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Abstract
Determining power and sample size in neuroimaging studies is a challenging task because of the
massive multiple comparisons among tens of thousands of correlated voxels. To facilitate this task,
we propose a power analysis method based on random field theory (RFT) by modeling signal areas
within images as non-central random field. With this framework, power can be calculated for specific
areas of anticipated signals within the brain while accounting for the 3D nature of signals. This
framework can also be extended to visualize local variability in sensitivity as a power map and a
sample size map. We validated our non-central RFT framework based on Monte-Carlo simulations.
Moreover, we applied our method to a blood oxygenation level dependent (BOLD) functional
magnetic resonance imaging (fMRI) data set with a small sample size in order to demonstrate its use
in study planning. From the simulations, we found that our method was able to estimate power quite
accurately. In the fMRI data analysis, despite the small sample size, we were able to determine power
and the number of subjects required to detect signals.
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Introduction
When planning biomedical studies, investigators have to consider two seemingly paradoxical
facts. It is important to have a sufficiently large number of subjects to detect the signal or effect
of interest. On the other hand, it is also important to include as few subjects as possible in order
to avoid unnecessarily exposing subjects to unforeseen risks and to reduce the costs associated
with the study. Therefore, determining the appropriate number of subjects is an important step
in study planning. This process of power analysis is straightforward in studies with a single
outcome variable (Cohen 1988), and a number of software tools are widely available for such
single-outcome power analyses. In neuroimaging studies, however, power calculation is a
complicated process due to the fact that outcomes are in the form of 3D images with tens of
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thousands of correlated voxels. Hence simply applying the single-outcome power analysis may
not be appropriate for neuroimaging data.

Compared to the development of statistical inference methods, relatively little effort has been
focused on the development of power analysis methods in neuroimaging data. Nevertheless
there have been some attempts in calculating power for neuroimaging studies. Theoretical work
started as early as the application of RFT (random field theory) to neuroimaging data. Friston
et al. (1994) modeled signals in a statistic image as a Gaussian random process, and produced
a power surface by expressing power as a function of the threshold height and signal width.
This was later used to discuss power (Friston, et al. 1996) and sample sizes (Friston, et al.
1999) in neuroimaging data analyses from a theoretical perspective. However, this relatively
simple method was unable to calculate power to detect signals at a specific location within the
brain. Rather, this method calculated power to detect signals in random locations anywhere in
the brain, not necessarily at the location where the investigator anticipated. In another RFT-
based approach, Siegmund and Worsley (1995) described the behavior of power to detect a
single Gaussian-shaped signal with unknown location in the search region. Although this is a
typical signal considered in the RFT literature, this may not accurately represent signals with
multiple foci often detected in neuroimaging data.

Besides RFT, others have taken a different approach and extended the single-outcome power
analysis to neuroimaging data. The main idea of such an approach is to calculate power based
on a non-central distribution at each voxel. Van Horn et al. (1998) used a non-central F-
distribution to calculate power at each voxel. Although they were unable to account for spatial
correlation and multiple comparisons in their power analysis, they were able to produce a power
map, an image describing the spatial variability of power in different areas of the brain. Zarahn
and Slifstein (2001) used a non-central T-distribution to calculate power, using a rudimentary
multiple comparison correction with the Bonferroni method. One shortcoming of this type of
power analyses is that the method focuses on power at each voxel separately and ignores the
spatially correlated nature of signals. If a signal is observed in one voxel, then it is likely to be
observed in the neighboring voxels as well due to spatial correlation. Thus it is more appropriate
to calculate power for a collection of voxels, rather than at each single voxel separately.

Simulation and resampling-based methods are other conventional approaches to calculate
power. Although computationally intensive, such methods have been applied to neuroimaging
studies. Desmond and Glover (2002) predicted power in fMRI studies based on simulations,
and produced power curves to summarize their results. Their work has been referenced often
in the neuroimaging community for power and sample size issues. Murphy and Garavan
(2004) used a resampling technique to calculate power based on their data set. It should be
noted that neither of the above studies corrected for multiple comparisons. Rather, very high
uncorrected thresholds (p<0.000002 in Desmond and Glover (2002) and p<0.000001 in
Murphy and Garavan (2004)) were chosen in order to account for a large number of voxels
involved in statistical inference. Moreover, to obtain a power curve or a sample size curve by
these methods, the simulation or resampling process needs to be repeated for different degrees
of freedom (df), requiring a considerable amount of time and computing resources. Such a
process is very impractical for neuroimaging investigators.

To overcome the problems described above, we propose a new power analysis method
specifically designed for neuroimaging data. In particular, we present a power analysis method
based on RFT for non-central random fields. Analogous to non-central random variables used
to describe signals in single-outcome power analyses, non-central random fields are used to
describe signals in statistical images. We refer to this new approach as the non-central RFT
framework. An RFT-based parametric framework is chosen because of its computational
efficacy; the distribution of the test statistic can be modeled by a single parametric model (Cao
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and Worsley 2001;Worsley, et al. 1996b). Power calculated by this framework is adjusted for
multiple comparisons while accounting for spatial correlation among voxels. The non-central
RFT framework can account for the effect size as well as the spatial characteristics of
anticipated signals (extent and topology), allowing investigators to explicitly specify the
alternative hypothesis in the power calculation. This means that users can calculate power in
the areas where signals are anticipated rather than at random locations. We also extend this
non-central RFT framework to visualize power in different parts of the brain in the form of a
power map and a sample size map (Van Horn, et al. 1998). The resulting maps can aid
investigators to determine where signals are likely to be detected and how many subjects are
needed in their planned studies. In this paper, we validate the non-central RFT framework by
simulations, and then apply it to a BOLD fMRI study to demonstrate its use.

Methods and Materials
Overview of the Non-Central RFT Framework

In principle, the non-central RFT framework is similar to any other power calculation methods.
First, the distribution of the test statistic under the null hypothesis (H0) is obtained, and then
the distribution under the alternative hypothesis (HA) is obtained. Once both distributions are
found, then power can be obtained as the probability of detecting signals with the threshold
controlling the significance level (see Figure 1). In a neuroimaging study, H0 often corresponds
to absence of signals (i.e., no difference or effect) in the entire brain, whereas HA corresponds
to presence of signals in some specific areas of the brain (e.g., visual cortices, auditory cortices,
fusiform gyri, etc.). We describe a statistic image under HA as patches of central and non-
central random fields (see Figure 2). The distribution under H0 corresponds to the distribution
of the maximum of T- or F-random fields, which has been studied and documented extensively
(Cao and Worsley 2001;Worsley 1994;Worsley, et al. 1992;Worsley, et al. 1996b). The
distribution under HA corresponds to the distribution of the maximum of non-central T- or F-
random fields, respectively.

Non-Central Random Fields
A non-central T-field S with df=m and non-centrality (nc) =δ is defined as

S = m(Z + δ)
V (1)

where Z is a Gaussian random field with smoothness FWHM (full-width at half-maximum)
=h, δ >0 is a scalar, and V is a chi-square random field with df=m. Note that V can be described
as a squared sum of m independent Gaussian random fields with the same smoothness as Z
(Adler 1980;Worsley 1994). A non-central F-field G with df=m,n and nc=η is defined as

G =
1
m (U + (Z + η)2)

1
n V

(2)

where U is a chi-square random field with df = m −1, Z is a Gaussian random field, V is a chi-
square random field with df=n, and η>0 is a scalar non-centrality parameter. All the random
fields U, Z, and V have the same smoothness FWHM=h. A non-central field (1) or (2) can
account for the effect size as well as the spatial correlation within the areas of anticipated
signals. The distribution of the maximum for a non-central random field can be obtained from
RFT.
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Distribution of the Maximum by RFT
The distribution of the maximum is sought in statistical inference of neuroimaging data not
only in RFT-based tests but also in permutation-based tests (Bullmore, et al. 1999;Holmes, et
al. 1996;Nichols and Holmes 2002) in order to control the family-wise error (FWE) rate, or
the probability of type I error in any voxel (Holmes, et al. 1996). In RFT, the distribution of
the maximum of a statistic image is expressed by a parametric model. In particular, the
probability of the maximum of a random field W exceeding a sufficiently high threshold u is
approximated by

Pr (max
t∈A

W (t) > u) ≈∑i=0
3 μi(A)ρi(u) (3)

where μi(A) is the i-dimensional RESEL (resolution element) count describing the i-
dimensional spatial property of the search volume A (Cao and Worsley 2001;Worsley, et al.
1996b). In a 3D search volume, μ3, μ2, and μ1 correspond to the volume, surface area, and
diameter of the search volume in terms of RESELs, respectively. The 0-th term μ0 corresponds
to the Euler characteristic (EC) of the search volume. That is, the number of connected regions
in the search volume minus the number of holes and hollows (Worsley 1996). The function
ρi(u) is the i-dimensional RESEL density at the threshold u. It is determined by the underlying
random field (e.g., Gaussian, T-, or F-random field), df, and the threshold u. The RESEL density
ρi(u) for a number of random fields, including T- and F-random fields (Cao and Worsley
1999;Cao and Worsley 2001;Worsley, et al. 1996b), has been derived based on the first and
second spatial derivatives (Cao and Worsley 2001;Worsley 1994) as briefly described in
Appendix A. Detailed derivations of RESEL densities for central T- and F-random fields have
been shown by Worsley (1994). We followed these derivations and extended them to non-
central T- and F-random fields in (1) and (2). Details on this derivation are found in Hayasaka
(2007). Appendix A shows the resulting RESEL densities for these non-central random fields.
Note that, if the non-centrality parameter is zero, then these RESEL densities are identical to
that of the corresponding central random field.

Power Based on the Non-Central RFT Framework
In order to calculate power, a threshold uc controlling the FWE rate is sought first. This can
be obtained from (3) by finding uc at the significance level α (FWE-corrected) such that

α = Pr (max
t∈A

W (t) > uc ∣ H0) ≈ L = ∑
i=0

3
μi(A)ρi(uc)

where A is the entire search volume and W(t) is the value of the statistic image at voxel t ∈
A. In the SPM package (Wellcome Department of Imaging Neuroscience; London, UK), L
above is transformed as

α = Pr (max
t∈A

W (t) > uc ∣ H0) ≈ 1 − exp ( − L ).

This is due to the fact that L ≈ 1 − exp(L) when L is small. This transformation also restricts
the probability estimates to be between 0 and 1.

Once the FWE-corrected threshold uc is found, then power can be found based on (3) for the
corresponding non-central random field. In order to do so, the alternative hypothesis needs to
be explicitly defined by specifying the area of anticipated signal B ⊂A. For example, in Figure
2, the entire brain can be considered as A, whereas the light gray areas under HA can be
considered as B. The anticipated signal magnitude within B is described by a single non-
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centrality parameter nc=γ. Then, power λ can be obtained as the probability that the maximum
of W(t) exceeds uc under HA. This is based on the rationale that, if the maximum within B
exceeds uc, then the hypothetical signal under HA can be detected with this threshold. Power
can be written as,

λ = Pr (max
t∈A

W (t) > uc ∣ HA) = Pr (max
t∈B

W (t) > uc) ≈ 1 − exp ( − L
∼

) (4)

with

L
∼

= ∑
i=0

3
μi(B)ρi′(uc; γ) (5)

where ρi′ is the i-dimensional RESEL density for the non-central field (either non-central T-
or F-field) with nc=γ. Note that the power estimated from (4) is corrected for multiple
comparisons among voxels in B, and the threshold uc is corrected for multiple comparisons for
the entire search volume A.

The non-centrality parameter γ is closely related to, and easily estimated from, the effect size.
In the non-central RFT framework, the effect size can be easily estimated from the average of
the statistic image W(t) within B. When a one-sample T-test with df=m is to be used, then the
effect size can be estimated in terms of Cohen’s d (Cohen 1988), and the non-centrality
parameter can be calculated by γ = d m. When an F-test with df=m,n is to be used, then the
effect size can be estimated in terms of Cohen’s f (Cohen 1988) and the non-centrality
parameter can be calculated by γ = (m + n + 1) f2.

Special Considerations for Non-Central RFT Framework
The RFT-based statistical methods have been found to be conservative, especially when image
data are not smooth or the df is small (Nichols and Hayasaka 2003;Worsley 2005). Such
conservativeness is rarely a problem in statistical inference since the test is still able to control
the FWE rate under the desired level of significance (Nichols and Hayasaka 2003), but this
could lead to overestimation of power. It is difficult to theoretically determine how much this
conservativeness influences power estimates, but we have found from our simulation-based
validation that a small df offset can correct this problem. This ad-hoc adjustment is
implemented by reducing the df used to calculate the corrected threshold uc, the non-centrality
parameter γ, and power relative to the original test. For a T-test with df=m, power is calculated
with the adjusted df m′= m −mp instead of m, where mp is the df offset. Similarly for an F-test
with df=m,n, power is calculated with the adjusted denominator df n′ = n −np instead of n,
where np is the df offset. For low smoothness data (image FWHM < 10 voxels), a df offset of
2 is sufficient, and for sufficiently smooth data (FWHM > 10 voxels), a df offset of 1 seems
to produce satisfactory results.

In addition to df, a simple adjustment is needed when power curves are generated. In theory,
a power curve is an increasing function with respect to df since an increase in df results in larger
nc and smaller variance of the non-central distribution (Johnson, et al. 1995). However, in some
cases, power estimated based on (4) starts to decrease as df increases due to violation of the
RFT assumptions (Hayasaka and Nichols 2003). The RFT-based method assumes that the
threshold uc is sufficiently high (Worsley 1994;Worsley, et al. 1992), but for large df (thus
large nc), uc is not high enough relative to the distribution of the maximum in (5). As a result,
the estimated power spuriously decreases as df increases. This problem can be remedied by a
simple linear extrapolation. Power is estimated sequentially in small increments of df to
generate the power curve based on (4). Once the estimated power reaches the maximum, then
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power is extrapolated beyond the df at the maximum power by a simple linear extrapolation.
A shortcoming of this adjustment is that it tends to underestimate power for large df as it can
be seen in Results section.

Power Map and Sample Size Map
The power map (Van Horn, et al. 1998) is an excellent way to visualize local variability of
power in different areas of the brain. It can also be a useful tool when there is no explicit
hypothesis for anticipated signal locations. Such power maps can be obtained with the non-
central RFT framework by generating a power curve for a small neighborhood around each
voxel, and by organizing the resulting power curves from all the voxels together in the form
of a 3D image. In other words, a small neighborhood around each voxel is considered as B in
(5), thus effect size is estimated and a power curve is calculated for this area, as illustrated in
Figure 3. A power map can be generated by simply creating an image whose voxel is the
estimated power at each voxel for a certain df.

To calculate a power map, an effect size map is calculated first. This is done by averaging the
test statistic image W(t) within a sphere of radius=r centered at each voxel, then by
appropriately scaling to obtain the estimated effect size. In particular, the statistic image is
convolved with a sphere of radius=r. Then the resulting image is scaled by the number of voxels
in that sphere, and transformed into the appropriate effect size estimate according to the df of
the statistic image. The effect size is calculated in a small neighborhood around each voxel
rather than at a single voxel in order to consider the spatially correlated nature of neuroimaging
data. We expect that, when a signal is observed, it is detected not as a single voxel but as a
collection of voxels. According to the matched filter theorem, an optimally detected signal
should have a width similar to the image FWHM (Worsley, et al. 1996a). Thus we use a sphere
of radius r=FWHM to calculate the effect size so that the voxel at the center is likely to be a
part of any signal within that sphere.

Once the local effect size is obtained, power is calculated at each voxel by the non-central RFT
framework. However, this calculation involves numerical integrals and repeating the
calculation at each voxel is impractical. To reduce the computational burden associated with
generation of a power map, power is calculated for various combinations of nc and df
beforehand, and a numerical interpolation is used on this power surface (see Figure 4) to
approximate power. A power map is then obtained by finding power at each voxel for specific
df. Similarly, a sample size map is obtained by finding df required to achieve a desired level
of power.

Simulation-Based Validation
To evaluate the accuracy of power estimated from the non-central RFT framework, a
simulation-based validation was carried out. In these simulations, we determined power to
detect signals in a 16×16×16 voxel cube placed at the center of a 48×48×48 cube search volume
(Figure 5). Since we are interested in the probability of detecting signals only within the smaller
cube and not for the entire search volume, non-central random images were generated only for
the smaller cube in the simulations. For each realization, a non-central T- or F-random image
was produced by generating a number of independent smooth Gaussian random fields
(Hayasaka and Nichols 2003;Nichols and Hayasaka 2003) and then calculating the non-central
images from (1) or (2), respectively. Table 1 shows the settings for the simulations. During
1,000 iterations for each setting, the observed power was recorded as the probability that the
maximum of the statistic image within the smaller cube exceeds the FWE-corrected threshold
of p<0.05. The resulting observed power was compared to that of the non-central RFT
framework.
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The simulations were carried out in MATLAB 6.5 (MathWorks Inc.; Natick, MA, USA) on a
single processor on a Linux workstation with a Dual AMD Opteron 256 processor (3GHz) and
4GB of RAM.

Application
To demonstrate the use of the non-central RFT framework, we applied it to a BOLD fMRI data
set from an auditory experiment in our laboratory. The data were obtained from 41 subjects
(age=18–64, M/F=17/24) undergoing two runs of an auditory experiment. In each run, each
subject was presented with alternating white noise and silence in a block design. During the
experiment, a series of images were acquired with a gradient echo EPI (echo-planar imaging)
sequence on a 1.5-T GE twin-speed LX scanner with a birdcage head coil (GE Medical
Systems; Milwaukee, WI, USA). The parameters for the EPI images were: 24 cm field of view,
64×64 acquisition matrix, 28 slices with 5 mm thickness with no gap, TR/TE=2500/40 ms, in-
plane resolution 3.75×3.75 mm, frequency direction anterior to posterior. Acquired functional
images were spatially realigned, normalized to the Montreal Neurological Institute (MNI)
space, smoothed using an 8×8×10 mm FWHM Gaussian kernel, and re-sampled to 2×2×2 mm
voxels.

A multiple regression analysis was performed for each run with a box-car design convolved
with the hemodynamic response function and an explicitly modeled baseline condition (rest
block). Two paradigm runs for each subject were combined using a fixed-effect analysis,
resulting in one contrast image per subject representing the mean activation associated with
the auditory stimulus relative to baseline. All the preprocessing and the first-level analysis were
done using our in-house automated program based on SPM99.

From the 41 contrast images, 5 were randomly chosen to form a mock pilot data set to estimate
the effect size for planning future studies. On this mock pilot data, a one-sample T-test was
performed with SPM2 to generate a T-statistic image (df=4) summarizing activations
associated with the auditory stimulus. Since a simple auditory stimulus was used in the
experiment, activations were expected in the bilateral primary auditory cortices (BA41, 42).
To estimate the strength of activations in these areas, mean T-scores were calculated for left,
right and both auditory cortices by the WFU PickAtlas toolbox (Maldjian, et al. 2004;Maldjian,
et al. 2003) with a dilation factor of 3. A binary mask image was also produced for each of
these areas, and RESEL counts were calculated to determine the topological characteristics for
power calculation with (5). The effect size (Cohen’s d) was estimated based on the mean T-
scores. Table 2 shows the RESEL counts, mean T-score, and effect size for each of these areas
of anticipated signals. Power to detect activations (FWE-corrected) in these areas was
calculated for various df to generate power curves. Moreover, a power map and a sample size
map were also generated based on the same mock pilot data.

Results
Simulation

The simulation results are shown in Figures 6 and 7. Figure 6 displays the observed and RFT-
based power from the non-central T-image simulation plotted for different effect sizes and
smoothness. As it can be seen from the plots, the non-central RFT framework can estimate
power accurately. Figure 7 displays the observed and RFT-based power from the non-central
F-image simulation plotted for different effect sizes and smoothness. In the non-central F-
image simulation, the RFT-based power seems to deviate from the observed power slightly
more compared to the non-central T simulation, as seen in terms of the RMSE (root mean
squared error) in Table 3. However, the RFT-based power still adequately approximates power.
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These results indicate our non-central RFT framework can be used to model power for known
signals.

As mentioned in Introduction, since the non-central RFT framework is theory-based, it is
considerably more efficient than simulation-based power calculation in terms of computation.
Table 4 shows the amount of time required to generate power curves for the non-central RFT
method and the observed power curve based on the simulation seen on the second row of Figure
6. Although the simulation-based observed power curves can be considered as the gold
standard, generating these power curves requires a considerable amount of computing time.
On the other hand, it requires only several seconds to produce the RFT-based power curves.
These results show that, in a study planning process, the non-central RFT framework is more
advantageous than a simulation-based approach in terms of time and computational resources.

Power Curves
Figure 8a displays power curves for detecting signals in the left, right, and either auditory cortex
calculated based on the non-central RFT framework obtained from the mock pilot analysis
results. Since the effect size is slightly larger on the left auditory cortex, power to detect signal
is slightly higher in the left auditory cortex than that on the right. Power is even higher when
the signal to be detected is in either of the auditory cortices, since the total area is twice as large
as the auditory cortex in either hemisphere alone.

For comparison purposes, we also calculated power using the single-outcome power analysis
method (Cohen 1988) with the effect sizes calculated in the same ROIs (region of interest)
listed in Table 2 (see Figure 8b). In this case, the effect size is the only factor determining
power, thus power is expected to be higher in the left auditory cortex alone than for both
auditory cortices together. This is somewhat counterintuitive because including the right
auditory cortex actually decreases power. The sample size determined by the ROI-based power
was somewhat smaller than that of the non-central RFT and this could lead to an underpowered
study. For example, to detect signals in either of the auditory cortices with at least 80% power,
the non-central RFT estimated that at least 12 subjects would be required while the ROI method
estimated that only 7 subjects would be needed.

Power and Sample Size Maps
In our mock pilot data analysis using 5 subjects, we were not able to detect any activation with
the FWE-corrected threshold of p<0.05 due to small df (=4). However, we were able to use the
T-statistic image from the mock pilot analysis to generate a power map. Figure 9a shows the
effect size map obtained based on the mock pilot analysis (Cohen’s d >0), and Figure 9b shows
the power map showing the estimated power if 15 subjects were included in this analysis. In
the power map, relatively high power can be seen in the bilateral auditory cortices. We also
generated a sample size map based on the mock pilot analysis (Figure 9c), and found that
approximately 13 subjects would be required to detect signals in the auditory cortices with
80% power. To confirm this finding, we randomly selected a set of 15 contrast images from
the remaining 36 contrast images in the original data set and performed the same analysis to
detect activations (Figure 9d). From this follow-up analysis with 15 subjects, we detected
activations in the bilateral auditory cortices as anticipated with the FWE-corrected threshold
of p<0.05.

Discussion
In this paper, we presented a theory-based framework for power calculation in neuroimaging
data analysis. The framework is an extension of RFT to non-central T- and F-random fields.
We demonstrated in our simulations that this non-central RFT framework was able to
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approximate power quite accurately for non-central T- and F-random fields with known
signals. We also demonstrated an application of this method in a simple fMRI data analysis.
We were able to generate power curves for explicitly known areas of anticipated signals. We
were also able to visualize locally varying sensitivity in the form of power and sample size
maps.

The non-central RFT framework offers several advantages over the existing power calculation
methods for neuroimaging data analysis. Our method is able to calculate power corrected for
multiple comparisons among correlated voxels. Moreover, since our method calculates power
to detect signals not for a particular voxel but for a collection of voxels, the 3D nature of signals
is more appropriately modeled than methods focused on a specific voxel or ROI. Our method
is implemented by a parametric model; hence power can be calculated for different parameters
and settings without a large computational burden. As a result, power curves can be easily
generated when the alternative hypothesis can be explicitly specified as areas of anticipated
signals. Even when there are no explicit areas of anticipated signals, visualization of varying
sensitivity is possible via power and sample size maps. Such power curves and power maps
can be generated from a pilot data set with a limited number of subjects, as demonstrated.

As an alternative to our approach, we can also consider the RFT-based approach by Friston et
al. (1994) mentioned in Introduction. In this simpler approach, signals are modeled as a
Gaussian white noise process with larger variance centered at zero, and added to the
background noise process. This inflated variance method can calculate power by simply
adjusting the critical threshold uc and the image smoothness FWHM h. For example, power
for a T-test can be calculated as

λ = 1 − exp { ∑i=0

3
μi
∗(B)ρi(uc

∗)}
with the adjusted critical threshold uc

∗

uc
∗ =

uc
1 + d 2

and with the RESEL count μi
∗ based on the adjusted FWHM h*

h ∗ = h (1 + d 2) / (1 + d 2
2 ).

It should be noted that, power estimated by this inflated variance method could be considerably
smaller compared to that estimated by the non-central RFT framework. Figure 10 shows an
example of such a discrepancy in power by comparing estimated power between the two
methods for detecting the signal described in Figure 5.

Although the non-central RFT framework can overcome problems mentioned in Introduction,
there are some challenges and limitations associated with RFT-based methods to be considered.
In order for RFT to work properly, various assumptions need to be met, including smooth
random fields, sufficiently large search volume relative to the FWHM of images, and uniform
smoothness within images (Hayasaka and Nichols 2003;Nichols and Hayasaka 2003;Worsley,
et al. 1992). As for uniform smoothness, there are some approaches to overcome the violation
in this assumption (Hayasaka, et al. 2004;Worsley, et al. 1999). However, such approaches
require estimating smoothness at each voxel and introduce great variability in statistical
inference (Hayasaka, et al. 2004). Thus such corrections for non-uniform smoothness may not
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be appropriate for a typical pilot data with a limited number of scans. Another shortcoming is
that RFT-based methods can model only the extreme tail of the distribution of the maximum
(Worsley 1994). This is less problematic in statistical inference, but in power analysis, power
may need to be calculated at a somewhat distant location from the extreme tail in some
situations. For such situations, we introduced ad-hoc adjustments such as the df offset and the
linear extrapolation of power. However, more theoretical solutions are desired for these
situations.

There are some possible extensions from the non-central RFT framework. Since the
distribution of the cluster extent can be approximated theoretically for central random fields
(Cao 1999;Friston, et al. 1994), such theoretical framework may also be extended to non-central
random fields. This may be of interest to many investigators since inference based on the cluster
extent is known to be more powerful than the one based on voxel intensity (Friston, et al.
1996). Another possible extension is to calculate FWE-corrected power using a Bonferroni
correction (Zarahn and Slifstein 2001). A Bonferroni-based approach may be appropriate for
neuroimaging data with reduced smoothness where RFT-based methods are conservative
(Nichols and Hayasaka 2003;Worsley 2005).

The non-central RFT framework can also be extended to situations where investigators are
interested in detecting signals in multiple areas within the brain simultaneously. In such a case,
different areas of interest can be treated as patches of independent non-central random fields,
each having different effect size. Unless these patches are in close proximity to each other,
independence among them is a reasonable assumption. Then a power curve can be calculated
for each of these areas separately, and multiplying the resulting power curves from all the areas
can yield the desired power estimate. For example, in our earlier example of power curves for
signals in the auditory cortices (Figure 8), we can also calculate power to detect signals in both
left and right auditory cortices occurring simultaneously by multiplying the power curves from
both cortices. For even more complex scenarios, such as detecting signals in a certain
proportion of areas of interest, power can be easily calculated by simple probability operations
under the assumption of independent patches of random fields.

In conclusion, the non-central RFT framework provides neuroimaging investigators a simple
and quick way to calculate power for their studies. Even from a pilot data set with a small
sample size, power and sample size can be easily estimated for future study planning.
Additionally, the results from power calculation can be readily interpreted visually in the form
of power and sample size maps. The methodology presented in this paper could greatly improve
the planning process of neuroimaging studies.
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Appendix A: RESEL Densities for Non-central Random Fields
We list the RESEL densities for non-central T- and F-random fields below. Details on the
derivation of these results are found in Hayasaka (2007). In brief, for a D-dimensional random
field X, the i-dimensional (i ≤ D) RESEL density ρi(u) is given by

ρi(u) = {( − 1)i−1E Ẋ (i)+ det (Ẍ i−1) ∣ X = u, Ẋ i−1 = 0 θi−1(Ẋ i−1 = 0)}( det (Λ)
(4 log 2)i/2 )

where Ẋi−1 and Ẍi−1 denote the first i −1 and (i − 1) × (i− 1) elements of the first and second
derivatives of X respectively, Ẋ(i)+ denotes the positive portion of the i-th element of Ẋ, and
Λ denotes the covariance matrix of the gradient of the Gaussian random field Z in (1) and (2)
(Worsley 1994). The probability density function of Ẋi−1 is denoted by θi−1.

Alternatively, RESEL densities for non-central random fields can be found by the Gaussian
Kinematic Formula (Taylor 2006) without finding the derivatives. This can be done because
the density of a non-central random variable can be expressed as a sum of central random
variables with different df. Taylor (2006) demonstrated this on a non-central χ2 random field.
This can be extended to non-central T- and F-random fields.

Non-Central T-Random Field
The RESEL densities for a non-central T-random field with df=m and nc=δ at the threshold
u are given as

ρ0′(u; δ) = ∫u∞ f S(y)dy

ρ1′(u; δ) = ( 4 log 2
2π )

1
2 m(1 + u 2

m )E W
− 1

2 f S(u)

ρ2′(u; δ) = 4 log 2
2π m(1 + u 2

m ){(m − 1)( u 2
m ) 1

2 E W −1 − (1 + u 2
m )− 1

2 E W
− 1

2 δ} f S(u)

ρ3′(u; δ) = ( 4 log 2
2π )

3
2 m(1 + u 2

m ){(m − 1)(m − 2)( u 2
m )E W

− 3
2

− 2(m − 1)( u 2
m ) 1

2 (1 + u 2
m )− 1

2 E W −1 δ + (1 + u 2
m )−1

E W
− 1

2 δ2 − E W
− 1

2 } f S(u)

where fS is the probability density function of a non-central T-random variable with df=m and
nc= δ, and W is a non-central chi-square random variable with df=m+1 and nc=δ2.

The density function fS (Lehmann 1986) is given by

f S(u) = 1

2
m−1

2 Γ( m
2 ) mπ

∫0∞y
m−1

2 exp ( − y
2 ) exp ( − 1

2 {u y
m − δ}2)dy.
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The expectation Wb (Johnson, et al. 1995) of a non-central chi-square random variable W with
df=ν and nc=ϕ is given by

E W b = 2bΓ(b + ν
2 ) ∑j=0

∞ Γ(b + 1)
Γ( j + 1)Γ(b − j + 1) (ϕ2 ) j 1

Γ( j + ν
2 ) .

Non-Central F-Random Field
The RESEL densities for a non-central F-random field with df=m,n and nc=η at the threshold
u are given as

ρ0′(u; η) = ∫u∞ f G(y)dy

ρ1′(u; η) = ( 4 log 2
2π )

1
2 2(1 + m

n u)( m
n u)

1
2 E W

− 1
2 ( n

m ) f G(u)

ρ2′(u; η) = 4 log 2
2π 2(1 + m

n u)E W −1 {(n − 1)( m
n u) − (m − 1 + η)}( n

m ) f G(u)

ρ3′(u; η) = ( 4 log 2
2π )

3
2 2(1 + m

n u)( m
n u)−

1
2 {E W

− 3
2

((m − 1)(m − 2) − 2(n − 1)(m − 1 + η)( m
n u) + (n − 1)(n − 2)( m

n u)2 + (2m − 1 + η)η)
− ( m

n u)E W
− 1

2 }( n
m ) f G(u)

where fG is the probability density function of a non-central F-random variable with df=m,n
and nc=η, and W is a non-central chi-square random variable with df=m+n and nc=η. The
density function fG (Johnson, et al. 1995) is given by

f G(u) = e
−η2 m

m
2 n

n
2

β( m
2 , n

2 )
u

m
2 −1

(n + mu)
m+n

2
∑

j=0

∞ ( ηmu
2(n + mu) ) j Γ( m + n

2 + j)
j ! Γ( m + n

2 )
Γ( m

2 )
Γ( m

2 + j)
where β is the beta function.
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Figure 1.
A schematic of power calculation for neuroimaging data analysis. The figure shows two
distributions of the maximum of the statistic image: one under H0 and the other under HA.
Based on these distributions, power (shaded area) is calculated as the probability above the
FWE-corrected threshold under HA.
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Figure 2.
Under H0, no signal is expected and the statistic image is modeled by a central random field.
Under HA, signals are expected in some known areas and the statistic image is modeled by
patches of central and non-central random fields. The areas of anticipated signals are modeled
by the non-central random field, whereas the areas of no signal are modeled by the central
random field.
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Figure 3.
An illustration of power curves in a small neighborhood around voxels. Within the
neighborhood around each voxel (first row), effect size is estimated and the corresponding
power curve is generated (second row). A power map can be generated by organizing these
power curves from different voxels at a certain df.
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Figure 4.
An example of a power surface. Power is described as a function of degrees of freedom and
non-centrality.
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Figure 5.
A schematic of the signal generated in the simulation. The signal (16×16×16 voxel cube) is
located at the center of the search volume (48×48×48 voxel cube).
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Figure 6.
The results from the non-central T simulation. The estimated power based on non-central RFT
and the observed power are plotted against df for different smoothness and effect sizes.
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Figure 7.
The results from the non-central F simulation. The estimated power based on non-central RFT
and the observed power are plotted against denominator df for different smoothness and effect
sizes. The numerator df is fixed (=2).
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Figure 8.
Power to detect signals in the left, right, and both auditory cortices was estimated for different
degrees of freedom by the non-central RFT framework (a) and the conventional ROI-based
power analysis (b).
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Figure 9.
From the mock pilot analysis results, an effect size map was generated (Cohen’s d >0) (a).
Based on this effect size, a power map was generated for N=15 subjects (b). The corresponding
sample size map was also generated to determine the number of subjects required to detect
signals with 80% power (c). Activations in the bilateral auditory cortices were found in the
follow-up analysis with 15 randomly selected subjects from the fMRI data pool (d). The maps
(b)-(d) are corrected for multiple comparisons (p<0.05, FWE corrected at voxel-level).

Hayasaka et al. Page 22

Neuroimage. Author manuscript; available in PMC 2008 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Estimated power for a T-test to detect the signal described in Figure 5 with effect size d=1.0
and various image smoothness settings. Power was estimated by the non-central RFT
framework (gray lines) and the inflated variance method (black lines). The estimated power is
consistently smaller for the inflated variance method compared to that from the non-central
RFT framework.
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Table 1
Simulation settings

Non-central T simulation Non-central F simulation
Smoothness (FWHM in voxels) 6, 9, 12, 15 6, 9, 12, 15
Degrees of freedom 6–20 Numerator: 2 (fixed) Denominator: 8–20
Effect size 0.75, 1.0, 1.5 (Cohen’s d) 0.75, 1.0, 1.5 (Cohen’s f)
Number of iterations 1,000 in each setting 1,000 in each setting
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Table 4
Computation time for generating a power curve (hours)

Smoothness FWHM

6 9 12 15

Non-central RFT-based 0.0007 0.0007 0.0007 0.0007
Simulation-based 2.4 9.0 19.9 42.5

For the non-central T-image simulation with effect size d=1.0.
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