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Abstract

Quinazoline-basedA1-adrenoceptor antagonists, in par-

ticular doxazosin and terazosin, are suggested to dis-

play antineoplastic activity against prostate cancers.

However, there are few studies elucidating the effect

of prazosin. In this study, prazosin displayed antipro-

liferative activity superior to that of other A1-blockers,

including doxazosin, terazosin, tamsulosin, and phen-

tolamine. Prazosin induced G2 checkpoint arrest and

subsequent apoptosis in prostate cancer PC-3, DU-145,

and LNCaP cells. In p53-null PC-3 cells, prazosin in-

duced an increase in DNA strand breaks and ATM/ATR

checkpoint pathways, leading to the activation of down-

stream signaling cascades, including Cdc25c phos-

phorylation at Ser216, nuclear export of Cdc25c, and

cyclin-dependent kinase (Cdk) 1 phosphorylation at

Tyr15. The data, together with sustained elevated cyclin

A levels (other than cyclin B1 levels), suggested that

Cdk1 activity was inactivated by prazosin. Moreover,

prazosin triggered mitochondria-mediated and caspase-

executed apoptotic pathways in PC-3 cells. The oral ad-

ministration of prazosin significantly reduced tumormass

in PC-3–derived cancer xenografts in nude mice. In sum-

mary, we suggest that prazosin is a potential antitumor

agent that induces cell apoptosis through the induction

of DNA damage stress, leading to Cdk1 inactivation

and G2 checkpoint arrest. Subsequently, mitochondria-

mediated caspase cascades are triggered to induce

apoptosis in PC-3 cells.
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Introduction

A number of discoveries have identified the molecular

mechanism of apoptosis and have clarified its contribution

to therapeutic outcome, in particular cancer chemothera-

peutics. In the prostate, androgen deprivation substantially

causes apoptosis in androgen-dependent prostate cancer

cells, but not in androgen-independent tumor epithelial cells

[1]. However, these nonsusceptible tumor cells undergo apop-

tosis with numerous chemotherapeutic agents and irradiation

[2,3]. Recently, many apoptotic strategies based on different mo-

lecular mechanisms have been proposed to deal with androgen-

independent prostate cancer cells. The death receptor pathway

is one of the targets in apoptotic strategies. Several agents have

been identified as triggering apoptosis in androgen-independent

prostate cancer cells through this extrinsic apoptosis pathway,

for example, valproic acid through overexpression of Fas and

Fas ligand [4], coral prostanoids through Fas clustering [5], and

flavonoids through induction of death receptor 5 expression [6].

Recently, tubulin has been one of the most widely studied

targets. A variety of natural components and synthetic com-

pounds have been reported to bind to tubulin, causing cell-cycle

arrest and apoptosis in many types of tumor cells, including

androgen-independent prostate cancer cells [7,8]. Moreover,

mitochondria-involved apoptotic signaling always mutually inter-

acts with the above pathways and explains most of the apoptotic

mechanisms of chemotherapeutic agents [9–11].

a1-Adrenoceptor antagonists are used as first-line medi-

cal treatment for patients with benign prostatic hyperplasia–

related lower urinary tract symptoms. Recently, the effect of

a1-adrenoceptor antagonists on the apoptosis of both androgen-

dependent and androgen-independent prostate cancer cells

has been investigated. Interestingly, several lines of evidence

suggest that apoptotic effect is independent of the blockade of

a1-adrenoceptors. One of the evidences suggests that apop-

totic effect is specific for quinazoline-based antagonists (e.g.,

doxazosin and terazosin) other than sulfonamide derivatives

(e.g., tamsulosin) [12,13]. Doxazosin is the most widely inves-

tigated a1-adrenoceptor antagonist. Several signaling path-

ways have been identified to explain doxazosin-induced anoikis
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and cell apoptosis, namely, 1) activation of transforming

growth factor-b and InB pathways [14]; 2) inhibition of protein

kinase B/Akt activation [15]; 3) induction of death receptor–

mediated apoptosis [16]; 4) increase in Bax expression [17];

and 5) reduction in focal adhesion kinase [18].

There is another implication behind the discovery of

doxazosin in anticancer study—‘‘old drugs with new indica-

tion.’’ Two advantages in this strategy are shortening of dis-

covery time and reduction of discovery cost. Based on this

strategy, we have performed large-scale anticancer screen-

ing tests in clinically used drugs with sulforhodamine B (SRB)

assay, which is regularly used in the US National Cancer In-

stitute’s disease-oriented anticancer drug discovery screen.

As expected, the class of a1-adrenoceptor antagonists was

able to display anticancer activity in numerous prostate can-

cer cell lines, including PC-3, DU-145, and LNCaP. Interest-

ingly, prazosin (a quinazoline derivative) was more potent

than doxazosin in these cancer cell lines. After the investi-

gation of mechanism, the data showed that prazosin induced

apoptotic cell death through pathways distinct from those

caused by doxazosin. Furthermore, not only quinazoline-

based derivatives but also imidazoline-based derivatives

(i.e., phentolamine) displayed anticancer activity. In this study,

anticancer mechanism and in vivo efficacy have been deter-

mined to demonstrate the anticancer potential of prazosin.

Materials and Methods

Materials

RPMI 1640 medium, fetal bovine serum (FBS), penicillin,

streptomycin, and all other tissue culture regents were ob-

tained from GIBCO/BRL Life Technologies (Grand Island,

NY). Antibodies to GRP78 (glucose-regulated protein 78), Bcl-2,

Mcl-1, Bak, Bax, poly(ADP-ribose)polymerase (PARP), cy-

clins A and B1, cyclin-dependent kinase (Cdk) 1, Cdk2, Cdc25c,

and anti-mouse and anti-rabbit IgG were obtained from Santa

Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies to p53,

phosphor-p53Ser15, p21Cip1/Waf1, p27Kip1, caspase-9, caspase-8,

caspase-7, phospho-Cdk1Tyr15, phospho-Cdk1Thr161, andBid

were obtained fromCell Signaling Technologies (Boston, MA).

Antibodies to DADD153 and caspase-3 were obtained from

Imgenex (San Diego, CA). Antibody to a-tubulin was obtained

from Serotec Products (Beverly, MA). Antibody to m-calpain

was obtained from BioVision (Mountain View, CA). Terminal

uridine deoxynucleotidyl transferase dUTP nick end label-

ing (TUNEL) apoptosis detection kits were obtained from

Promega (Madison, WI). Hoechst 33342, etoposide, EDTA,

leupeptin, dithiothreitol, phenylmethylsulfonylfluoride, SRB,

propidium iodide (PI), and all of the other chemical reagents

were obtained from Sigma (St. Louis, MO).

Cell Culture

The NCI/ADR-RES cell line was obtained from the DTP

Human Tumor Cell Line Screen (Developmental Therapeu-

tics Program, National Cancer Institute). The other cancer

cell lines were obtained from the American Type Culture Col-

lection (Rockville, MD). Human cancer cells were cultured in

RPMI 1640 medium with 10% FBS (vol/vol) and penicillin

(100 U/ml)/streptomycin (100 mg/ml). Cultures were main-

tained in a humidified incubator at 37jC in 5% CO2/95% air.

SRB Assays

Cells were seeded on 96-well plates in a medium with 5%

FBS. After 24 hours, cells were fixed with 10% trichloroacetic

acid to represent the cell population at the time of drug ad-

dition (T0). After additional incubation of DMSO or drugs for

48 hours, the cells were fixed with 10% trichloroacetic acid,

and SRB at 0.4% (wt/vol) in 1% acetic acid was added to

stain cells. Unbound SRB was washed out by 1% acetic acid,

and SRB-bound cells were solubilized with 10 mM Trizma

base. Absorbance was read at a wavelength of 515 nm. Us-

ing the following absorbance measurements, such as time

zero (T0), control growth (C), and cell growth in the presence

of the drug (Tx), the percentage of growth was calculated at

each of the compound concentrations levels. Percent growth

inhibition was calculated as: 100 � [(Tx � T0)/(C � T0)] �
100. Fifty percent growth inhibition (IC50) is determined at the

drug concentration that results in a 50% reduction in total

protein increase in control cells during compound incubation.

In Situ Labeling of Apoptotic Cells

In situ detection of apoptotic cells was performed using

Hoechst 33342 staining and TUNEL apoptosis detection

methods. After a 36-hour treatment with or without prazosin

(30 mM), the cells were washed twice with PBS, stained with

Hoechst 33342 (1 mg/ml) for 15 minutes at 37jC, and fixed

for 15 minutes with 4% paraformaldehyde. They were ex-

amined under a confocal laser microscopic system (Leica

TCS SP2; Leica Microsystems, Mannheim, Germany). The

TUNEL method identifies apoptotic cells using TdT to transfer

biotin dUTP to the free 3V-OH of cleaved DNA. Biotin-labeled

cleavage siteswere then visualized by reaction with fluorescein-

conjugated avidin. Cells were treated with or without prazosin.

Then the cells were washed, fixed, and stained for apoptotic

detection, in accordancewith the protocol provided byPromega.

Photomicrographs were obtained with a fluorescence micro-

scope (Nikon, Tokyo, Japan).

FACScan Flow Cytometric Assay

After the treatment of cells with vehicle (0.1% DMSO) or

compound for the indicated time courses, the cells were

harvested by trypsinization, fixed with 70% (vol/vol) alcohol

at 4jC for 30 minutes, and washed with PBS. After centrifu-

gation, the cells were incubated in 0.1 M phosphate–citric

acid buffer (0.2 M NaHPO4 and 0.1 M citric acid, pH 7.8) for

30 minutes at room temperature. Then the cells were centri-

fuged and resuspended with 0.5 ml of PI solution contain-

ing Triton X-100 (0.1% vol/vol), RNase (100 mg/ml), and PI

(80 mg/ml). DNA content was analyzed with FACScan and

CellQuest software (Becton Dickinson, Mountain View, CA).

Western Blot Analysis

After the indicated exposure time of cells to DMSO or the

indicated agent, cells were washed twice with ice-cold PBS
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and the reaction was terminated by the addition of 100 ml of
ice-cold lysis buffer (10 mM Tris–HCl pH 7.4, 150 mM NaCl,

1 mM EGTA, 1 mM phenylmethylsulfonylfluoride, 10 mg/ml

aprotinin, 10 mg/ml leupeptin, and 1% Triton X-100). For

Western blot analysis, the amount of proteins (40 mg) was
separated by electrophoresis into a 10% or a 15% polyacryl-

amide gel and transferred to a nitrocellulose membrane.

After an overnight incubation at 4jC in PBS/5% nonfat milk,

the membrane was washed with PBS/0.1% Tween 20 for

1 hour and immunoreacted with the indicated antibody for

2 hours at room temperature. After four washings with PBS/

0.1% Tween 20, the anti-mouse or anti-rabbit IgG (diluted

1:2000) was applied to the membranes for 1 hour at room

temperature. The membranes were washed with PBS/0.1%

Tween 20 for 1 hour, and signal detection was performed with

an enhanced chemiluminescence detection kit (Amersham,

Buckinghamshire, UK).

Comet Assay to Monitor the Integrity of Chromosomal DNA

Prazosin-treated or etoposide-treated cells (2 � 105;

30 minutes) were pelleted and resuspended in ice-cold PBS.

The resuspended cells were mixed with 1.5% low-melting-

point agarose. This mixture was loaded onto a fully frosted

slide that had been precoated with 0.7% agarose, and a cov-

erslip was then applied to the slide. The slides were sub-

merged in prechilled lysis solution (1% Triton X-100, 2.5 M

NaCl, and 10 mM EDTA, pH 10.5) for 1 hour at 4jC. After the
slides had been soaked with prechilled unwinding and elec-

trophoresis buffer (0.3 M NaOH and 1 mM EDTA) for 20 min-

utes, they were subjected to electrophoresis for 15 minutes

at 0.5 V/cm (20 mA). After electrophoresis, the slides were

stained with 1� Sybr Gold (Molecular Probes, Eugene, OR),

and nuclei images were visualized and captured at 400�mag-

nification with an Axioplan 2 fluorescence microscope (Zeiss,

Tokyo, Japan) equippedwith a charge-coupled device camera

(Optronics, Goleta, CA). Hundreds of cells were scored to cal-

culate the overall percentage of Comet tail–positive cells.

In Vivo Antitumor Models

PC-3-derived cancer xenografts in nude mice were used

as an in vivomodel. The nude mice were subcutaneously in-

jected with PC-3 cells (107 cell/mouse). The tumors were

measured every 2 to 3 days. When the tumors had reached a

volume of 100 to 140 mm3, the mice were divided into three

groups (n = 7) and drug treatment was initiated. Prazosin

was suspended in 0.5% carboxymethyl cellulose (CMC).

Vehicle (0.5% CMC) or prazosin (3 and 10 mg/kg) was given

orally every day. The length (l ) and width (w ) of the tumor

were measured every 2 to 3 days, and tumor volume was

calculated as lw 2/2. The protocols of the in vivo study were

approved by the Animal Care and Use Committee at National

Taiwan University.

Data Analysis

The compound was dissolved in DMSO. The final con-

centration of DMSOwas 0.1% in cells. Data are presented as

the mean ± SEM of the indicated number of separate experi-

ments. Statistical analysis of data was performed with one-

way analysis of variance followed by Bonferroni t-test. P <

.05 was considered significant.

Results

Examination of the Anticancer Activities of Several

a1-Adrenoceptor Antagonists
The effect of several a1-adrenoceptor antagonists on cell

proliferation was evaluated in androgen-dependent (LNCaP)

and androgen-independent (PC-3 and DU-145) prostate

cancer cell lines. As demonstrated in Figure 1A, all of these

drugs inhibited cell growth in a dose-dependent manner. The

concentration of 50% inhibition on cell growth (IC50) was

obtained (Figure 1B). The data showed that prazosin was

most effective, with IC50 values of 11.1, 16.7, and 7.5 mM in

PC-3, DU-145, and LNCaP, respectively. The order of po-

tency was as follows: prazosin > doxazosin > phentolamine >

terazosin > tamsulosin. Interestingly, prazosin was two-fold

more potent than doxazosin, the most widely investigated

a1-adrenoceptor antagonist [12–18]. Cell morphology was

examined in PC-3 cells. The cells exhibited multinucleus

features and formation of apoptotic bodies after 18 and 24

hours of treatment with prazosin, respectively (Figure 1C).

The TUNEL reaction and Hoechst 33342 staining assays

showed that prazosin induced an increase in positive stain-

ing, suggesting cell apoptosis in response to prazosin action

(Figure 1D).

Detection of Cell-Cycle Progression and Regulators in

p53-Null PC-3

Flow cytometric analysis showed that doxazosin and

prazosin effectively induced an increase in sub-G1 popula-

tion (apoptosis; Figure 2A). Quantified data showed that pra-

zosin, but not doxazosin, induced a concentration-dependent

and time-dependent G2/M arrest of the cell cycle and sub-

sequent apoptosis (Figure 2, B and C). The data also dem-

onstrated a correlation between G2/M arrest and growth

inhibition (Figure 2B, solid curve) in response to prazosin-

mediated (other than doxazosin-mediated) effects. Accord-

ingly, several cell-cycle regulators were examined. Cyclin A

and its catalytic partner Cdk2 dominate S and G2 phases;

cyclin B1 and Cdk1 regulate cell-cycle progression from G2

to M phase. The data demonstrated that following a 6-hour

exposure to prazosin, cyclin A was upregulated and sustained

at a high level. In contrast, a short-term elevation, followed

by a decreased cyclin B level, was induced by prazosin (Fig-

ure 3A). These data were different from those by antimitotic

agents. In our data (not shown), both Taxol (Sigma, Louis,

MA) and vincristine (two tubulin-targeting agents) induced

mitotic arrest associated with upregulation of cyclin B1 ex-

pression. Furthermore, using monoclonal antibody MPM-2 to

recognize mitotic phosphoproteins, the MPM-2 expression

stimulated by prazosin (30 mM), Taxol (0.1 mM), and vincristine

(0.1 mM) for 24 hours was 88%, 240%, and 207%, respec-

tively, when compared with 100% of control, revealing that

prazosin did not increase MPM-2 expression. Collectively, it is
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suggested that prazosin induces G2 other than the mitotic

arrest of the cell cycle in PC-3.

To identify Cdk1 activity, the phosphorylation state of

Cdk1 was examined because Cdk1 phosphorylation at

Thr161 and dephosphorylation at Tyr15 are responsible for

the activation of Cdk1 [19]. As a result, prazosin induced a

time-dependent increase in Cdk1 phosphorylation at Tyr15,

but not at Thr161, indicating inhibition of Cdk1 activity (Fig-

ure 3B). Several lines of evidence suggest that dephosphor-

ylation of Cdk1 at Tyr15 is mainly achieved by the nuclear

phosphatase Cdc25c. Chk1 and Chk2 can phosphorylate

Cdc25c at Ser216, which subsequently binds to 14-3-3, lead-

ing to cytoplasmic sequestration of Cdc25c [20,21]. Our data

demonstrated that prazosin stimulated an increase in

Cdc25c phosphorylation at Ser216 and a subsequent de-

crease in nuclear Cdc25c (Figure 3B). The results may ex-

plain the accumulation of phosphorylation at Tyr15 and the

inactivation of Cdk1 in response to prazosin action.

Figure 1. Antineoplastic effect of a-adrenoceptor antagonists on several human prostate cancer cell lines. The compound, at the indicated concentration, was

added to cells for 48 hours. Then the cells were fixed and stained with SRB. After a series of washings, bound SRB was subsequently solubilized and absorbance

was read at a wavelength of 515 nm. Data are expressed as the mean ± SEM of four independent determinations (each in triplicate) (A). IC50 values were

calculated as described in the Materials and Methods section (B). PC-3 cells were treated with or without prazosin (30 �M) for the indicated times. Cell morphology

was detected by microscopic examination (C). PC-3 cells were treated with or without prazosin (30 �M) for 36 hours. Apoptosis was detected by TUNEL and

Hoechst 33342 reaction techniques (D). Scale bar, 20 �m. *IC50 > 100 �M.
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Figure 2. Effect of a-adrenoceptor antagonists on cell-cycle progression. Cells were treated with the indicated drug at various concentrations for 48 hours. Then the

cells were fixed and stained with PI to analyze DNA content by FACScan flow cytometric analysis. Data are representative of three independent experiments (A and

B). The inhibition of cell growth by doxazosin and prazosin using SRB assay (solid curves) is demonstrated. The data show that growth inhibition is correlated with

the population in G2/M phase in response to prazosin action, but not with PC-3 cells in response to doxazosin action (B). Prazosin (30 �M)–mediated time-

dependent change in G2/M phase and sub-G1 population were detected by FACScan flow cytometric analysis in PC-3 cells. Data are expressed as the mean ±

SEM of three independent determinations. *P < .05 and **P < .01 compared with the respective controls (zero time) (C).
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Identification of Upstream Events Contributing to

Cell-Cycle Dysregulation

Caffeine, an inhibitor of ATM and ATR kinase activities,

was used to examine the role of ATM and ATR kinases. As

demonstrated in Figure 4A, caffeine was able to inhibit

prazosin-mediated G2 arrest and to restore the increased

G1 population of the cell cycle, suggesting the functional in-

volvement of ATM and/or ATR checkpoint pathways. Fur-

thermore, Comet assay showed that the exposure of PC-3

cells to prazosin (1 hour) induced a concentration-dependent

increase in DNA strand breaks; etoposide, a topoisomerase

II inhibitor, was used as a positive control (Figure 4B).

Determination of DNA Damage–Induced Apoptotic

Signaling Cascades

An important issue of DNA damage is that it not only

targets DNA but also causes stress in other cellular com-

ponents, leading to amplification of apoptosis. The mito-

chondria and endoplasmic reticulum are two susceptible

organelles [22,23]. To determine the role of endoplasmic

reticulum stress, several related proteins were examined.

However, prazosin neither stimulated the upregulation of

GRP78 and GADD153 (growth and DNA damage protein

153) nor induced the cleavage of m-calpain (Figure 5A).

Next, mitochondria-related events were examined. After a

12-hour treatment, prazosin induced the cleavage of Mcl-1

into several fragments (Figure 5B). It also triggered the

cleavage of Bad and Bid associated with the formation of

truncated fragments (Figure 5C). The data suggest that mi-

tochondria are the susceptible organelles for apoptotic reac-

tion in response to DNA damage stress.

Activation of caspases leads to the cleavage and activa-

tion/inactivation of many critical cellular substrates, including

the DNA repair enzyme PARP. To determine the caspases

committing prazosin-treated cells to apoptosis, the expres-

sions of several caspases were detected by Western immu-

noblotting. After treatment with prazosin, the cleavage of

PARP and caspases into catalytically active fragments was

clearly detected in a time-dependent manner, suggesting the

activation of these caspases (Figure 5D).

Prazosin Displays In Vivo Antitumor Efficacy

We subsequently carried out an in vivo study. The PC-3-

derived cancer xenografts in nude mice were used as an

Figure 3. Effect of prazosin on the expression of several cell-cycle regulators. (A and B) PC-3 cells were incubated in the absence or in the presence of prazosin

(30 �M) for the indicated times. Then the cells were harvested and lysed for the detection of protein expression with the antibody by Western blot analysis. For

Western blot analysis, the amount of proteins (40 �g) was separated by electrophoresis in a 10% or a 15% polyacrylamide gel, transferred to a nitrocellulose

membrane, and immunoreacted with the indicated antibody.
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in vivo model. As demonstrated in Figure 6, oral administra-

tion of prazosin caused a significant inhibition of tumor growth

without loss of body weight, indicating that prazosin under the

treatment dosages had negligible toxic effect (Figure 6).

Discussion

In the past decades, numerous prospects concerning chemo-

therapeutic approaches to prostate cancer have emerged.

Quinazoline-based a1-adrenoceptor antagonists are sug-

gested to display antitumor activity against prostate tumors.

The apoptotic and antiangiogenic effects of doxazosin and

terazosin have been widely explored [12–18]. However,

prazosin, which is also a quinazoline-based a1-blocker, does

not get equal attention in anticancer approach. One of the

reasons is that the plasma half-life of prazosin is shorter

(about 2–4 hours) than those of terazosin (12 hours) and

doxazosin (22 hours). However, the pharmacokinetic problem

can be resolved by improvement of the dosage form or by

multiple administrations to achieve the therapeutic plasma

concentration at which prazosin shows benefits in cancer

chemotherapy. In this study, prazosin showed superior inhib-

itory effect on proliferation in human androgen-dependent

and androgen-independent prostate cancer cells.

Checkpoints are the pathways that halt the progression

of cell cycle in response to cellular stress. The targets on

checkpoint pathways are potential anticancer strategies be-

cause abrogation of checkpoint function drives tumor cells

toward apoptosis and enhances the efficacy of oncotherapy

[2,8,24]. The regulation of cell-cycle progression by prazosin

is distinct from that by doxazosin. Prazosin induced G2 check-

point arrest before apoptosis, whereas doxazosin did not

cause any checkpoint arrest of the cell cycle. Several cellular

stresses may trigger checkpoint pathways, leading to cell-

cycle arrest at G2 phase. DNA damage is one of the feasible

stimuli [20,21,25]. Comet assay provided evidence that pra-

zosin induced DNA damage stress, triggering the activation of

ATM/ATR checkpoint pathways. One important issue is to

identify signaling cascades during DNA damage and G2

checkpoint arrest. The cyclin B/Cdk1 complex activity is a

candidate factor because it regulates cell-cycle progression

fromG2 to M phase [19–21,25]. It has been well identified that

Cdk1 phosphorylation at Thr161 and Tyr15 may oppositely

regulate its activity. The phosphorylation at Thr161 (mainly by

Cdk-activating kinase) is required for Cdk1 activation, where-

as the phosphorylation at Tyr15 (mainly by Wee-1 kinase)

inhibits Cdk1 activity [19]. Recently, it has been suggested that

Wee-1 plays a crucial role in keeping Cdk1 inactivation andG2

checkpoint arrest in prostate cancer cells [26]. The present

work showed that prazosin induced Cdk1 phosphorylation at

Tyr15 and downregulated cyclin B1 expression level, support-

ing that Cdk1 activity is inhibited by prazosin during the G2

arrest of the cell cycle.

The regulation of Cdc25c phosphatase on Cdk1 activity

has been explored. The nuclear-active Cdc25c phosphatase

can remove the inhibitory phosphorylation of Cdk1 at Tyr15

and can activate Cdk1 activity [19–21,27]. Chk2 and Chk1

are downstream effector kinases of ATM and ATR, respec-

tively. In response to DNA damage, activated Chk2 and Chk1

can phosphorylate Cdc25c at Ser216 and trigger its associ-

ation with 14-3-3 protein, leading to cytoplasmic sequestra-

tion of this phosphatase [20,21]. Prazosin induced a similar

pathway, including Cdc25c phosphorylation at Ser216 and

its subsequent nuclear export. The evidence may explain

Figure 4. Effect of prazosin on DNA damage stress in PC-3 cells. (A) Cells were treated with the indicated agent for 18 hours. Then the cells were fixed and stained

with PI to analyze DNA content by FACScan flow cytometric analysis. Data are expressed as the mean ± SEM of three independent determinations. (B) Comet

assay was employed to examine the integrity of chromosome DNA on treatment with prazosin (1 hour). Etoposide (50 �M) was included as a positive control. One

hundred cells were scored to calculate the overall percentage of Comet tail –positive cells. Data are expressed as the mean ± SEM of three independent

experiments. *P < .05 and ***P < .001 compared with controls.

836 Anticancer Mechanism of Prazosin in Prostate Cancers Lin et al.

Neoplasia . Vol. 9, No. 10, 2007



Figure 5. Effect of prazosin on the expression of several proteins in PC-3 cells. (A–D) Cells were incubated in the absence or in the presence of prazosin (30 �M)

for the indicated times. Then the cells were harvested and lysed for the detection of protein expression with the antibody by Western blot analysis. For Western blot

analysis, the amount of proteins (40 �g) was separated by electrophoresis in a 10% or a 15% polyacrylamide gel, transferred to a nitrocellulose membrane, and

immunoreacted with the indicated antibody.

Figure 6. In vivo antitumor study against PC-3 cells. The nude mice were subcutaneously injected with PC-3 cells (107 cell/mouse). The tumors were measured

every 2 to 3 days. When the tumors had reached a volume of 100 to 140 mm3, the mice were divided into three groups (n = 7), and vehicle (0.5% CMC) or prazosin

(3 and 10 mg/kg) was given orally every day. Tumor volume was measured every 2 to 3 days.
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prazosin-induced increase in Cdk1 phosphorylation at Tyr15

and the inactivation of this kinase.

There are numerous lines of evidence suggesting that

mitochondria-mediated pathways contribute to the apoptosis

caused by tubulin-binding agents, topoisomerase poisons,

and some other apoptotic stimuli [28–31]. Bcl-2 family pro-

tein members always play central roles in the determination

of mitochondrial membrane permeability and cell survival.

Mcl-1 cleavage occurring after Asp127 and Asp157 may gen-

erate four products of 24, 19, 17, and 12 kDa [32,33]. Bad and

Bid, two proapoptotic Bcl-2 family members, can be cleaved

into a 13-kDa and/or a 15-kDa truncated protein by caspase-3

and caspase-8, respectively [34,35]. In this study, prazosin

induced the cleavage of Mcl-1, Bad, and Bid associated with

the formation of truncated fragments in PC-3 cells. These

effects occurred after G2 checkpoint arrest but correlated

well with the activation of caspases. The data suggest that

mitochondria-mediated pathways may play a central role in

prazosin-induced apoptotic mechanism in PC-3 cells.

The nude mice xenograft model was used to examine

the in vivo antitumor potential of prazosin. The oral admin-

istration of prazosin caused a significant inhibition of tumor

growth, revealing the in vivo efficacy of this drug. However,

prazosin only induced a partial remission of tumor mass.

The short plasma half-life might be one of the possibilities.

Terazosin and doxazosin are two quinazoline-based related

drugs with longer plasma half-lives. Nevertheless, in vivo

a1-adrenoceptor blocking efficacy, but not antitumor activity,

is improved by these two analogues. It indicates that not

only the quinazoline structure but also some other func-

tional groups of prazosin structure are necessary for the

antitumor purpose. Because the effective antitumor concen-

tration of prazosin is high, one issue would be that the ther-

apeutic concentration may be largely elevated. The proposal

to combine therapy with radiation treatment may be per-

formed to reduce prazosin levels. Moreover, the structure

design based on prazosin may be another proposal. The

discovery of new quinazoline-based chemical entities is

ongoing [36].

In conclusion, the data suggest that prazosin is a potential

anticancer agent that induces apoptotic signaling cascades

in a sequential manner. The exposure of PC-3 cells to

prazosin induces DNA damage stress and activation of

ATM/ATR, leading to an increase in Cdc25c phosphorylation

at Ser216 and the subsequent nuclear export of this phos-

phatase. Because of the absence of nuclear Cdc25c, a

substantial increase in Cdk1 phosphorylation at Tyr15 results

in the inactivation of Cdk1 and G2 checkpoint arrest. Subse-

quently, mitochondria-mediated pathways are triggered by

the cleavage of the Bcl-2 family of proteins. Finally, caspase

cascades are activated to execute apoptotic cell death in

response to prazosin action.
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