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Abstract

Background: Early warning systems (EWS) are management tools to predict the occurrence of epidemics of infectious
diseases. While climate-based EWS have been developed for malaria, no standard protocol to evaluate and compare EWS
has been proposed. Additionally, there are several neglected tropical diseases whose transmission is sensitive to
environmental conditions, for which no EWS have been proposed, though they represent a large burden for the affected
populations.

Methodology/Principal Findings: In the present paper, an overview of the available linear and non-linear tools to predict
seasonal time series of diseases is presented. Also, a general methodology to compare and evaluate models for prediction is
presented and illustrated using American cutaneous leishmaniasis, a neglected tropical disease, as an example. The
comparison of the different models using the predictive R2 for forecasts of ‘‘out-of-fit’’ data (data that has not been used to
fit the models) shows that for the several linear and non-linear models tested, the best results were obtained for seasonal
autoregressive (SAR) models that incorporate climatic covariates. An additional bootstrapping experiment shows that the
relationship of the disease time series with the climatic covariates is strong and consistent for the SAR modeling approach.
While the autoregressive part of the model is not significant, the exogenous forcing due to climate is always statistically
significant. Prediction accuracy can vary from 50% to over 80% for disease burden at time scales of one year or shorter.

Conclusions/Significance: This study illustrates a protocol for the development of EWS that includes three main steps: (i)
the fitting of different models using several methodologies, (ii) the comparison of models based on the predictability of
‘‘out-of-fit’’ data, and (iii) the assessment of the robustness of the relationship between the disease and the variables in the
model selected as best with an objective criterion.
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Introduction

One of the best documented patterns in the dynamics of vector-

transmitted diseases is their periodicity at seasonal and interannual

temporal scales [1–7]. These periodicities are the basis for the

proposal that early warning systems (EWS) are feasible and useful

tools for planning and decision making [2]. EWS are alert systems

whose objective is to predict either epidemic outbreaks in regions

where disease transmission is unstable or large outbreaks where

the disease is endemic. From the early 1910s, when Captain S. R.

Christophers of the British army developed a system to predict

malaria in India using climatic and socioeconomic data [8,9], to

present times when systems are based on indoor resting densities of

vectors [10], climate, land use, and satellite imagery [11], EWS

have been regarded as useful tools to help the development of poor

and disease-stricken nations [2,11]. The early experience by

Christophers was highly successful, and his system was in use until

the 1940s, when the importance of malaria as a public health issue

in the Indian subcontinent diminished [9,11]. However, recent

results have demonstrated that the blind use of EWS can lead to

unreliable forecasts, especially when models are used in regions

where the connection between climate and disease is not well

understood [12].

Despite the possible caveats of climate-based EWS, especially

because of the complexity of human diseases for which social

components can be as important as natural forces [13–15], there

are successful examples of prediction of ‘‘out-of-fit’’ data based on

the known association between climate and disease [6]. Although

most of the effort in developing EWS has been focused on malaria

[1,2,16], similar efforts would be valuable for neglected tropical

diseases, which represent a large burden for developing countries

and whose transmission is sensitive to climate variability [6,17].

The leishmaniases in particular represent the fourth most import-

ant neglected tropical disease, with a burden of at least 2.1 million

infected people per year, second to malaria in terms of the number

of people affected by a protozoan vector-transmitted disease

[17,18]. Like many other diseases, the infections are caused by

protozoa, belonging to any of several different species of Leishmania
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spp. (Kinetoplastida: Trypanosomatidae), transmitted by sand flies

(Diptera: Psychodidae). The clinical manifestation encompasses

visceral and cutaneous/mucocutaneous cases, and is associated

with a certain parasite species [6]. Our previous results indicate

that American cutaneous leishmaniasis (ACL) is a good candidate

for the use of climate-based EWS, because predictions with

seasonal autoregressive (SAR) models can have an accuracy of

over 75% [6]. Our objective in this paper is to illustrate a protocol

for the development of EWS, including the evaluation of different

linear and non-linear techniques for time series modeling and

prediction, as well as assessment of the robustness of the

relationship between the disease and climate that is the basis for

building EWS.

Methods

Data
Leishmaniasis. Monthly records of ACL cases from January

1991 to December 2001 were obtained from the epidemic

surveillance service Vigilancia de la Salud, of Costa Rica. The

data were normalized using a square root transformation.

Climatic Covariates. The temperature (T) data are those

used in [6] consisting of the average temperature in the 0.5u60.5u
grids composing the Costa Rica land surface [http://www.cru.

uea.ac.uk,19]. The monthly average of these temperature records,

T, and the multivariate ENSO index, MEI, [http://www.cdc.

noaa.gov/people/klaus.wolter/MEI, 20] were used as predictors

for modeling the transformed ACL cases. For all the models

below, except for the non-linear forecasting (NLF) and the basic

structural model (BSM), the lags for the introduction of climate

covariates T and MEI were chosen based on our previous results

using cross-correlation functions [6], with a fixed delay (i.e.,

months preceding the cases series) of 13 months for MEI and

4, 8, and 20 months for T. All time series are shown in Figure 1.

Other climatic covariates, precipitation and relative humidity,

were ignored since they did not show a strong association with

the case data using non-stationary tools like wavelet cross-

coherence [6].

Statistical Analyses
Forecasting models. Several linear and non-linear models

were fitted to the square root transformed case data. Brief

descriptions follow of: (1) the approach to handle seasonality, (2)

the types of models used, and (3) their classification as linear or

non-linear.

Seasonality. To introduce seasonality, the strategy for all

models was to include lags 12 and 13 of the transformed case data.

This approach was chosen because the autoregressive treatment of

seasonality is known to be the best approximation to the

A

Time

ca
se

s

1992 1996 2000

4
6

8
10

12
14

B

Time

°(
C

)

1992 1996 2000

23
24

25
26

27

C

Time

M
E

I

1992 1996 2000

1
0

1
2

3

Figure 1. Time Series. (A) Square root Transformed ACL Cases in
Costa Rica. (B) Mean Temperature in Costa Rica. (C) MEI.
doi:10.1371/journal.pntd.0000033.g001

Author Summary

Early Warning Systems (EWS) are management tools to
predict the occurrence of epidemics. They are based on
the dependence of a given infectious disease on
environmental variables. Although several neglected
tropical diseases are sensitive to the effect of climate,
our ability to predict their dynamics has been barely
studied. In this paper, we use several models to determine
if the relationship between cases and climatic variability is
robust—that is, not simply an artifact of model choice. We
propose that EWS should be based on results from several
models that are to be compared in terms of their ability to
predict future number of cases. We use a specific metric
for this comparison known as the predictive R2, which
measures the accuracy of the predictions. For example,
an R2 of 1 indicates perfect accuracy for predictions that
perfectly match observed cases. For cutaneous leishman-
iasis, R2 values range from 72% to77%, well above
predictions using mean seasonal values (64%). We
emphasize that predictability should be evaluated with
observations that have not been used to fit the model.
Finally, we argue that EWS should incorporate climatic
variables that are known to have a consistent relationship
with the number of observed cases.
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asymptotic cyclical structure of a time series [21]. This approach

specifically allows a better minimization of the error variance

when compared to a fixed seasonality implemented with a standard

cyclical function (such as sines or cosines) that leads to

a symmetrical cyclical structure [21].

Linear. In this class of models, parameters have a linear

relationship with the response variable [22], in this case the

transformed number of cases. This definition should not be

confused with that of a linear dynamical system where the

relationship of the dependent variables or covariates is linear with

that of the independent variable [23]. In fact, linear models can be

used to fit the parameters of non-linear dynamical systems,

provided that the relationship between a response (which can be

a transformation of the independent variable in the non-linear

dynamical system) and the covariates (which also can be

transformed) is linked by a parameter linearly. Linear models

used in this paper include SAR and BSM.

Non-Linear. In these models, the relationship between the

response and the parameters for the predictors is not constrained

to be linear. Models include NLF, generalized additive models

(GAM), and feed-forward neural networks (FNN). A description of

the methods (linear and non-linear) and of the fitted models can be

found in Protocol S1.

Forecasts. For all models, forecasts were obtained for pre-

diction time intervals of 1, 3, 6, and 12 months ahead for a total of

24 months each. Each model was refitted recurrently before

computing the next prediction by including all the previous

months in the series [6]. The accuracy of the forecast was

measured using the predictive R2, which has an interpretation

similar to the R2 of a linear regression by definition [23] and is

obtained as R2 = 1–(mean square error/variance of the series).

Thus, the errors are normalized by the variance of the time series;

an R2 of 1 indicates perfect forecasts while a value close to 0 or

negative indicates poor predictability. Forecasting accuracy was

tested for all the fitted models. To establish a baseline for

comparison, the predictive R2 was also computed when the

prediction is the monthly mean value of the transformed time

series.

Robustness of the exogenous forcing by climate
Once the best modeling approach was selected, the robustness

of the association between the cases and the exogenous forces T

and MEI was assessed with a non-parametric bootstrap approach

based on 10,000 randomizations. The idea of the non-parametric

bootstrap is to reconstruct an experimental dataset based on the

fitted values of a model plus the residuals sampled with replace-

ment from such a model [24]. To generate the bootstrap samples,

the model with the highest predictive R2 was used. The bootstrap

was initially used to see the frequency (%) of times that the model

from which we generated the bootstrap samples was actually

selected as the best model, using the Akaike Information criterion

[25,26]. Then, using the sub-sample of models selected as best that

also have the highest probabilities in the above bootstrap test, we

constructed confidence intervals for the parameters. We further

refitted the model without the last 24 points to make forecasts and

get the predictive R2 confidence intervals.

Results

Figure 2 shows the square root transformed cases plotted against

their lagged values (1, 12 and 13 months) and the lagged

covariates T (4 months) and MEI (13 months). In all cases, no

obvious non-linearity is apparent in the relationship among the

three variables. As expected, all models but FNN were most

successful for predictions of 1 month ahead. However, for

prediction steps larger than one month only NLF, SAR and

GAM models with environmental covariates, MEI and T

(4 months lag), did better than predictions based on the average

of the time series (Table 1). The models with the worst

performance were FNNs, followed by BSM and the null SAR

(i.e., without covariates). For NLF, the best results were found with

E = 2 and E = 3, with the latter embedding dimension providing

slightly better results for a 12 months ahead prediction.

The predictive R2 was highest for the SAR model with T

(4 months lag) and MEI (13 months lag) as covariates. Thus, the

fitted values and residuals used for the bootstrap were those of the

model in the first equation of (1) in Protocol S1. The bootstrap

results show that the best model is the one used to generate the

data (for 67.40% of the simulated time series, the model was

selected as best). The confidence intervals for this model show that

the parameters for T and MEI are statistically significant, a result

that holds even if the intervals are constructed using the values for

this parameter when the model was not selected as best (Figure 3A).

The autoregressive terms, however, are not significant as the

confidence intervals include 0. The variance of the residuals

obtained from the real data is significantly shorter than the one

from the simulations, probably because of the destruction of the

autoregressive structure by the re-sampling of residuals [25].

Finally, the results also show (Figure 3B) that the maximum

forecasting ability for these models is 80%, and can be as low as

50% probably because of the sensitivity of the models to a lack of

a well-defined SAR structure.

Discussion

The need for forecasts by policy makers goes well beyond the

development of EWS for diseases. Due to large-scale, rapid

changes, from increased average temperatures to extensive land

use changes, major alterations in biogeochemical cycles, water

availability, food production, biodiversity and diseases are already

occurring and likely to be exacerbated in the future [27,28].

Although the imperative need for predictions that can inform

policy has been repeatedly emphasized [11,28], the common

practice regarding diseases is to evaluate models by their ability to

fit the data [29–35] and only in very few instances have tests been

conducted based on data that have not been used to fit the models

[6]. Consideration of ‘‘out-of-fit’’ data is critical if we are to

evaluate the ability of the models to predict the future.

In this paper, we have presented several methods to study

seasonal time series, and used a simple measure, the predictive R2,

to compare models based on their ability to predict future

dynamics and not their goodness of fit of the past. By comparison

with modeling results for other infectious diseases on the

predictability of NLF methods [36], our results demonstrate a very

high predictability for ACL. An important element that might

explain this difference is the association of this disease to climate,

since models that incorporated climatic covariates performed

generally better than those that only considered previous disease

levels. Another explanation might be the robustness of the associa-

tion between the disease and climatic covariates as demonstrated

by the bootstrap results. While the parameters for the covariates

are statistically significant, the autoregressive parameters are not

consistently so, and the variance of the residuals significantly

increases.

One of the main lessons from the study of populations is that

non-linear dynamics are common in nature but often satisfactorily

captured by linear approximations [37,38]. This has been

demonstrated by the analysis of time series from a wide variety

Comparing Early Warning Systems
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of animals and diseases. While chaos is present in a small sample of

the populations considered, periodicities are common, particularly

in infectious diseases, that can be explained by either the effect of

exogenous forces, like climate, or endogenous ones, like re-

cruitment of new individuals and the concurrent changes in

densities [39–42]. Our results indicate that ACL is another

example of a population phenomenon whose dynamics can be

satisfactorily described by linear statistical models, provided that

appropriate covariates and transformations of the data are used.

Thus, though linear models do best, functional forms underlying

the influence of covariates are likely to be non-linear as indicated

by the transformations used. This result is further supported by the

observation that the predictive R2 for NLF with E = 3 does not

vary with the prediction time step, while this value for the SAR

model without covariates decreases abruptly, as expected in

systems where the dynamics are non-linear [36–43]. Linear

models were also used successfully for other vector-borne diseases,

malaria [43] and Ross river virus [4,35], and for cutaneous

leishmaniasis in other regions of the new world [45]. For ACL, the

usefulness of linear models (after appropriate transformation)

might also follow from the fact that humans are only sinks for the

pathogen and, therefore, provide no feedback to transmission

[46,47]. This conjecture would not necessarily apply to other
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Figure 2. Multidimensional plots for the square root transformed ACL cases (yt) as function of lagged components and climatic
covariates. (A) Autoregressive (yt21) and Seasonal (yt212) components. (B) Seasonal (yt212) and Autoregressive Seasonal (yt213) components. (C)
Autoregressive component (yt21) and Temperature (lag 4, Tt24). (D) Autoregressive component (yt21) and MEI (lag 13, MEIt213).
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Table 1. Models and predictive R2

Model 1 month 3 months 6 months 12 months

NLF (E = 2) 0.69 0.62 0.61 0.66

NLF (E = 3) 0.67 0.60 0.59 0.67

NLF (E = 4) 0.66 0.59 0.58 0.66

FNN (2 Layers) 0.55 0.53 0.44 0.44

FNN (3 Layers) 0.62 0.58 0.61 0.60

SAR (null) 0.71 0.64 0.62 0.57

SAR (MEI) 0.73 0.67 0.67 0.66

SAR (MEI+T) 0.77 0.73 0.73 0.72

BSM 0.69 0.59 0.52 0.65

GAM (MEI) 0.66 0.59 0.56 0.57

GAM (MEI+T) 0.73 0.68 0.67 0.68

MEAN 0.64 0.64 0.64 0.64

For model identification, see common abbreviations. Months indicate the
number of months predicted ahead. Mean indicates the results that could be
obtained by just using the monthly average number of cases.
doi:10.1371/journal.pntd.0000033.t001
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vector-transmitted diseases in which infected humans provide

sources of new infections within the population.

This result also highlights two open questions that need to be

addressed when modeling infectious diseases transmitted by

vectors: first, the appropriate functional form to introduce climate

variables into the dynamics [46,48]; second, the best approach for

modeling seasonality [8,49]. Mathematically the relationship

between climatic co-variates and the numbers of the disease can

be non-linear, described by simple non-linear functions, like those

of the functional responses in consumer-resource interactions (e.g.,

hyperbolic functions) [50] or modeled by linear models with self-

excited thresholds [51]. This is especially relevant, since

a saturating non-linear functional form can lead to very different

scenarios in the dynamics of the disease under altered environ-

mental conditions. In the case of ACL, however, no apparent need

for non-linear functions describing the relationship to climate was

evident. In general, seasonality has been modeled using fixed

structures, i.e., values are assumed to be constant [e.g., 9,49] or

approximated by the sum of sine and cosine functions [e.g.,

41,52]. The introduction of SAR seasonality in mechanistic

models should be further investigated.

A factor that deserves further consideration in developing EWS

is the understanding of the role of space. Predictability at more

local scales was not addressed here because half of the series

was only available at levels below that of the whole country,

and because Costa Rica encompasses a small area for which

temperature variability is quite homogenous, as seen in the very

small variability between temperature grids. However, for larger

spatial scales heterogeneities in the landscape for disease trans-

mission would need to be considered [53].

Conclusions
EWS are a feasible ecological application for neglected tropical

diseases, as illustrated for ACL. Available models have good levels

of predictability up to one year ahead for the number of cases.

Predictability strongly depends on the use of an appropriate

structure for the different components of the model, including

seasonality and exogenous drivers such as climatic variables.

Depending on the model, predictability can range from poor, with

approximately 50% accuracy, to high, with 80% accuracy,

significantly better than that of seasonal averages (about 65%).

Forecasts can be useful in planning services for the populations

affected, allowing estimates of approximate number of hospital

beds, vaccine shots, drug doses and vector control measures. If

EWS need to incorporate the spatial spread of the disease, they

should do so dynamically and in relation to different landscapes,

such as the geopolitical unit of this study or regions with similar

climatic patterns [53]; otherwise, predictions are likely to fail, as

illustrated by [12]. While there is no unique early warning system

for a given disease, there should be a general approach for the

development of EWS. Our work illustrates three key components

of such an approach for vector-borne diseases: (i) the evaluation of

predictability with ‘‘out-of-fit’’ data and not simply goodness of fit

[6,40,41]; (ii) the comparison of a suite of possible models in terms

of predictability [55,56], and (iii) the robustness of the relationship

with covariates in the selected model. Here, robustness is used

following [55], to identify covariates that are useful to predict

disease numbers even when the skeleton of the model changes.

Finally, none of these efforts are possible without the invaluable

role of sustained surveillance and monitoring efforts. A historical

retrospective reinforces this point: the success of Christophers was

possible because of data availability and a deep knowledge of

malaria biology, from parasites to mosquitoes and humans,

realizing the influence of factors as diverse as weather and wheat

prices in rendering the epidemics of malaria predictable [8]. Time

series sufficiently long for developing and evaluating forecasting

models around the world are countable; their number pales by

comparison to the data available for weather forecasting. It is

imperative that ongoing efforts are sustained and new ones are

initiated whose long-term planning includes EWS as a specific

goal.

Supporting Information

Protocol S1 Linear and non-linear models for time series

forecasting.

Found at: doi:10.1371/journal.pntd.0000033.s001 (0.07 MB

DOC)
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