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Abstract

The molecular hallmarks of inflammation-mediated

lung carcinogenesis have not been fully clarified, mainly

due to the scarcity of appropriate animal models. We

have used a silica-induced multistep lung carcinogen-

esis model driven by chronic inflammation to study the

evolution of molecular markers and genetic alterations.

We analyzed markers of DNA damage response (DDR),

proliferative stress, and telomeric stress: ;-H2AX, p16,

p53, and TERT. Lung cancer–related epigenetic and

genetic alterations, including promoter hypermethyla-

tion status of p16(CDKN2A), APC, CDH13, Rassf1, and

Nore1A, as well as mutations of Tp53, epidermal growth

factor receptor, K-ras, N-ras, and c-H-ras, have been

also studied. Our results showed DDR pathway activa-

tion in preneoplastic lesions, in association with induc-

ible nitric oxide synthase and p53 induction. p16 was

also induced in early tumorigenic progression and was

inactivated in bronchiolar dysplasias and tumors. Re-

markably, lack of mutations of Ras and epidermal

growth factor receptor, and a very low frequency of

Tp53 mutations suggest that they are not required for

tumorigenesis in this model. In contrast, epigenetic

alterations in p16(CDKN2A), CDH13, and APC, but not in

Rassf1 and Nore1A, were clearly observed. These data

suggest the existence of a specific molecular signature

of inflammation-driven lung carcinogenesis that shares

some, but not all, of the molecular landmarks of chem-

ically induced lung cancer.
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Introduction

Lung cancer is a complex disease that develops through the

progressive accumulation of both genetic and epigenetic

alterations. A number of molecular changes potentially

leading to lung cancer have already been described [1].

These changes may be induced by several genotoxic carcino-

gens [2] to which a smoker’s airways are continuously exposed.

Aside from direct carcinogens, inhaled smoke contains other

constituents that can stimulate a chronic inflammatory re-

sponse in the lung [3]. Strong evidence supports that chronic

inflammation promotes tumorigenesis [4]. Inflammatory cellular

response can induce cell proliferation and tissue repair, cre-

ating a fertile ‘‘soil’’ enriched with cytokines and growth or

angiogenic factors. Inflammatory foci are also a continuous

source for reactive oxygen species (ROS) and reactive ni-

trogen species, which may induce DNA damage, including

DNA strand breaks and adducts, mismatches, and mutations

[5,6]. These events may eventually lead to transformation and

tumorigenesis [4].

There are strong epidemiological evidences linking pulmo-

nary chronic inflammation to a higher risk of lung cancer [7]:

Chronic obstructive airway disease has been shown in many

series of patients to be an independent predictor of lung cancer

risk, and various studies have reported increased cancer risk

among adults with asthma, tuberculosis, or postinflammatory

pulmonary interstitial fibrosis, such as in patients with silicosis

and asbestosis [7]. Chronic inflammation may promote some

of the molecular changes observed in airway epithelial cells

that lead to cancer. Molecules involved in both inflammation

and tumorigenesis include proteins of the COX-2 and NF-nB
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signaling pathways, chemokines and cytokines (TNF-a, IL-1,

IL-6, and IL-8), growth and angiogenic factors (PDGF, TGF-b,
and EGF), proteolytic enzymes, and cytotoxic agents such

as ROS and nitric oxide (NO) [4,8,9]. The role of inflamma-

tion in lung carcinogenesis has not yet been clarified mainly

due to the scarcity of appropriate chronic inflammation

models of lung cancer. Several animal models have been

developed in the last decades to better understand lung car-

cinogenesis, but most of these do not provide unambiguous

information on the specific role of inflammation. Malkinson

[10] has studied a mouse model in which chronic inflamma-

tion, induced by butylated hydroxytoluene, promotes lung

carcinogenesis previously initiated by a chemical carcinogen

(methylcholanthrene). Very few animal models of cancer in

which chronic inflammation drives carcinogenesis with no

other carcinogenic insult have been molecularly character-

ized [11–13]. In the silica-induced rat lung carcinogenesis

model, a single intratracheal instillation of crystalline silica

dust suspended in saline leads to silicotic chronic inflamma-

tion and progressive proliferative epithelial lesions. Silica

leads to the formation of silicotic granulomas, which consist

of aggregates of activated macrophages that phagocytose

dust mineral, induce collagen deposition, and recruit lym-

phoid cells. The rat silicotic granulomas remain stable or

increase in size over time and, thus, are essentially irrevers-

ible. They produce several molecular mediators (interleu-

kins, TNF-a, TGF-b, NO, and so on), which promote further

inflammatory stress and fibrogenic responses within the lung

and induce progressive proliferative epithelial reactivity in

neighboring areas [14]. Therefore, this is a very useful model

for studying this type of pure chronic inflammation–driven

carcinogenesis. The severity of epithelial lesions grows over

time from alveolar and bronchiolar epithelial hyperplasias to

advanced preneoplastic lesions, and finally to adenocarci-

nomas (AC) and squamous cell carcinomas (SCC) [14,15].

According to the literature and our own experiments, lung

tumors are already induced by the 11th month in around 40%

of the rats. In later stages, after month 17, an increase in

incidence (90%) is clearly observed [14]. Most of the tumors

found in this model are AC (84%), compared to mixed car-

cinomas (8%) or SCC (8%). At the histopathological level,

this model recapitulates a number of features of the multistep

carcinogenic process observed in human peripheral lung

cancer and provides access to a wealth of preneoplastic

lesions amenable for molecular analysis. In the last decade,

several groups have studied the silicotic rat model, focusing

mainly on the short-term activation of classic inflammation-

related molecular hallmarks, including the activation of the

NF-nB and PKC signaling pathways, as well as the produc-

tion of growth factors IL-1, IL-6, TNF-a, ROS, NO, and so on

[16–19]. However, a detailed analysis of molecular altera-

tions in the progression of the preneoplastic and neoplastic

epithelial lesions in this model is still lacking.

The aim of our study was to improve our understanding of

the molecular pathways involved in inflammation-mediated

carcinogenesis and to follow molecular changes along the

process from normal epithelial cells to cancer in the silica-

induced lung cancer model. We focused our study on the

evolution of a variety of molecular markers that are already

associated with human lung cancer. Recently, several

reports have emphasized the existence of tumorigenesis

barriers that slow or inhibit the progression of preneoplastic

lesions to neoplasia [20,21]. One such barrier involves DNA

replication stress, which leads to activation of the DNA

damage checkpoint and, thereby, to apoptosis or cell cycle

arrest mediated by either p53 or p16 [22,23]. We thus have

analyzed preneoplastic and neoplastic lung lesions for a

number of well-characterized markers of DNA damage re-

sponse (DDR), proliferative stress, and telomeric stress such

as Ser139-phosphorylated histone 2AX (g-H2AX), p53, p16,

and the catalytic subunit of telomerase reverse transcriptase

(TERT). In order to dissect the molecular profile, we also

studied lung cancer–related epigenetic and genetic alter-

ations, including promoter hypermethylation status of p16

(CDKN2A), APC, CDH13, Rassf1, and Nore1A, and muta-

tions of Tp53, epidermal growth factor receptor (EGFR),

K-ras, N-ras, and c-H-ras. In brief, our study shows the rel-

evance of a set of molecular and epigenetic alterations, rather

than of ‘‘classic’’ mutations, in the multistep progression of

an inflammation-mediated lung cancer model.

Materials and Methods

Carcinogenesis Protocol

Fisher F344/NCr female rats fromHarlanUKLimited (Oxon,

UK) were used. Rats were housed in specific pathogen-free

conditions with access to food and water ad libitum. Proce-

dures were carried out in strict compliance European Union

and University of Navarra (Institutional Animal Care and

Use Committee) relevant guidelines for the use of laboratory

animals. The crystalline silica sample was 99% pure a-quartz

(Min-U-Sil 5; US Silica Co., Berkeley Springs, WV), with a

particle size of < 5 mm [14]. The silica sample was suspended

in sterile neutral-buffered saline and briefly sonicated to

provide full dispersion. Eight-week-old rats were anesthe-

tized with a mixture of oxygen and isoflurane, and placed on

their backs on a metal board slanted at a 60j angle, with the

mouth kept open. In this position, at the end of an expiration,

rats received a single intratracheal instillation of 16 mg of

quartz in 0.3 ml of saline through a cannula connected to a

syringe [14]. Epithelial reactions to silica started with foci of

hyperplastic epithelial cells adjacent to silicotic granulomas,

including hyperplasias of type II pneumocytes from month 1

and hyperplasias of bronchiolar epithelial cells from month 4.

Preneoplastic adenomatoid lesions (AL) and dysplastic

bronchiolar lesions were observed from month 8. AL in large

clusters of completely lined alveolar spaces that had pro-

gressed to become more conspicuous and include areas

of adenomatoid proliferation separated by thick fibrous

septa were formed by alveolar epithelial hyperplastic reac-

tion. The shape of hyperplastic adenomatoid cells was usu-

ally less cuboidal and more flattened. AC and SCC were

observed from month 11. AC were fibrotic or nonfibrotic, with

an acinar, papillary, or alveolar pattern showing varying de-

grees of differentiation.
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Samples

Seventy rats were instilled with 16 mg of quartz, and the

lungs were obtained on months 3 to 4 (n = 10), month 6 (n =

5), month 8 (n = 5), month 10 (n = 5), month 12 (n = 5),

months 16 to 17 (n = 20), and month 21 (n = 20) after

instillation. Several lesions were studied throughout these

time periods: hyperplasias of type II pneumocytes, hyper-

plasias of bronchiolar epithelial cells, preneoplastic AL and

dysplastic bronchiolar epithelium, and AC (fibrotic and non-

fibrotic) and SCC. Hyperplastic and advanced preneoplastic

lesions were also observed in late stages. Tissues from

control rats (n = 8), instilled with 0.3 ml of saline without

quartz, were collected on month 6 (n = 4) and month 12 (n =

4). Rats were killed by exsanguination under anesthesia with

Ketolar (Parke Davis, Madrid, Spain) and Rompun (Bayer

AG, Leverkusen, Germany). The trachea was exposed by

dissection and ligated during maximal inspiration. The larynx,

trachea, bronchi, lungs, lymph nodes, and heart were re-

moved en bloc and fixed by immersion in 4% formaldehyde

in phosphate buffer for 24 hours. Lung lobes were sectioned

along their main bronchial axis, embedded in paraffin, and

sectioned at 4 mm thickness. Paraffin-embedded lungs from

treated and control rats were used.

A subset of the tumors was isolated from the fresh unfixed

lungs and split into two halves. One was rapidly snap frozen

in liquid nitrogen and kept at �80jC for DNA extraction. The

other was processed for histologic analysis. Normal lungs

from control rats were processed in the same manner.

Methylation Analysis

Quantification of global DNA methylation. Genomic DNA

was extracted by conventional methods from frozen control

lungs (n = 6); frozen treated lungs obtained on months 3 to 4

(n = 5), months 6 to 8 (n = 5), and months 10 to 12 (n = 5);

and frozen isolated tumors obtained onmonths 16 to 21 (n = 9;

five AC and four SCC). 5-Methylcytosine (mC) DNA content

in all the samples was determined by high-performance cap-

illary electrophoresis, as previously described [24]. Briefly,

genomic DNA (3–5 mg) was obtained from the different

tissues, and DNA hydrolysis was carried out with 1.25 ml
(200 U/ml) of nuclease P1 for 16 hours at 37jC. Subse-
quently, alkaline phosphatase was added, and mixtures were

incubated for 2 hours at 37jC. Hydrolyzed samples were

injected under pressure (0.3 psi) for 3 seconds into an un-

coated fused-silica capillary in a CE system (P/AC MDQ;

Beckman Coulter, Palo Alto, CA). Quantification of the relative

methylation of each DNA sample was determined as: %mC =

(mC peak area � 100)/(C peak area + mC peak area). All

samples were analyzed in duplicate, and three analytical

measurements were made per replicate.

Bisulfite genomic analysis of the p16(CDKN2A), APC,

CDH13, Rassf1, and Nore1A CpG islands. DNA samples

from control lungs (n = 6); treated lungs obtained on months

3 to 4 (n = 5), months 6 to 8 (n = 5), and months 10 to 12 (n =

5); and tumors obtained on months 16 to 21 (n = 9; five AC

and four SCC) were treated with sodium bisulfite, as previ-

ously described [25]. Primers (Table W1) spanning the CpG

island of the rat p16(CDKN2A), APC, H-cadherin (CDH13),

Rassf1, and Nore1A promoters were used for bisulfite ge-

nomic sequencing. At least six individual clones were se-

quenced for each sample. A single CpG was considered to

be methylated when more than half of the clones retained an

unmodified cytosine at that position.

Mutational Analysis

DNA extraction after laser capture microdissection. To ob-

tain near-pure cancer cell populations for mutation analy-

ses, we performed laser capture microdissection (CTRMIC/

ASLMD, Leica, Germany). Two consecutive 5-mm sections

were cut from formalin-fixed paraffin-embedded tissue

blocks. One section was stained with hematoxylin and eosin

(H&E), which was used for histologic evaluation and control;

another section was stained with methyl green for microdis-

section (Figure W1). Tumor tissue and adjacent normal lung

tissue for control were obtained by microdissection. The

microdissected cells were collected in a 0.5-ml microcentri-

fuge tube containing 40 ml of DNA lysis buffer (10 mM Tris–

HCl pH 8.0, 1 mM EDTA, 1% Tween-20, and 20 mg/ml

proteinase K). Tubes were then incubated for 14 hours at

55jC. Proteinase was inactivated by incubation at 95jC for

10 minutes.

Polymerase chain reaction exon amplification. Eight micro-

liters of genomic DNA was used for very-high-fidelity polymer-

ase chain reaction (PCR) amplification with AccuPrime Pfx

DNA Polymerase System (Invitrogen, Carlsbad, CA). PCR

was carried out in a total volume of 30 ml containing 0.2 mM
of each primer (Table W2), 1 U of AccuPrime Pfx DNA

Polymerase, and 1� AccuPrime Pfx Reaction Mix (50 mM

Tris–HCl pH 8.0, 50 mM KCl, 1 mM DTT, 0.1 mM EDTA,

1mMMgSO4, and 3mMdNTPs). PCRswere performed on a

PTC-100 thermocycler (MJResearch, Watertown, MA) using

the following protocol: 95jC for 3 minutes; 37 cycles of 95jC
for 30 seconds, primers’ specific annealing temperature for

35 seconds, and 68jC for 35 seconds; and 7 minutes at

68jC for extension. PCR products, which were confirmed to

have a single target band in a 2% agarose gel, were purified

using the Qiagen MinElute PCR Purification Kit (Qiagen,

Valencia, CA).

Sequencing and analysis. The purified products were then

subjected to direct sequencing by an ABI377 sequencer

(Perkin-Elmer Applied Biosystems, Foster City, CA). Exons

were sequenced upstream and downstream, and compared

to a control sequence. They were carefully analyzed first with

ChromasPro 1.33 (Tewantin, Australia) and, later, manually. If

a mutation was detected, additional microdissection and

sequencing of the tumor and the surrounding normal tissue

were carried out to verify the mutation.

Immunostaining

Immunostaining was performed with antibodies to p16

(F-12, 1:50; Santa Cruz Biotechnology, Santa Cruz, CA),
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p53 (FL-393, 1:100; Santa Cruz Biotechnology; or Pab 240,

1:100; Abcam, Cambridge, UK), EGFR (2232, 1:50; Cell

Signaling, Danvers, MA), TERT (Ab-2, 1:500; Calbiochem,

San Diego, CA), g-H2AX (2577, 1:200; Cell Signaling), and

inducible nitric oxide synthase (iNOS) (Sc-650, 1:100; Santa

Cruz Biotechnology). An indirect avidin–biotin–peroxidase

method (Dako, Barcelona, Spain) was used for EGFR, TERT,

g-H2AX, and iNOS analysis. In the case of p53 and p16

immunostaining, we used the EnVision (K4001; Dako) signal

enhancement system. Immunohistochemical technique was

carried out as follows. Slides were deparaffinized and incu-

bated for 10 minutes with 3% H2O2 in water to quench

endogenous peroxidase activity. Heat-mediated antigen re-

trieval was used for antibodies to EGFR and g-H2AX (15 min-

utes at 375 W in 1 mM EDTA, pH 8.0) and p53 (15 minutes at

750 W and 15 minutes at 375 W in 10 mM sodium citrate, pH

6.0). Tissues were incubated with 5% normal rabbit serum in

Tris-buffered saline (TBS) (500 mM NaCl and 50 mM Tris–

HCl pH 7.4) for 30 minutes at room temperature. After blot-

ting excess serum, sections were incubated at 4jC over-

night, with the primary antibody diluted in TBS for p53, p16,

telomerase, and iNOS, and diluted in mixed sera for EGFR

and g-H2AX.

Tissues were washed in TBS and incubated with the

appropriate secondary antibody. For the indirect avidin–

biotin–peroxidase method, biotinylated rabbit–anti-mouse

Ig antiserum was added at a 1:200 dilution for 30 minutes at

room temperature; after the slides had been washed, they

were incubated for 30 minutes at room temperature with the

avidin–biotin complex at a 1:100 dilution. For the EnVision

signal enhancement system, the secondary monoclonal

complex was applied for 30 minutes at room temperature.

After the slides had been washed in TBS, development of

peroxidase with diaminobenzidine and H2O2 was performed.

The slides were counterstained with hematoxylin, dehy-

drated, and mounted. As negative controls, the primary

antibody was replaced with mouse IgG1 or IgG2a specific

for Aspergillus niger glucose oxidase (Dako).

Figure 1. Oxidative stress and DDR in silica-induced lesions measured by immunohistochemistry in serial consecutive sections. The figures in this plate show the

activation of the iNOS/p53/c-H2AX pathway in the multistep progression from normal tissue to tumors. Low levels of iNOS and p53 proteins were found in

morphologically normal bronchial epithelial cells, whereas c-H2AX was completely absent (A). In normal bronchioli, iNOS expression was also found in smooth

muscle cells (arrow; A). A clear increase in the coexpression of iNOS/p53/c-H2AX was observed from hyperplastic (B and C) to dysplastic (D) bronchiolar cells. In

tumors, colocalization was still present in some areas, although c-H2AX levels were reduced compared to hyperplastic and advanced preneoplastic tissues (E and

F). Counterstaining by Harris hematoxylin. Original magnifications, �420 (C, E, and F); �630 (A, B, and D).
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Staining criteria

The immunostaining level of the following histologic

structures was analyzed in each section: normal bronchioles

(NB), normal type II alveolar cells (NA), hyperplastic bron-

chioles (HB), hyperplastic type II alveolar cells (HA), dys-

plastic bronchioles (DB), AL, and tumors AC and SCC. The

total numbers of normal and pathological structures ana-

lyzed by each antibody are indicated in the Results section.

p53, p16, or TERT-immunostained area in a given tissue

was expressed as the percentage of positive nuclei and cal-

culated as: (positive nuclei/total nuclei) � 100. This quanti-

tative method has been previously published [26]. For p53

and p16 quantification, although some cytoplasmic staining

was found at some stages, only nuclear immunostaining

was considered. For p53, we considered overexpression

when > 50% of the nuclei were immunostained. The result

was scored as negative immunostaining if < 10% of the nuclei

were positive. In the case of p16, loss of expression was

recorded when < 25% of positive nuclei were found. For

telomerase, we considered overexpression when > 75% of

the nuclei were positive. The mean percentage of nuclear

protein expression and its 95% confidence interval were

calculated for p53, p16, and TERT in all the histologic struc-

tures studied. In the evaluation of EGFR and iNOS immu-

nostaining, the intensity was classified into four categories:

(�) negative, (+) weak, (++) moderate, and (+++) strong.

Immunostaining was estimated independently by two experi-

enced researchers.

Statistical analysis

Statistical analysis was performed with the SPSS 13.0

software (SPSS, Inc., Chicago, IL). Chi-square analysis was

applied to study the differences of p53, p16, or TERT ex-

pression between the normal, preneoplastic, and tumoral

tissues. Fisher’s exact test was applied to study differences

Figure 2. p53, p16, and TERT nuclear expression by immunohistochemistry in the multistep progress to lung cancer. (A) Normal lung epithelial cells showed

low levels of nuclear protein expression for p53, p16, and TERT. (B and C) Hyperplastic bronchiolar (B) and alveolar (C) cells showed a significant increase for

p53, p16, and TERT nuclear immunostaining. (D) DB at 10 to 12 months showed a higher percentage of positive nuclear cells for p53 and TERT. However, p16 was

significantly decreased in these advanced preneoplastic lesions. (E and F) p53 and TERT overexpression was commonly observed in AC (E) and SCC (F),

whereas p16 overexpression was observed in SCC (F) and in a subset of more fibrotic AC. Loss of p16 protein expression (< 25% positive nuclei) was detected

in 44% of AC (p16; E). Counterstaining by Harris hematoxylin. Original magnifications, �420 (p53-TERT; B) (p16; D, E, and F); �560 (p16; B); �700 (A and C)

(p53-TERT; D).
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in DNA global hypomethylation analysis. Differences were

considered significant when P < .05.

Results

DDR and Oxidative Stress from Early Hyperplastic

Tissues to Tumors

In serial consecutive tissue sections of the silica-induced

lung cancer model, we analyzed the expression of p53,

iNOS, and g-H2AX, a marker of activated DDR. We studied

the expression of these three markers through five stages

(n = 8 for each stage), including normal, preneoplastic, and

neoplastic tissues. In the normal bronchiolar epithelial cells

of treated animals, p53 and iNOS expressions were found

at low levels, whereas there was no signal for g-H2AX

(Figure 1A). iNOS expression was also observed in alveolar

and parenchymal macrophages present in the early phases

of the silicotic response, as well as in epithelioid macro-

phages at the core of granulomas. iNOS expression in

granulomas was maintained up to the latest stages studied

(21 months) (Figure W2). p53, iNOS, and g-H2AX were

clearly induced in the same tissue elements of early preneo-

plastic lesions such as hyperplastic bronchioloalveolar cells

and persisted in advanced preneoplastic stages such as

dysplastic bronchiolar cells (Figure 1, B–D). In tumors, co-

localization was still present in some areas, although g-H2AX

levels were reduced compared to hyperplastic and advanced

preneoplastic tissues (Figure 1, E and F ). These data sug-

gest that (nitro)oxidative stress coexists with p53 accumula-

tion in tumorigenic progression, and both are associated with

DNA damage measured by the DDR marker g-H2AX.

p53 Stabilization and Loss of p16 Expression in Multistage

Progression to Silica-Induced Lung Tumors

We analyzed the evolution of the p53 and p16 protein

expressions along the multistep progression from the normal

epithelium to non–small cell lung cancer (NSCLC) tumors

(50 AC and 9 SCC). p53 nuclear immunostaining was

negative in normal alveoli (mean percentage of positive

nuclei: 5 ± 0.1%; n = 35) and bronchiolar epithelial tissues

(12 ± 3%; n = 32) (Figures 2A and 3). A significant increase

for p53 nuclear expression was observed in hyperplastic

bronchiolar (56 ± 4%; n = 40) and alveolar (51 ± 6%; n = 29)

epithelial cells (Figures 2, B and C, and 3; Table 1; P < .001),

and this overexpression was maintained in epithelial hyper-

plasias over time, at least up to month 12. In dysplastic

bronchiolar lesions (87 ± 7%; n = 12), p53 was significantly

higher when compared to hyperplastic bronchiolar epithe-

lium onmonths 10 to 12 (Figures 2D and 3; Table 1; P < .001).

The percentage of cells with nuclear p53 was significantly

lower in tumors (54 ± 8%; n = 59) compared to advanced

preneoplastic lesions such as bronchiolar dysplasia (P <

.001) and adenomatoid lesions (P = .008) (Figure 3; Table 1).

In tumors, p53 overexpression was observed in 26 of 50

(52%) AC and in 6 of 9 (67%) SCC (Figure 2, E and F ). No

statistical differences were observed between the two histo-

logic tumor types.

p16 protein expression was negative in normal alveolar

(2 ± 0.6%; n = 36) and bronchiolar (5.6 ± 1.8%; n = 35)

epithelial tissues (Figures 2A and 3). We observed a signif-

icant increase in p16 nuclear overexpression in hyperplastic

bronchiolar (61 ± 4%; n = 40) and alveolar (34 ± 10%; n = 29)

epithelial cells compared to normal tissues (Figures 2, B and

C, and 3; Table 1; P < .001). This overexpression was

maintained in bronchiolar and type II hyperplasias from

months 6 to 12. Interestingly, p16 was significantly de-

creased in dysplastic bronchiolar epithelium (13 ± 4%; n =

12) compared to neighboring bronchiolar hyperplasias (Fig-

ures 2D and 3; Table 1; P < .001). In tumors, the percentage

of cells with nuclear p16 was significantly lower (42 ± 8.4%;

n = 59) than in bronchiolar hyperplasias (Figure 3; Table 1;

P < .001). Loss of p16 protein expression (< 25% of positive

nuclei) was detected in 22 of 50 (44%) AC and in 2 of 9 (22%)

SCC (Figure 2E ). Nonfibrotic AC showed a significantly

lower score for p16 staining (30 ± 8% of positive nuclei)

compared to fibrotic AC (58 ± 9%; P = .016) and SCC (76 ±

24%; P = .027).

All these data confirm that p53 nuclear levels increase in

epithelial cells during the multistep progression from normal

to hyperplastic and advanced preneoplastic tissues, and

remain high in most tumors. Conversely, p16 is overex-

pressed in hyperplastic tissues, but its expression is de-

creased or lost in advanced bronchiolar dysplasias and in

40% of the tumors.

TERT Protein Overexpression in Multistep Progress to

Lung Tumors

Nuclear TERT protein overexpression was observed from

months 3 to 12 in hyperplastic bronchiolar (86 ± 2%; n = 19)

Figure 3. Differential expression for p53, p16, and TERT between different stages of cancer progression. Graphs show the mean percentage of nuclear protein

expression and its 95% confidence interval for p53, p16, and TERT immunostaining in all the histologic structures studied. TUMOR, AC and SCC.
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and alveolar (87 ± 3%; n = 20) tissues compared to normal

bronchiolar (50 ± 6%; n = 48) and alveolar (7 ± 1%; n = 38)

epithelial cells (Figures 2, A–C, and 3; Table 1; P < .001). A

high percentage of immunostained nuclei was also observed

from month 10 in advanced preneoplastic adenomatoid

lesions (81 ± 5%; n = 9) and dysplastic bronchiolar cells

(91 ± 2%; n = 12) compared to normal tissues (Figures 2D

and 3). At the late stage, lung tumors also showed a

significant overexpression of TERT (77 ± 2%; n = 59) com-

pared to control tissues (Figures 2, E and F, and 3; Table 1;

P < .001). The percentage of nuclei stained for TERT at 16

to 21 months was significantly lower in tumors than in hy-

perplastic bronchioloalveolar and dysplastic bronchiolar

lesions (Table 1; P < .001), showing a decrease in TERT nu-

clear detection from preneoplastic tissues to cancer. No sta-

tistical differences were observed between AC and SCC.

We conclude that TERT is highly expressed in reactive

epithelial tissues during multistep carcinogenesis, with the

highest percentage of expression in hyperplastic and dysplas-

tic tissues, and a slight decrease of its expression in tumors.

Mutational Profile of Lung Tumors

Tp53. We analyzed the mutational status of the Tp53 gene,

the most commonly mutated gene in human cancer. We

sequenced exons 5 to 9—those more frequently mutated in

human lung cancer and also found mutated in rodent tumors

[27,28]. To avoid contamination with nontumor DNA, we

microdissected tumors from paraffin sections. We selected

a subset of 32 tumors showing either high or low p53 protein

nuclear accumulation, as determined by immunohistochem-

istry. Five mutations were identified in 3 of 32 (9%) tumors

(one AC and two SCC). Two mutations were detected in

exon 5 of one AC sample: a missense mutation (K162R) and

a nonsense mutation in codon 164. In two SCC, three

mutations were located in exon 6, involving codons 254

and 255 (both sense mutations), and codon 246 (a missense

mutation leading to an arginine-to-serine substitution) (Fig-

ure 4, A and B ). Therefore, Tp53 mutations are rare events

in tumors induced by silica-mediated chronic inflammation.

Ras proto-oncogene family. We then aimed to determine

how relevant is the status of the Ras family gene in the

development of NSCLC in the rat silica model. First, we

analyzed by sequencing the mutational status of exons 1

and 2 of K-ras (codons 6–37 and 44–97), N-ras (codons

1–23 and 48–74), and c-H-ras (codons 1–82) in 23 laser-

microdissected tumors (15 AC and 8 SCC). We did not

identify any mutation in the tumors (Figure 4A). These data

strongly suggest the lack of genetic alterations in these

Ras family genes in this chronic inflammation–driven lung

cancer model.

EGFR. EGFR mutations and gene amplification, along with

protein overexpression, are relatively frequent events in

human lung cancer and have been the basis for new molec-

ular targeted therapies [29]. We analyzed the EGFR muta-

tional status and protein pattern expression in 32 NSCLC

tumors (25 AC and 7 SCC). First, immunohistochemical

analyses using a validated antibody specific to EGFR

revealed that 92% of AC and 71% of SCC were positive for

this receptor, with both membrane and cytoplasmic local-

izations (Figure W3). Strong or moderate staining for EGFR

was found in 14 of 25 (55%) AC (Figure W3, A and B) and

in 1 of 7 (14%) SCC, whereas only 2 of 25 (8%) AC (Fig-

ure W3C) and 2 of 7 (29%) SCC were completely negative.

Next, we analyzed the DNA mutational status of EGFR

through exons 18 to 21 in 32 microdissected tumors previ-

ously analyzed for protein expression. We did not find any

gene mutation in any of the codons analyzed (Figure 4A).

These data suggest that EGFR overexpression, but not mu-

tation, may be a relevant biologic event in the progression of

silica-induced tumors.

Epigenetic Alterations in Multistep Progression to Cancer

Global DNA methylation status. The epigenetic regulation

of gene expression has been shown to be very frequent in

lung carcinogenesis. As we have previously reported [15],

silica-induced tumors show clear global genomic hypometh-

ylation, with an average loss of 25% in mC DNA content. In

this study, we extend this analysis to explore whether global

hypomethylation was found in previous stages of the lung

carcinogenesis process, when only preneoplastic lesions,

but not tumors, are present. The global DNA methylation

status in the samples obtained on months 3 to 4 (n = 5),

months 6 to 8 (n = 5), and months 10 to 12 (n = 5), and in

tumors obtained on months 16 to 21 (n = 9) showed that

Table 1. Statistical Analysis of the Differences in p53, p16, and TERT Expression between Different Stages of Cancer Progression.

Comparisons p53 p16 TERT

Normal versus hyperplasia NA versus HA v2 = 74.00, P < .001 v2 = 53.79, P < .001 v2 = 77.00, P < .001

NB versus HB v2 = 89.44, P < .001 v2 = 71.38, P < .001 v2 = 91.38, P < .001

Hyperplasia versus advanced preneoplasia HA versus AL v2 = 4.63, P = 2.01 v2 = 2.10, P = .718 v2 = 4.56, P = .041

HB versus DB v2 = 39.74, P < .001 v2 = 46.93, P < .001 v2 = 1.89, P = .169

Nonneoplastic versus neoplastic lesions NA versus TUMOR v2 = 78.00, P < .001 v2 = 57.48, P < .001 v2 = 95.00, P < .001

HB versus TUMOR v2 = 54.40, P < .001 v2 = 40.12, P < .001 v2 = 48.64, P < .001

HA versus TUMOR v2 = 11.39, P = .010 v2 = 6.32, P = .177 v2 = 12.68, P < .001

HB versus TUMOR v2 = 11.34, P = .010 v2 = 28.39, P < .001 v2 = 18.22, P < .001

AL versus TUMOR v2 = 11.94, P = .008 v2 = 2.43, P = .657 v2 = 0.67, P = .412

DB versus TUMOR v2 = 17.31, P < .001 v2 = 18.16, P < .001 v2 = 19.48, P < .001

TUMOR, AC and SCC.
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hypomethylation only occurs in tumors, but not in lung

extracts containing preneoplastic tissues (Figure 5).

CpG island hypermethylation in p16(CDKN2A), APC, and

CDH13 gene promoters. We determined the role of pro-

moter hypermethylation in the transcriptional repression of

p16(CDKN2A), APC, and H-cadherin (CDH13) genes,

whose promoters are frequently hypermethylated in human

lung cancer [30,31]. We analyzed preneoplasia-containing

tissues obtained on months 3 to 4 (n = 5), months 6 to 8 (n =

5), and months 10 to 12 (n = 5), and tumors obtained on

months 16 to 21 (five AC and four SCC).

All samples analyzed in the time course from months 3

to 12 were unmethylated. However, we observed a strong

CpG island hypermethylation in seven of nine tumors in

the promoter region of CDH13 (78%); in six of nine tumors

in p16(CDKN2A) (67%); and in five of nine tumors in APC

(56%) (Figure 6). We found concurrent promoter hyper-

methylation of all three genes analyzed in four of nine tumors.

Furthermore, p16 promoter hypermethylation showed a

strong inverse association, with the p16 protein expression

measured by immunohistochemistry. Promoter hypermeth-

ylation was associated with low or negative p16 protein

expression, whereas unmethylated cases showed p16 over-

expression (Figures 6 and W4). These data suggest that

epigenetic alterations are relevant biologic events in tumors

generated in the context of the inflammatory insult.

CpG island hypermethylation in Rassf1 and Nore1A gene

promoters. We next tested whether the Ras pathway could

be activated by promoter hypermethylation of Ras effectors,

as has been demonstrated for Rassf1 [32] or Nore1A [33]

in human lung cancer. For this approach, we studied the

methylation status of the promoters of the rat homologues

for Ras effectors Rassf1 and Nore1A in the silica-induced

tumors. We did not observe epigenetic alterations in the

promoters of these two Ras effectors (Figure W5). These

data, together with the mutational Ras status, strongly sug-

gest the lack of genetic and epigenetic alterations in the

Ras family members in this inflammation-mediated lung can-

cer model.

Discussion

In this report, we have characterized some of the key

molecular alterations leading to lung cancer in the context

of chronic inflammation (Figure 7). Using a rat silica model

of inflammation-induced lung cancer [15], our results showed

an activation of the DDR pathway in preneoplastic lesions,

in association with proliferative and telomeric stress. Sur-

prisingly, we found a very low frequency of mutations in the

Tp53 gene and a total absence of mutations in the main Ras

signaling family genes and EGFR. In contrast, epigenetic

events in tumor suppressors, including p16, APC, and CDH13,

were found with high frequencies in this lung cancer model.

Our data show that p16 loss is significantly associated

with inflammation-induced lung carcinogenesis. In the silica-

induced lung cancer model, downregulation of p16 in late

preneoplastic lesions could be the landmark for the escape

of some epithelial cells from the tight growth-regulatory

mechanisms found in preneoplasia to loosely regulated

tumorigenic pathways. In fact, in vitro studies of lung cells

have already suggested that the loss of p16 expression,

rather than the alteration of the ARF/p53 pathway, is the key

event in bypassing growth arrest and in acquiring a trans-

formed phenotype with genetic instability and tumoral poten-

tial [34]. Accordingly, a significant decrease in p16 protein

was also observed in 40% of silica-induced tumors, and p16

Figure 5. DNA global hypomethylation analysis in controls (n = 6);

preneoplasia-containing lungs on months 3 to 4 (n = 5), months 6 to 8 (n =

5), and months and 10 to 12 (n = 5) after treatment; and in tumors (n = 9). A

clear global genomic hypomethylation with an average loss of 25% in mC

DNA content only occurs in tumors. Results are expressed as mean ± S.D.

Fisher’s exact test was applied, and differences were considered significant

when P < .05.

Figure 4. Mutational analysis for Ras (n = 23), Tp53, and EGFR (n = 32) in

tumor DNA extracts. (A) No mutations were found in K-ras, N-ras, c-H-ras, or

EGFR in any of the silica-induced tumors analyzed after microdissection. For

Tp53, five mutations were found in three tumors of 32 cases analyzed (9%).

(B) Electropherogram of the DNA sequence of the tumor (mt) versus the cor-

responding adjacent normal tissue (wt) showing the mutations found in exon

5 in AC and exon 6 in SCC.
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protein downregulation correlated with gene promoter hyper-

methylation. Some, but not all, lung cancer experimental mod-

els show p16 promoter hypermethylation [35,36]. Belinsky

et al. [11] have shown that tumors produced by instillation of

carbon black particles in rats arise, in part, through the

epigenetic inactivation of p16, suggesting that exposure to

some particular carcinogens may be associated with specific

gene inactivation through methylation [37]. More importantly,

loss of p16 expression was also found in human lung carci-

nogenesis, starting at the moderate dysplasia stage [38].

Moreover, p16 loss in preneoplastic lesions occurred exclu-

sively in patients who also showed loss of p16 expression in

their related invasive carcinoma [38]. The inactivation of p16

has been reported in approximately 50% of human NSCLC,

and this inactivation is frequently associated with p16 pro-

moter hypermethylation [39].

Other classic oncogenic events present in human NSCLC

were found at low frequency or were absent in this model.

The incidence of Tp53 mutations observed in silica-induced

tumors was significantly lower (9%) than the incidence

reported for NSCLC in human smokers (50%) and non-

smokers (28%) [40]. Studies conducted by several groups

have consistently reported a very low frequency or a com-

plete lack of mutations at the Tp53 gene locus in rodent lung

tumors [41,42]. The low prevalence of Tp53 mutations in

murine versus human lung tumors is striking because the

gene is highly conserved and the tumors’ morphologic

features are very similar. In contrast to Tp53, Ras mutations

have been frequently found in chemically induced murine

lung tumors and have been strongly correlated with promu-

tagenic adducts generated from the metabolism of chemical

carcinogens present in tobacco [43]. In the silica model,

mutations in K-ras, N-ras, or H-Ras, including codons 12,

13, and 61 (which are known to transform ras into an

oncogenic protein in both human and rodent cells), were

completely absent. Ras mutations are also infrequent in

other rat lung tumor models induced by particulate carcino-

gens (diesel exhaust and carbon black) [41]. The lack of

mutations in the silica model supports the current view that

the existence of Ras mutations is highly dependent on the

type of carcinogen. This view is further supported by the lack

of mutations in codon 12 of K-ras in lung cancer found in

workers with silicosis [44]. Moreover, promoter hypermeth-

ylation of Ras effectors Nore1A and Rassf1 present in

Figure 6. Bisulfite genomic sequencing of the p16(CDKN2A), H-cadherin (CDH13), and APC gene promoters in normal tissues (n = 6); preneoplasia-containing

tissues on months 3 to 4 (n = 5), months 6 to 8 (n = 5), and months 10 to 12 (n = 5); and nine representative lung tumors. Vertical bars show the distribution of CpG

islands at p16, H-cadherin, and APC. The vertical arrow indicates the transcriptional start point. Black dots indicate methylated CpG islands; white dots indicate

unmethylated CpG islands. The position of the bisulfite sequencing primers is represented with white horizontal arrows. We observed H-cadherin promoter

hypermethylation in seven of nine silica-induced tumors (T1, T2, T3, T4, T5, T6, and T9), and APC promoter hypermethylation in five of nine tumors (T2, T3, T4, T5,

and T9). Hypermethylation in the p16 promoter was also an important event in six of nine tumors studied (T1, T2, T3, T5, T8, and T9).
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humans [32,33] was not found in the silica-induced tumors.

These data strongly support the view that inflammation-

driven carcinogenesis is not mediated by genetic alterations

in the Ras pathway. Silica-mediated chronic inflammation

may also activate the EGFR pathway. EGFR is expressed in

a range from 40% to 70% of human NSCLC [45]. We have

observed EGFR expression in 87% of silica-induced tumors,

which could reflect the autocrine or paracrine stimulation of

tumor growth by several EGFR ligands. NSCLC patients who

show clinical responses to EGFR tyrosine kinase inhibitors

frequently harbor somatic mutations in the EGFR gene.

These EGFR mutations are more commonly found in fe-

males, nonsmokers, and ACwith bronchioloalveolar features

[29]. Moreover, EGFR and Ras mutations seem to be mu-

tually exclusive in NSCLC [46]. We thus looked for EGFR

mutations in DNA frommicrodissected inflammation-induced

tumors. Although a great proportion of the tumors arising in

the rat silica model are AC with bronchoalveolar-like fea-

tures, we did not find EGFR mutations in any of the cases

studied, suggesting that mutations in Ras or EGFR path-

ways are not involved in this inflammation-driven lung carci-

nogenesis model.

Tobacco and nontobacco-related human lung cancers

harbor different combinations of mutations and gene pro-

moter methylation events [47]. One of the most interesting

findings of this study was the wealth of epigenetic events.

Previously, chronic inflammation had been associated with

high levels of methylation in ulcerative colitis and chronic

gastritis [48,49]. However, a direct causal relationship of

promoter hypermethylation has not yet been unequivocally

shown in lung tumors. In our study, aberrant methylation

events have been detected in the p16(CDKN2A), APC, and

CDH13 promoters in the silica-induced tumors but were not

present in lung tissues containing preneoplastic lesions. This

is the first description of APC gene promoter hypermethyla-

tion in a lung cancer animal model. Epigenetic alteration of

CDH13 has recently been described in mouse lung tumor

models [50]. In human NSCLC, aberrant promoter hyper-

methylation for these tumor-suppressor genes has been

reported by several independent studies [30,31]. An associ-

ation between CDH13 methylation and tumor progression in

human NSCLC has also been suggested [51]. Previously, we

have shown a strong epigenetic alteration of E-cadherin and

b-catenin accumulation in the context of the epithelial–

mesenchymal transition in this model [15]. One could spec-

ulate that the loss of function of APC and CDH13 through

gene promoter hypermethylation may disrupt cells’ ability to

regulate adhesion; in turn, APC loss may also activate the

Wnt signaling pathway through stabilization of the b-catenin
protein [52]. Deregulation of b-catenin causes cells to remain

in a less differentiated and more proliferative state [53].

These findings suggest that simultaneous epigenetic inacti-

vation of several putative tumor-suppressor genes (p16,

APC, E-cadherin, and CDH13) may have a strong tumori-

genic effect. Nevertheless, mutations of other potential

oncogenes not analyzed in this study or loss of other putative

tumor-suppressor genes cannot be ruled out.

The current view about the acquisition of a tumorigenic

phenotype and progression through carcinogenesis de-

scribes a strong association between DNA damage events,

genomic instability, and selective genomic pressure. Recent

studies in several human tumor types have shown that the

DNA damage checkpoint was activated in epithelial early

preneoplastic lesions either by DNA replication stress or by

oncogenic stress [20,21,54]. According to these studies,

DDR acts as a tumorigenesis barrier inducing cell cycle

Figure 7. Summary of the molecular events found in the silica-induced lung carcinogenesis model. DDR, p16, TERT, and p53 overexpressions are observed from

early preneoplastic lesions. p16 inactivation occurs in dysplastic bronchiolar lesions and tumors. No mutations were observed in tumors, with the only exception of

Tp53 mutations with a very low frequency. Epigenetic alterations were found in tumors in the tumor-suppressor genes p16(CDKN2A), APC, and CDH13.
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arrest, senescence, or apoptosis, thus protecting from pro-

gression to malignancy. In the present study, we found an

association between the presence of local inflammatory me-

diators and the activation of the DDR pathway. It is well-

known that silica exposure rapidly induces inflammatory

mediators in the lung, which results in oxidative stress and

DNA alterations, including single-strand breaks, mutagenic

base modification by 8-oxoguanine, and various other DNA

oxidation products [55,56]. Oxidative stress elicited by crys-

talline silica was associated with a remarkable increase in

the expression of the inflammatory mediator iNOS in the

rat airways, in agreement with previous studies [17,57,58].

The reactions to silica particles in the lungs stimulate the

activation of a number of molecular mediators, including

those that are primarily involved in inflammatory and fibro-

genic responses and their immunological aspects, such as

interleukins and TNF-a. Silica particles, either by direct sur-

face effects or during phagocytosis, generate ROS, which

seem to trigger critical signaling events for both NF-nB and

AP-1 activation [16,59]. The pathogenic model proposed for

asbestos-induced mesothelioma is similar to this proposal

for silica-induced tumors. In both cases, mineral dust/fiber

causes accumulation of cytokine-releasing (especially TNF-a)

and NO-releasing active macrophages [16,60,61]. A recent

report has also suggested that NF-nB–dependent inflam-

mation, combined with asbestos-induced genetic instability,

may be a potential cause of mesothelial carcinogenesis

[61]. The current hypothesis is that, in iNOS-expressing

epithelial cells, chronic exposure to nitrogen and oxygen

radicals may induce (nitro)oxidative stress, leading to DNA

damage and activation of a p53 response [22,62]. In the lung

epithelial lesions found in the rat silica model, iNOS was

commonly coexpressed with g-H2AX and was associated

with p53 accumulation. Moreover, this coexpression was

more frequently observed in preneoplastic tissues than in

tumors, suggesting the relevance of DDR in epithelial cells

during chronic inflammation. DNA damage and other cellu-

lar stresses can induce the expression of p53 and p16, en-

forcing cell cycle arrest [22,63]. We observed a clear induction

of p53 and p16 expression occurring in parallel with chronic

inflammatory stress and the replicative activation of hyper-

plastic lesions. Activated p53 inhibits cell proliferation and

protects against genomic instability by controlling cell cycle

checkpoints, DNA repair, apoptosis, and senescence [64].

Overexpression of p53 and p16 in hyperplastic lesions may

depend on the activation of the DDR and may mutually re-

inforce the barrier toward tumorigenesis. In contrast, in most

advanced preneoplastic lesions, p53 expression remains

high, whereas a very significant decrease of p16 occurs. This

further emphasizes the potential role of p16 loss as a key

molecular event.

Besides oxidative stress, the activation of DDR and cell

cycle arrest could also be mediated by telomere shortening

due to replicative stress [23]. TERTactivity contributes to the

elongation of shortening telomeres in preneoplastic and

tumor cells escaping from telomere crisis mediated by crit-

ically short telomeres [65]. Previous studies in breast and

lung tumors have also shown an increase in telomerase

expression in preneoplastic lesions [65,66]. Our data are in

accordance with previous studies on rodents where telo-

merase is detectable in normal tissues and significantly

increased in preneoplastic and neoplastic cells [67,68].

We observed a clear induction of TERT expression in the

silica-induced multistep progression that was more evident

in preneoplastic tissues than in tumoral tissues. The over-

expression of telomerase, together with inactivation of the

p16–Rb pathway, could bypass DDR-mediated cell cycle

arrest and extend the lifespan of tissues. Furthermore, telo-

merase overexpression may affect the proliferation of epi-

thelial cells not only by stabilizing telomeres but also by

affecting the expression of growth-promoting genes. Smith

et al. [69] reported that activation of telomerase in p16-

inactivated tumoral cells altered the expression of a set of

genes that have a profound effect on cell proliferation, in-

cluding EGFR, which is indeed overexpressed in this model.

In summary, we have explored the specific molecular pro-

file of chronic inflammation–mediated neoplastic transfor-

mation of the lung. Our data suggest that induction of iNOS

expression in the inflammatory context is associated with

activation of the DDR and p53 accumulation in preneoplastic

epithelial cells. p16 is also induced in the early steps of tu-

morigenic progression, followed by a clear loss of expression

in late dysplastic bronchiolar lesions. Among the recently

reported barriers to preneoplasia-to-neoplasia transition,

p16 seems to be the one bypassed in this inflammation-

driven model, very likely as a consequence of a strong epi-

genetic regulation of p16 gene expression. TERTand EGFR

are also overexpressed in this model. Lack of mutations of

Ras signaling components and EGFR, and a very low fre-

quency for Tp53 suggest that they are not major players in

inflammation-driven carcinogenesis, whereas epigenetic al-

terations in tumor-suppressor genes such as p16(CDKN2A),

CDH13, and APC are more relevant. Our results suggest

that chronic inflammation– induced tumors have a specific

molecular signature that shares some, but not all, of the al-

terations found in chemically induced lung cancer.
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Table W1. Primers Used for Methylation Analysis.

Gene Sequence Product Size (bp) Annealing Temperature (jC)

p16(CDKN2A) F: 5V-GGTAATAGTGTTTTTAGAGGTG-3V 259 60

R: 5V-CTACCCTAACTAATCTATCTAC-3V

APC F: 5V-TAGGGGTTTGAAGGTGTATAGG-3V 305 58

R: 5V-CTCCTATAACAAACCTAATCATCAC-3V

CDH13 F: 5V-TTTATTTGGGAAGTTGGTTGGTTG-3V 442 62

R: 5V-TATCCTTCTCAAAATAAACACACAC-3V

Rassf1 F: 5V-AGGTTGAGATGTTTTTGAGATG-3V 326 59

R: 5V-TCCTCCTAACTACAATAACCACTAC-3V

Nore1A F: 5V-AGGGTTGGAGATAGAGGTAGAAG-3V 246 60

R: 5V-ACAACAACTCCAAAACCTAACC-3V

Primers used for bisulfite genomic sequencing of the CpG islands of the rat p16(CDKN2A), APC, H-cadherin (CDH13), Rassf1, and Nore1A gene promoters.

Figure W1. Microdissection process in SCC mutated in Tp53 (codon 246). One section was stained with H&E, which was used for histologic evaluation and control;

another section was stained with methyl green (MG) for microdissection (MD).



Table W2. Primers Used for Mutational Analysis.

Gene Exon Sequence Product Size (bp) Annealing Temperature (jC)

Tp53 5 F: 5V-TCCGCTGACCTTTGATTCTT-3V 268 58

R: 5V-AGACCCTGGACAACCAGTTC-3V

6 F: 5V-CTCCCCGGCCTCTGACTTATT-3V 274 58

R: 5V-CCTGGCACACAGCTTCCTAC-3V

7 F: 5V-CTTGTGCTGTGCCTCCTCTT-3V 198 58

R: 5V-GCCTCCACCTTCTTTGTCCT-3V

8 F: 5V-CAAAGTCACCCCTTGCTCTC-3V 210 58

R: 5V-CATGCGCTCTGACGATAATG-3V

9 F: 5V-TTTGTCCAGCACTTCTGTCCT-3V 250 58

R: 5V-CGATGGACATCTGGTGGAGT-3V

K-ras 1 F: 5V-AGGCCTGCTGAAATGACTG-3V 177 59

R: 5V-AGGATGACTGCCACCCTTTA-3V

2 F: 5V-TCTCAGGACTCCTACAGGAAAC-3V 267 59

R: 5V-GCAGGCCTAACAACTAGCAAA-3V

N-ras 1 F: 5V-GGTCTGCGGAGTTTGAGATT-3V 125 57

R: 5V-CATCCACAAAGTGGTTCTGG-3V

2 F: 5V-CCGAAAACAAGTGGTGATTG-3V 125 57

R: 5V-ACACACAGAGGAACCCTTCG-3V

c-H-ras 1 F: 5V-GTTTGGCAACCCCTGTAGAA-3V 193 59

R: 5V-TGGGACTCTAACCCATGACC-3V

2 F: 5V-AGGGTAGGCGGATTCTCTGT-3V 217 59

R: 5V-AGGACTTGGTGTTGTTGATGG-3V

EGFR 18 F: 5V-GCCCACTCTTGCACTGAATAA-3V 251 58

R: 5V-TCCCAGAAGCCTAGTCCAGA-3V

19 F: 5V-TAATGCAGAGCCCTTGAGGAT-3V 249 58

R: 5V-GGAAACCGTGGTTAGCAAGAC-3V

20 F: 5V-CCCATCAGCCAAGAAACAAT-3V 303 58

R: 5V-TCCTGCTTCTGAAACCTGCT-3V

21 F: 5V-CTGGATGGTTCACTCCCTCA-3V 245 58

R: 5V-TCTGGGCTGTCAGGAAAATG-3V

Primers used for mutational analysis by genomic sequencing of the rat p53 (Tp53), K-ras, N-ras, c-H-ras, and EGFR genes.

Figure W2. Immunohistochemical expression of iNOS in macrophages of silica-treated lungs. iNOS was observed in alveolar and parenchymal macrophages of

silicotic rats at early stages (A). iNOS expression at the core of granulomas was observed in all the stages of the model (B: month 4; C: month 12; D: month 21).

Counterstaining by Harris hematoxylin. Original magnifications, �140 (D); �280 (B and C); and �420 (A).



Figure W3. EGFR expression by immunohistochemistry in silica-induced tumors. Strong or moderate staining of EGFR was found in 55% of AC (A and B) and in

14% of SCC. Only 8% of AC (C) and 29% of SCC were negative. EGFR was localized in the cell membrane and cytoplasm of tumoral cells (arrow; inset, A).

Counterstaining by Harris hematoxylin. Original magnifications, �140 (B); �420 (A and C); �920 (inset, A).

Figure W4. Direct bisulfite sequencing analyses of the promoter region of p16 revealed a strong correlation between the status of p16 promoter hypermethylation

and protein expression in tumors measured by immunohistochemistry. Promoter hypermethylation– positive tumors showed a good association with the loss of

nuclear p16 protein expression (tumor 3). This association was also observed in cases without p16 promoter hypermethylation that showed high p16 nuclear

protein expression (tumor 7).



Figure W5. Bisulfite genomic sequencing of the Rassf1 and Nore1A promoters in nine representative silica-induced lung tumors and six normal tissues. Vertical

bars represent the distribution of the CpG islands at the Rassf1 and Nore1A CpG islands. The vertical arrow indicates the transcriptional start point. Black dots

indicate methylated CpG islands; white dots indicate unmethylated CpG islands. The position of the bisulfite sequencing primers used is represented with white

horizontal arrows. We did not observe significant Ras effectors promoter hypermethylation in any of the tumors analyzed.


