epithelial cells
can be induced to undergo structural and functional differentiation in three-dimensional (3D)
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cultures. The acquisition of the functionally differentiated phenotype, i.e. expression of milk
proteins, requires lactogenic hormones and the basement membrane protein laminin-111
(laminin-1) [12,13]. The latter induces dramatic morphological changes in that cells become
rounded and actin becomes cortical. These morphological changes are necessary for expression
of some milk proteins including β-casein [9]. Artificially pre-rounding the cells by plating on
the nonadhesive substratum poly(2-hydroxyethyl methacrylate) (polyHEMA) poises them for
responsiveness to prolactin and laminin-rich ECM (lrECM)[9], whereas preventing cell
rounding by treatment with the phorbol ester 12-o-tetradecanoylphorbol 13-acetate (TPA)
inhibits milk protein synthesis [14]. These previous findings strongly suggested that cell
rounding, mediated by reorganization of actin filaments and other cytoskeletal components,
may be an important physical signal conveyed by the ECM leading to changes in gene
expression.

Cell fate and differentiated function are controlled by patterns of gene expression, which in
turn are dictated by chromatin organization. The structure of chromatin is regulated by a
number of post-translational modifications at the amino-terminal tails of nucleosomal histones,
including acetylation/deacetylation, phosphorylation, methylation, and ADP ribosylation
[15]. The acetylation status of chromatin is dynamic, balanced by the activities of histone
acetyltransferases (HATs) and histone deacetylases (HDACs) [16]. Gene expression generally
correlates with histone hyperacetylation at promoter regions and other regulatory cis-elements
[17–19] whereas histone deacetylation represses transcription by promoting chromatin
condensation into heterochromatin [20,21]. Histone deacetylation was shown to correlate with
changes in gene expression in the developing brain in rats [22], and abrogating the deacetylation
by treatment with an HDAC inhibitor resulted in impaired brain development and delayed
expression of differentiation markers. Functional differentiation of many cell types is
associated with activation of specific subsets of genes, silencing of other genes, and extensive
formation of heterochromatin [23].

Acinar morphogenesis of a non-malignant human mammary epithelial cell line HMT3522-S1,
is accompanied by rearrangements in chromatin structure and nuclear architecture [24–26].
These reorganizations appear to be important for establishing and maintaining the normal
phenotype of cells in 3D [24,25,27]. We previously found that the global level of histone
acetylation is critical for functional differentiation of mammary epithelial cells [24,28].
Altering chromatin structure by increasing histone acetylation with trichostatin A induces
human mammary epithelial cells to alter their morphology, re-enter the cell cycle, and become
disorganized [24]; overexpressing a HAT in mouse mammary epithelial cells inhibits
production of endogenous β-casein in response to lrECM [28]. Conversely, treatment with
lrECM induces global histone deacetylation in human and mouse mammary epithelial cells
[25,28].

These previous studies showed that ECM has profound effects on cell shape and chromatin
structure, particularly histone deacetylation, but it was not understood whether these effects
were linked. In this report, we used several strategies to change cell shape, including 3D culture
on different substrata with different adhesiveness and micropatterned substrata. We find that
cell rounding per se induces global histone deacetylation and an increase in chromatin
condensation, and that these processes are associated with a global reduction of gene
expression. These results reveal a process by which ECM integrates structure and function in
mammary epithelial cells through a shape-dependent global histone deacetylation.

Le Beyec et al. Page 2

Exp Cell Res. Author manuscript; available in PMC 2008 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Materials and Methods
Cell culture

HMT-3522-S1 and -T4-2 human mammary epithelial cells [29,30] were grown as two-
dimensional (2D) monolayers on plastic or within 3D lrECM (Matrigel, Collaborative
Research) and maintained as previously described [31,32]. Cells were grown in 2D and 3D for
10 days before harvests. For culture on nonadhesive substrata, ~4000 cells/cm2 were seeded
on polyHEMA (Sigma)-coated plates prepared as previously described for mouse mammary
epithelial cells [9].

Micropatterning
Micropatterned substrata consisting of collagen-coated islands were created as described
[33]. Briefly, elastomeric stamps containing a relief of the desired pattern were coated with
type I collagen (50 μg/mL in water; Vitrogen 100, Cohesion Technologies, Palo Alto, CA) for
2 hours, washed with water, and dried under a stream of nitrogen. Flat poly(dimethylsiloxane)
(PDMS; Sylgard 184, Ellsworth Adhesives, Germantown, WI) elastomer-coated substrata
were UV-oxidized for 7 minutes (UVO Cleaner, Jelight Co., Irvine, CA), stamped with
collagen, blocked with 1% pluronic F108 (BASF Corp., Florham Park, NJ) in water for 1 hour,
and rinsed in PBS before seeding T4-2 cells. Cells were allowed to attach to the patterned
islands for approximately 30 minutes before washing away the remaining floating cells. A flat
block of PDMS was coated with collagen and stamped for the unpatterned substratum control.
For measurements of projected cell area, phase contrast images of individual cells were outlined
and processed with Scion Image software.

Global gene expression analysis
cDNA microarrays with ~8000 known genes spotted on poly-L-lysine-coated chips (custom
arrayed at Lawrence Berkeley National Laboratory using Research Genetics 8k human clones)
were used. mRNA samples of interest were directly compared to each other by co-hybridization
to the same slide using dendrimer technology to label with red-Cy5 and green-Cy3
(Genisphere). Total RNA (1μg) isolated with Qiagen RNEasy reagents was used for each
sample hybridized. Cells in 3D lrECM were extracted using 5mM EDTA in cold PBS to
dissolve the Matrigel. For each comparison, 3 independent sets of cells cultured for 10 days
were processed, and 4 slides were hybridized. This corresponded to 3 sets of RNA from
independent culture sets plus a dye-swap experiment in which the red and green label was
switched for the two samples in question to account for dye-specific effects. Arrays were
scanned using a Genepix scanner (Axon). Raw data for each channel (red and green) was loaded
onto Genespring (Silicon Genetics) for normalization and analysis. For each chip, per-spot and
per-chip intensity-dependent Lowess normalization was performed using 20% of data for
smoothing at a cutoff value for signal of 10. This was followed by normalization of each chip
to the 50th percentile of the measurements taken from that chip, without extra background
correction. Differential gene expression was determined at the t-test p-value of 0.01 or lower.

Immunofluorescence analysis
Samples were fixed in 2% paraformaldehyde in PBS, rinsed in 50 mM glycine in PBS, blocked
in 10% goat serum, and stained with a 1:500 dilution of FITC-phalloidin (Molecular Probes)
or with a 1:100 dilution of AcH4 antibody in PBS. Stained samples were imaged using a Spot
RT camera attached to a Zeiss upright epifluorescence microscope or a Stanford Photonics
XR/Mega-10 ICCD camera attached to a Zeiss spinning disk confocal microscope.

DNA was stained with DAPI and the corresponding fluorescence was measured by acquiring
confocal sections separated by 0.16 μm using a spinning disk confocal microscope. Confocal
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images were corrected for background. To assess the nuclear volume, a common intensity
threshold was established to define the edge of the nuclei in each confocal section and calculate
the enclosed area. The total fluorescence intensity was divided by the nuclear volume to obtain
the average dye spatial density, which correlates with the average chromatin packing ratio
(Mascetti et al 2001). All image processing was performed using Image J software.

Western blotting
Total protein from S1 or T4-2 cells was extracted with lysis buffer [50 mM Tris (pH 7.4), 30
mM NaCl, 2 % (w/v) SDS, and protease inhibitor cocktail]. After sonication, an equal amount
of protein from each sample was subjected to SDS gel electrophoresis and then transferred to
nitrocellulose membrane (Schleicher & Schuell). The membrane was subsequently blocked in
TBST buffer [50 mM Tris (pH 8.0), 150 mM NaCl, 0.1% (v/v) Tween 20] containing 5%
nonfat dried milk, then incubated in blocking buffer containing primary antibody (AcH3 and
AcH4 from Upstate; total H3 from Santa Cruz). All blots were further incubated in blocking
buffer containing horseradish peroxidase-conjugated secondary antibodies and subjected to
enhanced chemiluminescence (ECL) using the SuperSignal chemiluminescent substrate
(Pierce, Rockford, IL). The results were quantified with AlphaEasyFC software, and student
t test were performed using SigmaPlot.

Quantitative real-time PCR analysis
Total RNA was extracted from cells with Trizol reagent (Invitrogen). cDNA was synthesized
using Superscript first strand synthesis kit (Invitrogen) from equal amounts of RNA.
Quantitative real-time PCR analysis was performed with the Lightcycler System (Roche) using
the Lightcycler FastStart DAN Master SYBR Green I kit (Roche). The following primers were
used to amplify p21 and 18S sequences: forward primer of the p21 gene 5′-CTG GGG ATG
TCC GTC AGA AC-3′ and reverse primer 5′- AGC GAG GCA CAA GGG TAC AA-3′;
forward primer of the 18S gene: 5′- ACG GAC CAG AGC GAA AGC AT -3′ and reverse
primer 5′- GGA CAT CTA AGG GCA TCA CAG AC -3′. The following Lightcycler PCR
amplification protocol was used: 95°C for 10 minutes, and 45 amplification cycles (95°C for
5 seconds, 60°C for 10 seconds, 72°C for 5 seconds). Amplification was followed by melting
curve analysis to verify the presence of a single PCR product [34]; 18S was amplified as a
reference gene using the same protocol.

Chromatin immunoprecipitation (ChIP) assay
ChIP assays were performed using a commercially available kit (ChIP kit; Upstate
Biotechnology, Lake Placid, NY) per manufacturer instructions. For 2D conditions, 1 × 107

S1 cells grown in a 100-mm dish were cross-linked with 1% formaldehyde at room temperature
for 10 minutes. For 3D conditions, S1 cells were isolated from lrECM using PBS/EDTA and
cross-linked as above. Cells were washed with PBS, resuspended and lysed in ChIP lysis buffer
(1% SDS, 10mM EDTA, 50 mM Tris-HCl pH8.0). Sonicated lysates were diluted with ChIP
dilution buffer and bound to protein A-agarose beads. The precleared lysates were then
immunoprecipitated with AcH3 or AcH4 antibodies (Upstate Biotechnology), collected with
protein A-agarose beads, and washed sequentially with each of the following buffers: low salt
wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH8.0, 150 mM
NaCl); high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl
pH8.0, 500 mM NaCl); LiCl buffer (0.25 M LiCl, 1% NP-40, 1% SDC, 1 mM EDTA, 10 mM
Tris-HCl pH8.0); TE buffer (20 mM Tris-HCl pH8.0, 1 mM EDTA pH8.0). The remaining
bound p21 promoter DNA was PCR-amplified using the following primers: forward primer
5′-GGT GTC TAG GTG CTC CAG GT-3′ and reverse primer 5′-GCA CTC TCC AGG AGG
ACA CA-3′.
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Results
Culturing cells in 3D lrECM induces alterations in cellular morphology and global histone
deacetylation

Culturing non-malignant breast epithelial S1 cells in 3D within lrECM allows the cells to form
spherical polarized structures that resemble mammary acini in vivo (Fig. 1A), whereas the cells
form monolayers when they are cultured in 2D. Immunofluorescence and western blot analysis
showed that levels of both acetylated histones H3 and H4 were reduced in 3D cultures. (Fig.
1A, B, C).

Histone deacetylation is associated with chromatin condensation, and hypoacetylation of
histones is commonly used as a marker of heterochromatin [35]. Here we used the average 4′,
6-diamidino-2-phenylindole (DAPI) spatial density to assess global changes in chromatin
condensation because the density of DAPI staining in nuclei increases with the chromatin
packing ratio [36,37]. We found that S1 cells in 3D lrECM had higher DAPI density than cells
cultured in 2D (Fig. 1D). These data indicate that the histone deacetylation in 3D cultures is
associated with increased chromatin compaction. In addition, the tissue-like morphogenesis
observed in 3D was accompanied by a significant decrease in nuclear diameter (Fig. 1E).

T4-2, the tumorigenic derivative of S1 cells, form large non-polarized and disorganized
colonies in 3D lrECM reminiscent of tumors in vivo, but they still respond to lrECM by
changing cell shape (Supplemental Fig A). To determine whether global histone deacetylation
was the result of acinar morphogenesis, we measured the levels of acetylated histones H3 and
H4 in T4-2 cells which form disorganized structure in lrECM. Histone acetylation was
decreased in 3D culture, whether or not the cells were polarized (Fig 1B, C), indicating that
the reduction in histone deacetylation is a response either to ECM-induced cell rounding or to
ECM-induced signaling.

Cell rounding induces global histone deacetylation
To test whether changes in cell morphology could alter histone acetylation, we compared cells
cultured on plastic with those cultured on the nonadhesive substratum polyHEMA, which
prevents cell attachment and spreading and allows examination of the role of cellular shape
independently of ECM signaling [3,9]. Both S1 (Fig. 2A) and T4-2 (data not shown) cells
adopted a rounded morphology when cultured on polyHEMA. Culturing cells on polyHEMA
for 4 days also caused them to cluster together (Fig. 2A). Immunofluorescence and western
blot analysis of acetylated histones H3 and H4 demonstrated that cultivation on polyHEMA
leads to histone deacetylation in both S1 and T4-2 cells (Fig. 2A, B, C). Additionally, histone
deacetylation in cells on polyHEMA is associated with chromatin condensation and a decrease
in nuclear size (Fig. 2D, E). Adding lrECM to cells cultured on polyHEMA did not decrease
histone acetylation levels further (data not shown), indicating that histone deacetylation
induced by lrECM is due specifically to an effect of cell rounding or cell clustering, and that
ECM ligand-induced signaling does not potentiate this effect.

To delineate the effects of cell rounding from those of cell clustering, we used a micropatterning
approach to maintain single attached cells in a rounded morphology. Cells were cultured on
micropatterned substrata that contained micrometer-sized islands of collagen surrounded by
nonadhesive regions. Cells plated on these substrata could only attach to the collagen-coated
islands; individual cells cultured on small islands were prevented from spreading. We
compared unpatterned and freely spread T4-2 cells with those patterned on 25-μm square
islands (Fig. 3A). T4-2 cells plated on micropatterned substrata remained rounded compared
to those plated on unpatterned collagen-coated substrata (Fig. 3A). Whereas control cells
formed stress fibers, patterned cells exhibited mainly cortical actin (Fig. 3A). The mean
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projected area of individual cells plated on the micropatterned substrata was significantly
reduced when compared to cells plated on tissue culture plastic (Supplemental Fig. B). Western
blot analysis showed that levels of acetylated histones H3 and H4 were reduced in patterned
cells compared to unpatterned cells (Fig. 3B, C). Quantification of DAPI staining demonstrated
that patterned cells had more compacted chromatin than unpatterned cells (Fig. 3D),
accompanied by a reduction in nuclear size in the patterned cells (Fig. 3E). These data show
that ECM-induced cell rounding directly controls histone deacetylation and chromatin
condensation in mammary epithelial cells. It further indicates that even malignant T4-2 cells
remain sensitive to shape-induced changes in their microenvironment.

Cell shape is largely governed by the actin cytoskeleton [38]. Shape dependence therefore
implies a requirement for a particular actin organization. Indeed, one of the striking differences
we noticed between cells spread on plastic and those rounded in 3D lrECM or on
micropatterned substrata was the organization of the actin cytoskeleton. Both S1 and T4-2 cells
cultured in 2D exhibited prominent stress fibers as well as cortical actin when stained with
fluorescently-tagged phalloidin (Fig. 4A). In contrast, even though the gross architectures of
the colonies formed by these cells differed substantially, individual S1 and T4-2 cells appeared
similarly rounded in 3D (Fig. 1A and Supplemental Fig. A) with mainly cortical actin (Fig.
4A). Cells rounded by culture on micropatterned substrata also showed prominent cortical actin
(Fig 4B). To address the involvement of shape and actin organization in regulation of histone
acetylation, S1 cells grown on tissue culture plastic were treated with the actin polymerization
inhibitor cytochalasin D. Treatment with this drug disrupted actin microfilaments, induced cell
rounding (Fig. 4B), and reduced the levels of acetylated histones H3 and H4 (Fig. 4C, D).
Importantly, removal of the drug reversed cell morphology (data not shown) and induced an
increase in histone acetylation (Fig. 4D). Therefore, cytoskeletal changes associated with cell
rounding induce global histone deacetylation.

Culture in 3D lrECM induces a global reduction in gene expression
One question that arises from these observations is whether the histone deacetylation in 3D
culture regulates gene expression. Indeed, broad acetylation of histones H3 and H4 was shown
to lead to chromatin decondensation and a structure permissive for transcription (reviewed in
[39]), whereas histone deacetylation correlated with the repressed state of chromatin and
alterations in patterns of gene expression [40]. To determine whether culture in 3D lrECM
induced a reduction in gene expression in addition to global histone deacetylation, we
performed microarray analysis. mRNA samples from S1 cells cultured on plastic or in 3D
lrECM were fluorescently tagged and co-hybridized to cDNA microarrays, and the intensity
of hybridizations were compared. Genes expressed differentially between the two conditions
were selected for analysis. We found that cells cultured in 3D lrECM showed an appreciable
reduction in gene expression as compared to cells cultured on plastic (Fig. 5A; Supplemental
Table.1). Of the differentially expressed genes, 162 genes were expressed at lower levels in
3D, compared to 91 expressed at higher levels. This decrease in gene expression is consistent
with the global histone deacetylation observed in 3D cultures.

Acetylation of histones in the promoter regions and other regulatory cis-elements clearly affects
transcription of a large number of genes [17,18,41]. To address the question of whether the
lrECM-dependent global deacetylation could specifically affect the promoter of a functionally
relevant gene, we focused our attention on the cell cycle inhibitor p21. It was previously shown
that the expression of the p21 gene is controlled by the acetylation status of histones associated
with its promoter [42,43]. Indeed, from our array data, the transcript level of p21 in S1 cells
in 3D was reduced to 76% of that in cells in 2D after 10 days culture (Supplemental Table 1).
Quantitative real-time RT/PCR confirmed that p21 mRNA levels were reduced in 3D compared
to 2D (Fig. 5B). To determine whether this reduction in expression is correlated with reduced
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acetylation at the promoter region of the p21 gene, we performed chromatin
immunoprecipitation (ChIP) experiments. Lysates from S1 cells cultured in 2D or 3D were
immunoprecipitated for acetylated histones H3 or H4, and the remaining associated DNA was
PCR-amplified using primers specific for the p21 promoter. Culturing the cells in 3D lrECM
induced a dramatic reduction of histone acetylation in the p21 promoter (Fig. 5C). This result
is consistent with the reduced expression of p21 observed by microarray analysis and RT/PCR.
These data indicate that lrECM-induced histone deacetylation is associated with a functional
reduction of gene expression.

Discussion
The interactions between a cell and its local microenvironment have profound effects on cell
shape, cytoskeletal and nuclear matrix organization, chromatin structure, and gene expression
[24,44–46]. In this study, we found that culture of human mammary epithelial cells within 3D
lrECM induced cell rounding and global histone deacetylation. Histone deacetylation
correlates with chromatin condensation and reduced gene expression. These data are
corroborated by previous studies demonstrating that lrECM-induced morphogenesis correlates
with reduced histone acetylation and increased histone methylation [24,25,28,44]. Cells
receive at least two types of signals from laminin-rich ECM gels: biochemical signals from the
engagement of cell surface receptors, and biophysical signals from the change in their
morphology [9]. Altering cellular shape has been shown to regulate nuclear morphology and
chromatin structure [37]. Using non-adhesive and micropatterned substrata as well as inhibitors
of actin polymerization, we determined that cell rounding is a sufficient stimulus to induce
histone deacetylation and chromatin condensation in the absence of biochemical signals
transduced from the ECM; notably, adding ECM to pre-rounded cells did not potentiate the
shape-induced histone deacetylation.

There is increasing evidence that cell rounding inhibits cell proliferation [3,4], and that histone
acetylation levels correlate with cell cycle status [47]. We found that culturing cells on plastic
and in 3D lrECM led to a similar percentage of growth-arrested cells (Supplemental Fig. C).
Furthermore, global histone deacetylation was detected in T4-2 cells cultured in 3D, although
these cells failed to growth arrest (data not shown). Therefore, the ECM-induced reduction in
histone acetylation does not correlate with decreased proliferation in this system. S1 cells
undergo growth arrest after 10 days culture in both 2D and 3D. However, transcription levels
of the p21 gene were lower in 3D than in 2D culture, suggesting that the growth arrest in 3D
may be regulated by other proteins or signaling pathways. Consistent with this possibility, we
previously reported that cell cycle arrest in 3D culture was accompanied by progressive
hypophosphorylation of the retinoblastoma (Rb) gene and induction of the cyclin-dependent
kinase (CDK) inhibitor p27kip1[48].

Results over the past two decades appear to support the hypothesis that the ECM is dynamically
coupled to the nucleus through the cytoskeleton and the nuclear matrix [1,49–51]. One
attractive potential mechanism to regulate chromatin structure involves signaling from the
cytoskeleton. We found that cell rounding (either in 3D lrECM or on micropatterned substrata)
altered the actin cytoskeleton and prevented the formation of stress fibers, and that blocking
actin polymerization/depolymerization with cytochalasin D led to histone deacetylation.
Disrupting microtubules also causes cell rounding [52] and has been shown to induce histone
deacetylation [53]. These results suggest a role for low intracellular tension generated by
cytoskeletal organization in the control of histone acetylation. It has been shown that disrupting
actomyosin tension generation by inhibiting myosin light chain kinase, RhoA, or Rho-kinase
leads to global histone deacetylation, and conversely, increasing actomyosin contractility
enhances histone acetylation levels in gastric carcinoma cells [41]. Increasing tension by
application of shear stress leads to histone acetylation, chromatin remodeling, and changes in
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gene expression in endothelial and embryonic stem cells [54,55]. In agreement, experimental
and theoretical evidence supports a specific role for the actin cytoskeleton in physically
connecting sites of cell adhesion to ECM with the nucleus [51] as well as integrating changes
in cell and nuclear shape [56,57]. In this scenario it is thought that tension developed by actin
bundles in spread cells deforms the nucleus to increase its projected area, while a decrease in
tension (as occurs in round cells) would have the opposite effects. In support of this model we
observed a systematic reduction in nuclear diameter in round cells compared to control cells.
Based on the collective data described, it is tempting to speculate that cell shape regulates
histone acetylation through mechanical transmission of actin/cytoskeletal tension to the
nucleus.

Histone acetylation and deacetylation are catalyzed by HATs and HDACs; therefore cell
rounding could regulate histone acetylation by altering the total cellular levels or activities of
these enzymes, changing their levels in the nucleus, or their association with the nuclear matrix.
Cell rounding reduces the calibre of nuclear pore complexes and reduces the rate of
nucleocytoplasmic transport [58,59], which could directly affect the shuttling of HATs and
HDACs and their relative levels within the nucleus. Biochemically, HAT and HDAC shuttling
is regulated by phosphorylation which changes their binding affinity to chaperone proteins that
usher them into or out of the nucleus [60]. Indeed, during skeletal muscle differentiation
Ca2+/calmodulin-dependent protein kinase (CaMK) activity regulates class II HDAC
phosphorylation, binding to 14-3-3 protein chaperone, and subsequent nuclear shuttling [61].
Additionally, some HDACs have been found to bind to actin filaments and microtubules in the
cytoplasm, potentially sequestering them away from the nuclear compartment [62].
Depolymerizing portions of the cytoskeleton may release HDACs and allow them to shuttle
from the cytoplasm into the nucleus, tipping the balance in favour of histone deacetylation. In
general, regulation of HDAC and HAT activities is a large field of study which is opening an
ever greater array of possible mechanisms by which cell shape might regulate histone
acetylation.

Despite the fact that ECM-induced cell rounding leads to global histone deacetylation, and that
the deacetylation is associated with a reduction in overall gene expression in 3D cultures,
histones associated with genes specifically upregulated during differentiation are most
probably acetylated locally. For example, histone H4 acetylation is increased in the promoter
region of the α-casein milk protein gene in mammary epithelial cells in the presence of collagen
[63], and histone H3 and H4 acetylation is increased in the promoter region of the β-casein
gene during differentiation [64,65]. It will be interesting to determine how cell shape affects
the acetylation status of these and other differentiation-associated genes. Although global
histone deacetylation is observed during functional differentiation of mammary epithelial cells
[24,28] and is regulated by cell rounding, the latter per se may not explain all the effects of
ECM on functional differentiation; indeed, the assembly of a basement membrane is required
in addition to cell rounding for the reorganization of the nuclear protein NuMA and tissue-
specific functions [24], and biochemical signals transmitted through integrin and non-integrin
laminin receptors are required for functional differentiation and β-casein expression [9,12,
66,67].

We have provided strong evidence for a link between ECM-regulated cell shape, chromatin
structure and gene expression. Since ECM influences morphology and gene expression in a
wide variety of tissues [reviewed in [68–72]], it is most likely that cell shape-induced changes
in global histone acetylation and chromatin structure are a common mechanism in regulation
of tissue- and context-specific gene expression in many organs.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations
ECM  

extracellular matrix

lrECM  
laminin-rich reconstituted ECM

HATs  
histone acetyltransferases

HDACs  
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histone deacetylases

polyHEMA  
poly(2-hydroxyethyl methacrylate)

TPA  
12-o-tetradecanoylphorbol 13-acetate

2D  
two-dimension(al)

3D  
three-dimension(al)

AcH3 and AcH4 
acetylated histone H3 and H4

ChIP  
chromatin immunoprecipitation
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Figure 1.
Culturing mammary epithelial cells in 3D lrECM induces alterations in cellular morphology
and global histone deacetylation. (A) Phase contrast and immunofluorescence images of AcH4
and DAPI staining in S1 cells on tissue culture plastic (2D) or within lrECM (3D). Scale bars,
50 μm; (B) Western blot analysis of AcH3 and AcH4 in S1 and T4-2 cells cultured in 2D and
3D; (C) Bar graphs quantifying the relative AcH4 levels in S1 (n=4) and T4-2 (n=2) cells
cultured in 2D and 3D; error bars indicate s.e.m. (*) p<0.05; (D) Quantification of nuclear
DAPI staining for S1 cells cultured in 2D and 3D. (**) p<0.01; n=20; (E) Quantification of
nuclear diameter for S1 cells cultured in 2D and 3D; error bars indicate s.e.m. (**) p<0.01;
n=20.
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Figure 2.
Cell rounding on the nonadhesive substratum polyHEMA induces global histone deacetylation.
(A) Phase contrast images of S1 cells cultured in 2D on tissue culture plastic or rounded on
polyHEMA. Immunofluorescence images of AcH4 and DAPI staining in S1 cells cultured in
2D and on polyHEMA; (B) Western blot analysis of AcH3 and AcH4 in S1 and T4-2 cells
cultured in 2D or on polyHEMA; (C) Bar graphs quantifying the relative AcH4 levels in S1
(n=4) and T4-2 (n=2) cells cultured in 2D and on polyHEMA. (**) p<0.01; (D) Quantification
of nuclear DAPI staining in S1 cells cultured in 2D and on polyHEMA. (**) p<0.01; n=20;
(E) Quantification of nuclear diameter for S1 cells cultured in 2D and on polyHEMA. (**)
p<0.01; n=20.
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Figure 3.
Cell rounding on micropatterned substrata induces histone deacetylation. (A) Phase contrast
and immunofluorescence images of phalloidin-stained T4-2 cells cultured on unpatterned
substratum (control) or substratum patterned with 25-μm square islands (pattern) for 24 hours.
Scale bars, 50 μm; (B) Western blot analysis of AcH3 and AcH4 in T4-2 cells cultured on
unpatterned and patterned substrata; (C) Bar graphs quantifying the relative AcH4 levels in
T4-2 cells. (*) p<0.05, n=4; (D) Quantification of nuclear DAPI staining for T4-2 cells cultured
on unpatterned and patterned substrata. (**) p<0.01; n=20; (E) Quantification of nuclear
diameter for T4-2 cells cultured on unpatterned and patterned substrata. (**) p<0.01; n=20.
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Figure 4.
Actin cytoskeleton regulates cell rounding and histone deacetylation. (A) Immunofluorescence
images of phalloidin-stained S1 and T4-2 cells cultured in 2D or 3D; (B) Phase contrast and
immunofluorescence images of phalloidin-stained S1 cells in the presence or absence of
cytochalasin D (cytoD). Scale bars, 50 μm; (C) Western blot for AcH3 and AcH4 in S1 cells
in the presence or absence of cytochalasin D. (D) Bar graphs of relative AcH4 levels in the
control S1 cells (control), cells treated with cytochalasin D (cytoD), and cells treated with
cytochalasin D followed by removal of the drug (cytoD washout). (*) p<0.05, n=4.
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Figure 5.
Culturing mammary epithelial cells in 3D lrECM induces a global reduction in gene expression.
(A) Ratio of global mRNA levels for S1 cells cultured in 2D and 3D lrECM. The x-axis shows
mean ratio of 3D/2D for four experiments; all genes with p< 0.01 are displayed: 91 genes have
higher mRNA levels in 3D (red); 162 genes have lower levels in 3D (green). (B) Quantitative
RT/PCR analysis for p21 normalized to levels of 18S in the same samples. (**) p<0.01; (C)
ChIP assay measuring levels of AcH3 and AcH4 in the p21 promoter for S1 cells cultured in
2D and 3D.
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