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Abstract
Introduction: A new model for an input function for human [18F]-2-Deoxy-2-fluoro-D-glucose
fluoro (FDG) positron emission tomography (PET) brain studies with bolus injection is presented.

Methods: Input data for early time, roughly up to 0.6 minutes, are obtained non-invasively from
the time activity curve measured from a carotid artery region of interest (CA-ROI). Representative
tissue time activity curves are obtained by clustering the output curves to a limited number of
dominant clusters. Three venous plasma samples at later time are used to fit the functional form of
the input function in conjunction with obtaining kinetic rate parameters of the dominant
clusters,K1, k2 and k3 using the compartmental model for FDG-PET. Experiments to test the approach
use data from 18 healthy subjects.

Results: The model provides an effective means to recover the input function in FDG-PET studies.
Weighted nonlinear least squares parameter estimation using the recovered input function, as
contrasted with use of plasma samples, yields highly correlated values of K =K1k3/(k2 + k3) for
simulated data, correlation coefficient .99780, slope 1.019 and intercept almost zero. The estimates
of K for real data by graphical Patlak analysis using the recovered input function are almost identical
to those obtained using arterial plasma samples with correlation coefficients greater than 0.9976,
regression slopes between .958 and 1.091 and intercepts that are virtually zero.

Conclusions: A reliable semi-automated alternative for input function estimation which uses
image-derived data augmented with 3 plasma samples is presented and evaluated for FDG-PET
human brain studies.
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1 Introduction
Positron emission tomography (PET) is a widely used neuroimaging technique that, among
others, assists with disease diagnosis, treatment evaluation and study of brain function. In
addition to its visual and qualitative assessment, PET images can provide quantitative estimates
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of physiological or metabolic parameters of interest. We are interested in dynamic [18F]-2-
Deoxy-2-fluoroD-glucose fluoro (FDG) PET which permits the estimation of the cerebral
metabolic rate for glucose (CMRglc), and has been used for analyses of brain diseases
associated with aging. The focus of this paper is the estimation of the input function, the time-
varying radiotracer concentration in plasma, which is required in quantifying data from
dynamic FDG-PETimages [1].

While the invasive gold standard arterial plasma sampling procedure to obtain the input
function has long been suggested, its invasive nature has limited its routine use in basic
research, especially in clinical PET studies. Many alternative methods for FDG-PET and other
tracers have been proposed. These include obtaining arterialized venous plasma samples, [2],
using population-based input functions, [3], [4], [5] estimating the rate constants using a
multichannel blind identification without input function, [6], and simultaneously estimating
(SIME) both the input and the kinetic parameters for a limited number of brain regions, [7],
[8]. Other methodologies include constructing an image-derived input function, possibly
combined with limited plasma sampling and/or the SIME approach, [9], [10], [11], [12]. Noting
the risks and discomfort associated with any kind of plasma sampling, the PET Neuroimaging
Working Group [1] has recommended that, where possible, PET studies be accomplished
through use of a completely image-derived input function. We make further progress toward
this end by proposing a new functional model for the input function of FDG-PET which is then
used to extend an existing image-derived approach [9].

A new functional form of the input function for dynamic FDG-PET brain studies using bolus
injection is presented in Section 2. In Section 3 we describe a nested optimization method to
simultaneously estimate the input model parameters and the kinetic rate parameters,K1, k2,
k3, from a limited number of dominant tissue types. These are determined by clustering of the
entire brain volume tissue time activity curves (TTACs), [13]. Robustness relative to the
number of cluster TTACs used in the proposed method is demonstrated. Moreover, the
recovered input is highly accurate for obtaining parameter K = K1k3/(k2 + k3), closely related
to the CMRglc, for simulated and real data, Section 4. Additional comments about the method
are discussed in Section 5 and conclusions in Section 6.

2 A Model for the Input Function
2.1 Rationale

We distinguish between the characteristics of the input function over roughly first half minute
and later time. In the very early time after the tracer rapidly administered, the input function
as seen in the plasma, denoted by up(t), increases rapidly to a peak value and then quickly
drops, see crosses, Figure 1. This sharp increase and decrease can be approximated by two line
segments, one upward from left of the peak to the peak, and one downward from peak. Three
nodes (τ0, 0), (τp, vp) and (τ, vτ), which define the line segments, see Section 2.2.1, are generated
using image-derived data from carotid artery blood regions of interest (CA-ROIs). Here v(t)
denotes the average image-derived whole blood time activity curve of the CA-ROIs and the
linear segments are scaled to account for partial volume effects and red cell fraction
(hematocrit).

After the early interval of roughly one half minute, image-derived data are subject to greater
contamination of tracer spillover from tissue to blood. We therefore model the input data after
the initial interval without using image-derived data, but using a limited number of intravenous
plasma samples. The piecewise-continuous parameter-dependent formulation for the estimated
input function ue is given by

Guo et al. Page 2

Nucl Med Biol. Author manuscript; available in PMC 2008 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ue(t, θ, λ, δ) = {0 t ∈ 0, τ0

θvp
t − τ0
τp − τ0

t ∈ τ0, τp

θ
vτ(t − τp) + vp(τ − t)

τ − τp
t ∈ τp, τ

θvτe−λ(t−τ)δ t > τ.

(1)

Here the interval [0,τ] defines the early time window W1 typically τ < 0.6 minutes and W2 =
[τ, T] is the second window, T ≈ 60 minutes. The parameter θ is introduced to account for partial
volume effects and hematocrit in the measurement of the tracer concentration in v(t).

2.2 Image-derived input function data
The curve associated with the image data from CA-ROIs is obtained from the PET frames
using the same protocol, and code as used in [9]. The initial time frames up to time 2 minutes
are summed so as to emphasize those voxels which show the tracer in the CA-ROIs, typically
3 to 5 slices in the lower portion of the brain (for FDG-PET data acquired with the 951/31 EC
AT scanner), and from which whole blood time activity curves for each observed CA-ROI can
be calculated. Averaging over these curves yields the data that defines the average whole blood
time activity curve v(t), see the solid line with open circles, Figure 1. We can see that v(t)
provides crucial subject and situation dependent information on the input function, by
providing the times at which the tracer reaches the CA-ROI, τ0, and then the time at which it
peaks in the blood, τp. The delay between up and v(t) is merely indicative of the shift due their
measurement from different sources. An immediate visual comparison shows the
underestimation of v(t) as compared to up(t), due to partial volume effects and hematocrit,
which is accounted for in (1) through the scaling of v(t) inversely proportionally to its recovery
from the image by parameter θ.

2.2.1 Piecewise linear approximation to the image-derived data for early time—
Given the image-derived data for v(t), a piecewise linear approximation for v defined in model
(1) which depends on the automatic selection of the three time points (τ0,τp,τ). It is easy to
determine τp as the point in the sampled data at which the highest intensity value vp = v(τp) is
achieved. The point τo provides an estimate of the initiation time of activity, prior to which
there is effectively no signal, [14]. To facilitate the automatic estimation of τo we selected it
as the point after which v(t) remains greater than .02vp.

The significance of the time point τ, which is a time point shortly after τp, is to assure that the
input on W1 can be well approximated by two line segments and on W2 it can be well-modeled
by model uw2 = θvτe−λ(t−τ)δ, see further details comparing this analytic form with other analytic
expressions in [15]. While it can be determined automatically, it can not be simply
predetermined to be a fixed number of points after the peak because noise may contaminate a
chosen point. We chose, therefore, a relatively simple automatic way to select τ. Two straight
line least squares fits are used. We form one linear data fit through the points τp and the next
two points to the right of τp, and a second linear data fit through the last of these and two more
to the right. Their point intersection defines both τ and the value vτ, which is most likely not
one of the discrete values of v(t).
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3 Method
A nested optimization method for recovering the input function ue(t) and the kinetic rate
parameters of representative TTACS obtained from clustering is presented. The recovered ue
can then be used to calculate kinetic parameters and

K =
K1k3

k2 + k3
(2)

for additional TTACs.

3.1 Clustering the PET data
The fast clustering method described in detail in [13] is utilized to find p representative TTACs ,
yTAC

(i) (t), i = 1 ⋯, for the whole brain excluding non-brain, blood vessel and CSF regions.
Throughout we use superscript (i) to label cluster i, and assume that the cluster labeling is
ordered such that the first cluster is the largest. The advantage of clustering is that it provides
an automated way in which to segment the data into tissue groups of similar functional activity.

3.2 An algorithm for recovering the input function
In the compartmental model [16] for FDG-PET, the ideal TTAC y(t) at a given voxel, or for a
specific brain tissue ROI, is given analytically by convolution (⊗) of the instantaneous response
function (IRF) with input u(t)

y(t) = u(t)⊗ ( K1k3
k2 + k3

+
K1k2

k2 + k3
e
−(k2+k3)t). (3)

The IRF is the term within the parentheses and depends on the specific tissue response to the
tracer. K1 is the transport rate from plasma to brain tissue with units ml/100g/minute, k2 is the
transport rate back from brain to blood vessel with units 1/minute, k3 is the phosphorylation
rate of intra-cellular FDG by hexokinase enzymes to FDG-6-phosphate with units 1/minute.
Because the scanning interval 60 minutes is relatively small, it will be difficult to accurately
estimate the dephosphorylation rate of intra-cellular FDG-6-phosphate back to FDG, k4, [17].
We thus set k4, which is itself small, to zero.

Typically, kinetic parameters for cluster curve y(i), given by (3), can be obtained by the
minimization of Φ(i),

Φ (i)(x(i), α (i)) = ∑
j=1

n
wj(yTAC

(i) (tj) − α (i) ⋅ y (i)(tj) − (1 − α (i)) ⋅ u(tj))2. (4)

α(i) accounts for both partial volume and spillover effects for cluster i, and the rate constants
are components of x(i) = K1

(i), k2
(i), k3

(i) . The contributions from each time point are
weighted by wj. Ideally, these are the inverse of the variances of the data of each frame and are
different for different tissue TACs. Because of the difficulty of estimating the variances they
are set to the time durations of the relevant time frames as practiced in [18]. To define a feasible
space for the parameters bound constraints are imposed.

It is usually assumed that the values for u(tj) used in (4) are measured values of the input
function. In contrast, we intend the use of the functional form (1). With respect to the dominant
first cluster, the parameters θ, λ, δ of the input function ue(t) can be recovered simultaneously
with the kinetic rate constants. This is accomplished in a two-stage process. Specifically, notice
that for any given value of θ parameters λ, δ can be obtained as the solutions of
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λ(θ), δ(θ) = argminλ,δ ∑l=1

3
θv(τ)e−λ( t

∼
l−τ)δ − up( t

∼
l) 2

, (5)

using three intravenous plasma samples, ( t
~

l, up( t
~

l)), l = 1, 2, 3. Therefore, at each iteration
in the minimization of Φ(1) (x(1), α(1)), θ), noting now the introduced dependence on the
recovery coefficient θ, (5) can be solved to obtain the updates of λ and δ.

To make the estimation of the input function more robust, we note that the input function is
common to all TTACs and thus propose that the optimization be performed simultaneously
over p clusters with cost function

Φ(x, α, θ) = ∑
i=1

p
Φ (i)(x(i), α (i), θ) (6)

where x = (x(1) ,…, x(p)), and α = (α(1),…, α(p)).)

In summary, the nested optimization method, illustrated in the flow chart provided in Figure
2, is formulated as follows

min
x,α,θ

Φ(x, α, θ) subject to constraints (7)

1.2 ≤ θ ≤ 4, 0.9 ≤ α (i) ≤ 1,

0.015 ≤ K1
(i) ≤ 0.3, 0.024 ≤ k2

(i) ≤ 0.54, 0.01 ≤ k3
(i) ≤ 0.2.

(8)

Matlab 7.0 function fmincon from the optimization toolbox version 3.0.2 [19] utilized for
carrying out this constrained minimization. The bounds used are based on experimental results
[17] for both gray and white matter from 13 but with doubling of upper bounds and halving of
lower bounds such that the feasible space is not too conservatively estimated. Time delay
between the TTACs and the input function is removed by automatically shifting the TTACs
such that the first peak of each is aligned with vτp.

4 Results
Experiments are reported which assess the method with respect to the number of clusters,
visually examine the recovered input function as compared to plasma-sampled data,
demonstrate the robustness of the parameters defining the input function, use the recovered
input function in graphical Patlak analysis as compared to using the plasma-sampled data, and
compare the calculation of (2) using the kinetic parameters obtained by nonlinear least squares
for both plasma-sampled input data and the recovered input function.

4.1 Clinical data set
The retrospective PET data available were collected using a 951/31 ECAT scanner (Siemens,
Knoxville, TN) with the identical scanning protocol for each subject. An initial 20 minutes
transmission scan was acquired for attenuation correction and an intravenous bolus of 10 mCi
FDG administered over 5-10 seconds under resting condition. PET images were reconstructed
using a filtered back projection algorithm with Hanning filter of 0.40 cycles per voxel. There
are 31 transaxial slices of 128 × 128 voxels, each voxel of size 0.18776 × 0.18776 cm2, with
a center-to-center slice separation of 3.375 mm and a 10.8 cm axial field of view. The final
reconstructed PET images have an in-plane resolution of 9.5 mm full-width at half maximum
(FWHM) in the center of the field of view and an axial resolution of 5.0-7.1 mm FWHM.
Scanning durations, given in minutes, for the reconstructed frames were 0.2, 8 × 0.0333, 2 ×
0.1667, 0.2, 0.5, 2 × 1, 2 × 1.5, 3.5, 2 × 5, 10 and 30. (The noisy first frame is excluded from
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the analyses.) Total session duration was 60 minutes. The arterial plasma samples were drawn
every 5 seconds for the first minute, every 10 seconds for the second minute, every 30 seconds
for the next 2 minutes, and then at 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 50 and 60 minutes, yielding
a discrete representation of the plasma sampled function with units counts/ml/minute, denoted
by up(tj), for j = 1,… ,34.

4.2 Dependence on the number of clusters
Utilizing a greater number of cluster TTACs in minimizing the cost function (7) increases the
computational complexity. To assess the dependence on p of the recovered input, and resulting
estimated K by (2), the nested optimization of the constrained cost function is solved using p
= 1, 2, and 3 clusters, out of a total of 5 clusters. The recovered input ue for each choice of p,
namely ue with the converged values for θ, λ and δ, is then used in standard nonlinear fitting
for estimating the tissue kinetic rates and vascular fraction for each cluster TTAC i of the brain
volume clustered to a total of 50 clusters. Results are compared with those obtained using
plasma sampled data in place of ue in the nonlinear fitting.

Linear regression analysis for the estimates of K performed for all 18 subjects and 50 clusters
is illustrated in Figure 3. The measurements of K are highly comparable for all choices of p;
correlation coefficients .97968, .99269 and .99115, slopes near one .9735, .9832, .9873 and
intercepts around zero, .0012, 00096, and .00074, in each case for p = 1, 2 and 3. Figure 3
illustrates the inferiority for p = 1 and that p = 2 and p = 3 are comparable. Thus we suggest
using p = 2 to minimize cost, without affecting the quality. All other reported results use p =
2.

4.3 Visual inspection of the input function
A comparison of the estimated input function ue with the plasma-sampled input up is illustrated
in Figure 4. Because these two curves come from different sources, namely CA-ROI and arm
arterial plasma samples, there is a time shift between them. In order to provide a better
comparison ue is automatically shifted to match up, see Figure 4 (b). As expected the tails of
both curves are closer because the tail of the estimated curve is obtained by the fit with the
plasma samples. For all subjects ue is smoother for later time because it is evaluated using a
functional form. Additional representative comparisons of up with shifted ue are shown in
Figure 5.

4.4 The model parameters defining ue
Table 1 presents the estimates for θ, λ and δ. The consistency of δ around the average of 0.248
suggests the robustness of model uW2 with respect to different subjects. We observe that α(i)

are remarkably consistent across all subjects and clusters, and well within the range prescribed
by the constraints. On the other hand, the variation in θ is indicative of the variable partial
volume effects because the identified CA-ROIs vary in their location, size and shape between
subjects.

4.5 Quantitative evaluation for real data by Patlak analysis
To provide a comparison with the method presented in [9], the recovered input for each subject
is used in Patlak analysis for each cluster TTAC. The data of the last three frames, i.e. 15 min.
to 60 min., are used for the Patlak analysis. The equilibrium of the FDG tracer in this time
interval is justified in [20]. Results are compared with those obtained using the plasma sampled
data, see Table 2 for representative results for the first 5 subjects. The calculated K over all
clusters and all subjects are highly correlated, correlation coefficient 0.99686, slope 0.9878
and intercept .00071, see Figure 6. The within subject variation of K is comparable whether
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calculated using up or ue. The results are comparable to those presented in [9], in which analysis
of CMRglc for one subject yields R2 .9997, slope 1.0018, and intercept −0.031.

4.6 Quantitative evaluation for real data by nonlinear least squares
To further evaluate the method of Section 3 for recovering the input function it is used in the
postestimation of K1, k2 and k3, and in turn K, and these values compared to those in which
the plasma-sampled data is used. Table 3 provides the results of linear regression analysis, the
slopes, intercepts and correlation coefficients for the calculation of K for first 5 subjects over
all 50 clusters. Again, the within subject variation of K is comparable whether calculated by
up or ue. Figure 7 illustrates the regression analysis for individual kinetic rate parameters K1,
k2 and k3 for subject 5.

Although not presented here, a careful examination of results obtained with ue (up),
respectively, shows that in only 2(0), 8(8) and 34(24) cases out of 900 were the bounds K1,
k2 and k3, attained, which justifies the choice of bounds for the rate constants in the optimization
problem.

4.7 Quantitative validation of ue for simulated data
Kinetic rate parameters, K1, k2, k3 for the first three sets of both gray and white materials from
Table 1 in [17] are used for simulation. For each set of rate parameters we obtain a TTAC using
convolution equation (3) with up substituted for u(t). This yields 6 TTACs with known rate
parameters and K for each subject. Then the subject-dependent recovered ue was used to
estimate K by graphical Patlak analysis and directly from (2) using the recovered kinetic
parameters obtained by weighted nonlinear least squares. This process studies the use of ue in
the postestimation stage for the 50 clusters for each subject, as described in Section 4.6, but
with data for which the exact K is known.

The calculated K for all simulation data are well-correlated with the true values, correlation
coefficients are .96213 and .99780, slopes are .9943 and 1.019, and intercepts .0015, −.000047,
for the calculation of K by Patlak analysis and directly using (2), resp. The mean and standard
deviation of the relative estimation errors of K are 5.481% (1.676%) and 7.766% (0.301%).
The individual rate parameters are quite well correlated, with correlation coefficient and slope
pairs for K1, k2 and k3 (.94319, 1.076), (.89782, 1.083), and (.95925, 1.006), resp.

5 Discussion
Here we focus on certain specifics of the method described in Section 3.

5.1 Recovering the input function
In the model of the input for ue the values vτp and vτ are known and only the three parameters,
θ, λ and δ, need to be determined. Rather than using the TTACS to obtain the parameters of
this input function, these could be obtained by directly fitting the model uW2 with three plasma
samples. In that case, the analytic form for uW2 could be extrapolated to provide values for t
≥ τ, with scaling by θ of the linear parts in (1) for 0 < t ≤ τ. In Figure 8 we illustrate for one
subject the recovered input function that is obtained by the algorithm described in Section 3
as compared to that obtained directly by data fitting with just the plasma samples and
extrapolation. This shows that without information from the TTACs, the data on the early time
window are shifted too high, θ = 3.909.

5.2 Time shift between plasma samples and the image-derived time activity curve
As we can see from Figures 1 and 4, there is always a time shift between the CA-ROI TAC
and the measured plasma samples for early time. Should the data on W1 measured from the
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CA-ROI be shifted to match with that on W2 which is obtained directly from the three plasma
samples? We used the arterial plasma samples to determine that the actual shift for subject 4
is 10 seconds. The plasma samples at approximate times 10, 30 and 60 minutes are 0.7150,
0.4487, 0.3130 counts/ml/minute, resp. Supposing all plasma samples for t > τ are shifted by
10 seconds to the right and then used in the fit for uW2, the differences at these same three time
points are just −.004, −.001, −.0005, resp. with relative errors less than 0.56%. It has been
reported that the impact of errors of this magnitude in the input function is insignificant in
terms of parametric estimation, [21]. We conclude that the shift of W1 relative to W2 is
negligible.

5.3 Plasma Sampling
In this study we took advantage of the availability of arterial plasma samples to assess all
aspects of the method, using the validated compatibility between arterial and venous plasma
samples, with less than 2.25% mean difference over all time points, [9]. Practically, for new
studies in which arterial sampling is not already intended, the use of venous, rather than arterial
samples, as described also in [9] is recommended as a less invasive and less painful method of
acquiring the necessary data.

5.4 Advantage of utilizing two windows in defining the input function
In the proposed method we introduced the use of two windows for defining ue because of the
difficulty that arises in finding a single analytic formulation which can give a good model for
the tracer concentration in plasma for the entire time duration. The use of the two windows
provides more flexibility and less complexity for modeling ue after the initial half minute, and
the first half minute is easily approximated. This approximation on W1 is a crude simplification,
but it is a very good approximation to the real process when τ is very small. Clearly, it is also
possible to use higher order fitting [4] rather than linear approximation on W1 but with τ < 0.6
minute the impact will be insignificant. On the other hand, for later time the image derived
CA-ROI TAC may be contaminated by spillover and so three samples are utilized to replace
the CA-ROI data. As compared to other image-based input function estimation methods,
[10], [22], [9], [11], [23], [12], which use the entire CA-ROI TAC for recovery of the input
data, the proposed method is free from spillover contamination at later time.

6 Conclusions
A reliable semi-automated alternative for input function estimation which uses image-derived
data augmented with 3 plasma samples has been presented and validated for FDG-PE T human
brain studies. A simulated data study validates the recovered input for finding known kinetic
values. In contrast to the original method proposed in [9], there is no need to additionally
manually determine the tissue region of interest near the CA-ROI. The Matlab-based
implementation of the tool is available at web site http://math.asu.edu/~rosie/guo/
inpfest_pub.tar.gz.

References
1. PET-Working Group. PET Working Group: NIH/NIA Neuroimaging Initiative. 2005. URL http://

www.nia.nih.gov/ResearchInformation/ExtramuralPrograms/NeuroscienceOfAging/Summary+%
E2%80%93+PET+Working+Group.htm

2. Phelps ME, Huang S-C, Hoffman EJ, Selin CE, Kuhl D. Tomographic measurement of local cerebral
glucose metabolic rate in man with (18F) fluorodeoxyglucose: Validation of method. Ann. Neurol
1979;6:371–388. [PubMed: 117743]

3. Bentourkia M. Kinetic modeling of PET-FDG in the brain without blood sampling. Comp. Med. Imag.
Graph 2006;30:447–451.

Guo et al. Page 8

Nucl Med Biol. Author manuscript; available in PMC 2008 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Evaluation of two population based input
functions for quantitative neurological FDGPET studies. Eur. J. Nucl. Med 1997;24:299–304.
[PubMed: 9143468]

5. Tsuchida T, Sadato N, Yonekura Y, Nakamura S, Takahashi N, Sugimoto K, et al. Noninvasive
measurement of cerebral metabolic rate of glucose using standardized input function. J. Nuc. Med
1999;40(9):1441–1445.

6. Riabkov DY, Bella EVRD. Estimation of kinetic parameters without input functions: Analysis of three
methods for multichannel blind identification. IEEE Trans. Biomed. Eng 2002;49(11):1318–1327.
[PubMed: 12450362]

7. Feng DG, Wong K-P, Wu C-M, Siu W-C. A technique for extracting physiological parameters and
the required input function simultaneously from PET image measurements: Theory and simulation
study. IEEE J. ITBM 1997;1(4):243–254.

8. Wong K-P, Feng D, Meikle SR, Fulham MJ. Simultaneous estimation of physiological parameters and
the input function - In vivo PET data. IEEE J. ITBM 2001;5(1):67–76.

9. Chen K, Bandy D, Reiman E, Huang S-C, Lawson M, Feng D, et al. Noninvasive quantification of the
cerebral metabolic rate for glucose using positron emission tomography, 18F-fluorodeoxyglucose, the
Patlak method, and an image-derived input function. J. Cereb. Blood Flow Metab 1998;18:716–723.
[PubMed: 9663501]

10. Litton J-E. Input function in PET brain-studies using MRI defined arteries. J. Comp. Ass. Tom
1997;21(6):907–909.

11. Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for
quantitative PET. J. Nucl. Med 1999;40(10):1666–1675. [PubMed: 10520707]

12. Asselin MC, Cunningham VJ, Amano S, Gunn R, Nahmias C. Parametrically defined cerebral blood
vessels as non-invasive blood input functions for brain PET studies. Phys. Med. Biol 2004;49(6):
1033–54. [PubMed: 15104325]

13. Guo H, Renaut RA, Chen K, Reiman E. Clustering huge data sets for parametric PET imaging.
Biosystems 2003;71(12):81–92. [PubMed: 14568209]

14. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with
intravenous 15O-H2O II. Implementation and validation. J. Nucl. Med 1983;24:790–798. [PubMed:
6604140]

15. Guo, H.; Renaut, R.; Chen, K. Evaluating an alternative model for the input function in FDG-PET
studies. 2007. URL http://math.la.asu.edu/~rosie/mypapers/nmbsupp.pdf

16. Sokoloff L, Reivich M, Kennedy C, Rosiers MHD, Patlack CS, Pettigrew KD, et al. The [14C]
deoxyglucose method for the measurement of local cerebral glucose metabolism: theory procedures
and normal values in the conscious and anesthetized albino rat. J. Neurochem 1977;28:897–916.
[PubMed: 864466]

17. Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of
local cerebral metabolic rate of glucose in man. Am. J. Physiol 1980;238(E):69–82.

18. Zhou Y, Endres CJ, Brasic JR, Huang S-C, Wong DF. Linear regression with spatial constraint to
generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue
model. NeuroImage 2003;18(4):975–989. [PubMed: 12725772]

19. The Mathworks. Optimization Toolbox User's Guide. 2005
20. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss W-D. Estimation of local cerebral utilization

by positron emission tomography of 18F-2-fluoro-2-deoxy-d-glucose: a critical appraisal of
optimization procedures. J. Cereb. Blood Flow Metab.

21. Chen K, Huang S-C, Yu D-C. The effects of measurement errors in the plasma radioactivity curve
on parameter estimation in positron emission tomography. Phy. Med. Biol 1991;36(9):1183–1200.

22. Liptrot M, Adams KH, Martiny L, Pinborg LH, Lonsdale MN, Olsen NV, et al. Cluster analysis in
kinetic modelling of the brain: A noninvasive alternative to arterial sampling. Neuroimage 2004;21
(2):483–493. [PubMed: 14980551]

23. Sanabria-Bohorquez SM, Maes A, Dupont P, Bormans G, de Groot T, Coimbra A, et al. Image-derived
input function for [11C] flumazenil kinetic analysis in human brain. Mol. Imag. Biol 2003;5(2):72–
78.

Guo et al. Page 9

Nucl Med Biol. Author manuscript; available in PMC 2008 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 1.
Comparison of the arterial plasma samples (crosses), average CA-ROI region time activity
curve (solid line with open circles) and estimated input function solid line with 3 discrete
asterisks. Also illustrated, with the 3 asterisks, is the time at which the average tracer activity
is initiated in the CA-ROI τ0, the time point for the peak value τp, the point of continuity τ
between windows W1 and W2, and the three plasma samples used for the fit. Time is expressed
on logarithm scale hence emphasizing the effects for early time.
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Fig 2.
Flow chart detailing the steps of the nested optimization.
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Fig 3.
Linear regression for parameter K, calculated by (2), with up as compared to ue obtained using
1, 2 and 3 clusters. Regression is carried out over 50 clusters for all 18 subjects.
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Fig 4.
The recovered input function ue(t) compared with arterial plasma samples, up(t). Illustrated are
the data given on logarithm time scale (a), and (b) the same data with ue(t) shifted to account
for the time delay relative to up(t).
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Fig 5.
Comparison of shifted estimated input ue, continuous line, and up for representative subjects,
1 – 4, in (a)-(d).
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Fig 6.
Linear regression for K calculated with up as compared to ue using Patlak analysis. Regression
analysis for all subjects and all clusters yields high correlation 0.99686, with slope .9878 and
intercept .00071.
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Fig 7.
Comparing the two sets of parameters calculated by ue, x-axis, and up, y-axis, for subject 5.
The correlation coefficients of these four parameters are 0.98140, 0.99538, 0.99916 and
0.98896.
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Fig 8.
Comparing the recovered input function by direct data fitting of the plasma samples (θ = 3.909)
and by using the TTACS in the data fitting (7) (θ = 2.287), for representative subject 7. The
use of the TTACS in the nested optimization yields a θ which leads to a much better fit of the
recovered input function with the plasma samples.
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