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We present a rapid method for the exact calculation of the
cumulative distribution function of the maximum of multinomially
distributed random variables. The method runs in time O(mn),
where m is the desired maximum and n is the number of variables.
We apply the method to the analysis of two situations in which an
apparent clustering of cases of a disease in some locality has raised
epidemiological concerns, and these concerns have been discussed
in the recent literature. We conclude that one of these clusters may
be explained on purely random grounds, namely the leukemia
cluster in Niles, IL, in 1956–1960; whereas the other, a leukemia
cluster in Fallon, NV, in 1999–2001, may not.

algorithm � multinomial

I t happens from time to time that cases of a disease will cluster
both geographically and in time in a manner that seems not to

be random and that invites further epidemiological study.
Of course, mathematics alone cannot answer serious questions

of public health, but it can provide guidelines about what sort of
clustering should be regarded as unusual and what sort is to be
expected. In particular, the calculation of a P value is required
for an objective assessment of any observed event. In this paper
we provide a rapid and exact P value calculation for the standard
‘‘balls-in-boxes’’ model appropriate to a disease-clustering
situation.

The Model
Suppose that during a certain time period, a number r of cases
of some disease arise randomly in some large population, such
as that of the United States. Let N be the size of that population
and N0 be the population of the community in which the
seemingly large number of cases has occurred.

We think of the entire country as consisting of n � N/N0

identical communities, or cells, each containing N0 people, and
we ask

If r cases occur randomly in the populations of n
communities of the same size, what is the probability
that no community gets more than m cases of the
disease?

The standard calculation required to answer this question in-
volves the ‘‘balls-in-boxes’’ model, discussed below. If, for ex-
ample, it turns out that it is extremely likely that some community
of equivalent size to that in which the seemingly large number of
cases occurred would have that many cases purely by chance, we
could conclude that the observed cluster would not be a cause
for further suspicion of communicability of the disease or the
existence of environmental causative factors. Likewise, if it turns
out that it is extremely unlikely that, by chance, any community
of that size would have the observed number of cases of the
disease, then support would be given to the possibility of a public
health hazard.

The Mathematics
Mathematically speaking, we have r ‘‘balls’’ (the disease cases)
being dropped randomly into n labeled ‘‘boxes’’ (the communi-
ties). The relevant calculation thus concerns the P value asso-
ciated with the box (or boxes) having the largest number of balls
in it. It is well known that the distribution function of the
maximum of a number of random variables changes sharply near
the mean of the maximum, so that an exact rather than an
approximate calculation is needed to find this P value. We
provide this exact calculation in this paper.

The P value associated with an observed value m of cases of
the disease in the community of interest is the probability that
the maximum number of balls in any box is m or more. We find
this probability by first finding the probability that no box contains
more than m balls. Denote this probability by P(r, n, m).

Now, the probability that there are r1 balls in box 1, and r2 in
box 2, and . . ., and rn in box n, is given by the well known
multinomial distribution,

Pr�r1, r2, . . . , rn� �
1
nr

r!
r1!r2! . . . rn!

. �r � r1 � . . . � rn�

[1]

The probability that no box contains more than m balls (i.e., the
cumulative distribution function of the maximum of the ri,
evaluated at m) is

P�r, n, m� �
def

Pr�all r i are � m�

� �
0�r1, r2, . . . , rn�m

r1�r2�. . .�rn�r

1
nr

r!
r1!r2! . . . rn!

. [2]

The Computation
At first sight, the expression of Eq. 2 seems appallingly compli-
cated for exact computation, if r and n are large. Various
approximations, such as the Poisson approximation, have been
used by researchers to avoid the apparently tedious computation
in Eq. 2.

However the exact calculation can be completely tamed by two
steps. First, we introduce the function

em�x� � 1 � x �
x2

2!
�

x3

3!
� . . . �

xm

m!
,
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which is simply the mth section of the exponential series. Then
P(r, n, m) is r!/nr times the coefficient of xr in the series em(x)n. (See
Appendix 1 below for a derivation.) The question of computing
a particular coefficient of a high power of a given power series
is a well studied problem in computer science, and the following
solution, which makes the computation quite rapid and easy to
program, is taken from ref. 1, chapter 21.

Let f(x) � �j ajx j be a given power series and let h(x) � f(x)n.
The question is, If h(x) � �j hjx j, how can we economically
compute the hj values from the given aj values? We begin by
taking logarithms of the equation h � f n, to get log h(x) �
n log f(x). Now differentiate both sides with respect to x to obtain
h�/h � nf�/f, and cross-multiply to eliminate fractions, yielding
fh� � nhf�. Next, insert the power series expansions of the various
functions into this equation and multiply both sides by x, for
cosmetic reasons, to get

��
j

aj x j���
�

�h�x�� � n��
j

hj xj� ��
�

�a�x��.

Finally, equate the coefficients of a given power of x, say xs, on
both sides of the last equation, which gives,

�
��0

s

�h�as�� � n�
��0

s

�a�hs��.

This is a recurrence relation. We can use it to compute the
unknown hj values successively, in the order h0, h1, h2, . . .. To
make this explicit, we can rewrite the above in the form

hs �
1

sa0
�

��1

s

��n � 1�� � s�a�hs��. �s � 1, 2, 3, . . .�. [3]

In this form it is clear that each hs is determined from
h0, h1, . . ., hs�1.

In the particular case at hand, of powers of the truncated
exponential series em(x), we have aj � 1/j!, for 0 � j � m, and
aj � 0 for all other values of j. The recurrence takes the form

hs �
1
s �

��1

min�s,m�

��n � 1�� � s�
hs��

�!
. �s � 1, 2, 3, . . .� . [4]

We summarize the calculation procedure as follows. To com-
pute P(r , n, m) as defined by Eq. 2,

Y Take h0 � 1 and successively compute h1, h2, . . ., hr from
Eq. 4.

Y Then P(r , n, m) � r!hr/nr.

A remarkable feature of this algorithm is that the computation
of each hs requires the knowledge of only m earlier values, so the
entire computation can be done with just m units of array
storage. For example, it can find the probability that the maxi-
mum is �8, for 15,000 balls in 10,000 boxes by using only 8 array
storage locations. In summary, it runs in a time that is O(mn) and
uses only O(m) storage.

We remark that, as we have presented it, this method works
only for the situation in which the cells have equal probabilities.
It can be extended, with some extra cost, to the case of unequal
probabilities, which may be useful for power calculations.

Leukemia: Two Examples
Example 1. We consider first the much discussed case (see refs.
2 and 3) of childhood leukemia in Niles, IL, in the 5-year period
1956–1960. Heath (3) gives a total of eight cases in this town

during this period, as compared with an expected number of 1.6.
In 1960, the population of Niles was �20,000 people. The total
population of the U.S. in 1960 was �180,000,000 people. There-
fore the U.S. population in 1960 can be thought of as consisting
of 9,000 cells, the population of each being 20,000 people. An
expected number of 1.6 in Niles would then correspond to a total
of �14,400 cases in the U.S. in the 5-year period studied.

Using the formula above, we therefore computed the exact
probability that if 14,400 balls are distributed randomly into
9,000 cells, then no cell will get more than m balls, for each m �
6, . . ., 12, and in particular for m � 8. We also computed the P
value for each of these values of m by using the fact that the P
values corresponding to an observed maximum of m is given by
1 � P(14400, 9000, m � 1).

For comparison, we ran a Monte Carlo computer experiment
in which we repeated 1,000 times the operation of distributing
14,400 balls randomly into 9,000 cells and recorded the frequen-
cies of the maximum occupancy numbers, thus giving an empir-
ical distribution function for m (1,000 replications are needed to
give an estimate of the P value for m � 8 that is accurate to
within 	0.01 with probability 0.95). The results of this simula-
tion, and the exact P(14400, 9000, m) computations are shown in
Table 1, together with the exact P values.

We conclude from the results in Table 1 that the probability
that some cell with a population of 20,000 would have gotten
eight or more cases in the 5-year period studied is �90%. Thus,
the Niles data do not appear, so far as formal P value calculations
are concerned, to show a significant cluster of cases of childhood
leukemia.

Example 2. Twelve cases of acute lymphocytic leukemia were
observed (4) in Churchill County, NV, among persons who had
been residents of the county at the time of diagnosis, in the 3-year
period 1999–2001. Concern was expressed that this cluster was
due to exposure to some agent associated with a nearby naval air
station. At that time the county had a population of �24,000.
The entire U.S. had a population of �288,000,000, equivalent to
12,000 units, or cells, each of the size of Churchill County. The
Nevada State Epidemiologist, Randall Todd, estimated that,
based on its population, about one case would be expected in
Churchill County every 5 years. If we use that estimate, the
incidence in the U.S. as a whole would be 12,000 cases every 5
years, or 8,000 cases per 3-year period.

In this case, we need the distribution function of the maximum
number of balls in any cell if 8,000 balls are thrown at random
into 12,000 cells. The results are shown in Table 2.

Clearly the observed incidence of 12 cases in Churchill County
cannot reasonably be ascribed to chance, and further epidemi-
ological investigation is warranted.

Table 1. The Niles, IL, computation

m P(14400, 9000, m) Monte Carlo P value

6 0.000005 0.000 1.000000
7 0.095395 0.096 0.999995
8 0.664954 0.678 0.904605
9 0.937864 0.944 0.335046
10 0.990843 0.993 0.062136
11 0.998788 0.998 0.009157
12 0.999852 0.999 0.001212

The computation of the exact values required 
5 sec on a personal com-
puter running algebra system Maple (available from the authors upon re-
quest). The Monte Carlo computations required �30 min. In both the Monte
Carlo simulations and the exact calculations, we observed the expected rapid
change of P values as m increases, emphasizing the need for exact P value
calculations as disscussed in the text.
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Further Comments on the P Value
The P value corresponding to any value of m in the balls-in-boxes
case can in principle be calculated exactly by using standard
inclusion/exclusion formulae. In practice, this seems extremely
difficult, because the alternating signs can cause catastrophic loss
of significant digits. A Poisson approximation is also possible but
may be inaccurate, particularly around the tails of the distribu-
tion. Our exact method, described in Eq. 4, is fast and does not
suffer from any of those problems.

A further comment about P values is more wide-ranging.
Many diseases might come to our attention because of an
apparent clustering in some location in some time period. In
addition, many different time periods might be potentially
observed. An overall P value calculation taking these matters
into consideration would be desirable but in practice would
probably be impossibly difficult, since no precise value can be
attached to ‘‘the number of diseases that might come to our
attention’’ or, possibly, to the number of time periods that we
might have considered.

A Disclaimer
Mathematics cannot prove or disprove the communicability or
environmental origins of a disease process. It can only help to define
the word ‘‘unusual.’’ The benchmark given above seems like an
appropriate one to use when investigating an outbreak that is
localized spatially, temporally, or both. By this benchmark, the
clustering of leukemia cases in Niles, IL, between 1956 and 1960 was
not unusual. In fact, some collection of that number of cases in some
community the size of Niles in a 5-year period of keeping records
was to be expected with high probability. On the other hand, the
Churchill County data seem extremely significant.

Some Related Work
The problem of finding the distribution of the maximum occu-
pancy in a balls-and-cells problem is very old. Already in the
work of Barton and David (5) one finds the first of our two
observations, namely that the desired probability is a certain
coefficient in a power of a given power series. In ref. 6, this
observation of Barton and David is cited and is said to be ‘‘not
in a form convenient for computing,’’ which is true absent our
second step (in Eq. 3) of vastly accelerating the computation of
the high power of the given series.

Freeman’s algorithm in ref. 6 sought to economize the com-
putation by grouping together vectors of occupancy numbers
that, as unordered multisets, were the same. Hence, he listed
partitions with given largest size part and counted the occupan-
cies of that subset of all partitions. This approach requires
considerably more labor than our method above.

Likewise the recurrence (Eq. 3) for computing powers of
power series has a long history. Although we have followed ref.
1 in our presentation, the recurrence method was certainly not
invented by the authors of ref. 1, because this method is
described in several earlier works. Nonetheless, the concatena-
tion of the two methods in connection with finding the distri-
bution of the maximum cell occupancy seems to be new.

Finally, we mention some very recent work (7, 8) on a different
problem but one that presents a similar challenge. This problem
is the normalized maximum likelihood distribution, which arises
in connection with finding the shortest possible encoding of a
given data set. The problem concerns the rapid computation of

R�n, k� �
1
nn �

r1�r2�. . .�rk�n

n!
r1!r2! . . . rk!

r1
r1r2

r2 . . . rk
rk. [5]

This formula, aside from the multiplicative factor, is evidently
the coefficient of xn in B(x)k, where B(x) � �n nnxn/n!. Our
algorithm (Eq. 3) clearly applies here. In ref. 8, the authors
discovered that the elegant recurrence

R�n, k� � R�n, k � 1� �
n

k � 2
R�n, k � 2�

holds, owing to special properties of the function B(x), and this
yields an algorithm that runs in time O(n � k), which is faster
than our general algorithm (Eq. 3) when specialized to this case.
However, if, for a fixed k, we want a table of R(n, k) for all n �
1, 2, . . ., N, then our algorithm (Eq. 3) will compute all N of
those numbers at an average cost of O(N) computations per
number computed, which is about the same as the method of
ref. 8.

Appendix 1: Powers of a Power Series
Suppose we have a power series f � �r ar xr. Then, when we raise
the series f to the nth power, we obtain

f n � ��
r

ar xr�n

� ��
r1

ar1
xr1� ��

r2

ar2
xr2� . . . ��

rn

arn
xrn�.

� �
r1, r2, . . . , rn

ar1
ar2

. . . arn
xr1�r2�. . .�rn.

The coefficient of xr in the above is evidently obtained by
requiring that r1 � r2 � . . . � rn � r, and therefore it is

�
r1�r2�. . .�rn�r

ar1
ar2

. . . arn
. [6]

Next we specialize this expression to the case for which the f
series is the mth section of the exponential series. This means
that we are taking aj � 1/j!, for j � m, and aj � 0 otherwise. The
general expression (Eq. 6) then becomes exactly the cumulative
multinomial probability (Eq. 2), aside from the factor r!/nr, as
claimed. For more information about power series generating
functions, see, for example, ref. 9.
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Table 2. The Fallon, NV, computation

m P(8000, 12000, m) P value

4 0.000472 1.000000
5 0.436361 0.999528
6 0.925122 0.563639
7 0.993604 0.074878
8 0.999528 0.006396

Ewens and Wilf PNAS � July 3, 2007 � vol. 104 � no. 27 � 11191

M
ED

IC
A

L
SC

IE
N

CE
S

M
A

TH
EM

A
TI

CS


