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Abstract
This paper presents a new method for efficiently calculating the exact masses in an isotopic
distribution using a dynamic programming approach. The resulting program, isoDalton, can generate
extremely high isotopic resolutions as demonstrated by a FWHM resolution of 2×1011. This
resolution allows very fine mass structures in isotopic distributions to be seen, even for large
molecules. Since the number of exact masses grows exponentially with molecular size, only the most
probable exact masses are kept, the number of which is user specified.

Introduction
For most practical applications, computing the very fine isotopic structure is unnecessary as it
is beyond the resolution of today’s mass spectrometers. However, for theoretical
considerations, it is useful to have a method that can calculate the exact mass distributions of
these fine structure clusters, which could prove useful as the resolution of mass spectrometers
improves. One of the challenges in calculating distributions is maintaining a very high
resolution around isotope peaks and yet being computationally efficient.

A number of methods [1–9] have been employed to elucidate the fine isotopic structure. The
majority are polynomial based methods that rely on pruning to reduce the complexity to a more
manageable size. The pruning strategies typically use a threshold to eliminate permutations
whose contribution falls below some preset value. This creates errors in the isotopic distribution
profile since a significant number of terms are eliminated.

Rockwood et. al [8–9] uses a Fourier transform method to zoom in and achieve ultrahigh
resolution around a single mass peak. As with any Fourier analysis method, care must be taken
to choose an appropriate window function. The windowing will cause the underlying Dirac
delta functions representing fine isotopic masses to be convolved together if they are closer
together than the width of the analysis window.

A new method based on dynamic programming [10] is presented that can efficiently calculate
isotopic distributions. In principle, the resolution is infinite, since there is no restriction on how
close in mass the states can be to each other. In practice, the resolution seen depends on machine
precision and the probability of the mass states.

Low probability states that are very close to other more probable states may either be eliminated
or merged, depending on the state reduction strategy employed.
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This method can operate like a polynomial pruning method if low probability states are
eliminated. If neighboring states are merged instead, it can operate more like the Fourier
transform method. In the Fourier transform method, all peaks under the window contribute
whereas the merging in the dynamic programming case is local.

The implementation of the algorithm is a program called isoDalton that has been written in
MATLAB [12] and is freely available under the GNU Lesser General Public License [13],
which allows use in both proprietary and free programs. The program includes all the isotopes
of all the elements with the standard isotopic compositions [14]. Custom isotopic compositions
can be easily added.

Algorithm Description
Calculating ion distributions for large molecules require expanding the polynomial of the form
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where E j
i represents the jth isotope of the ith element in the molecule. The Ni superscript outside

the parenthesis represents the number of atoms of the ith element [4]. This will generate a
combinatorial explosion in the number of terms for large molecules. The number of coefficients

for the multinomial (E1
i + E2

i + ⋯ + EIi
i )Ni representing the ith element with Ni atoms and Ii

isotopes is given by [15]:
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and the coefficients of the multinomial are given by:
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The total number of terms T in the expanded polynomial of equation 1 is the number of terms
in the product of the elemental multinomial coefficients and is given by:

T = CI1
N1CI2

N2CI3
N3 ⋯ (4)

which gives the number of possible masses in the isotopic fine structure.

For bovine insulin C254H377N65O75S6 the number of possible terms is 1.56 × 1012, which
clearly precludes any brute force attack. In practice, one only needs a fraction of the terms
since most of the terms are extremely unlikely. The least probable term
is 13C254

2H377
15N65

17O75
35S6 that has a probability of 0.2610×10−2422 of occurring. In fact,

the top 1,000 terms represents 99.96 % of the cumulative probability distribution.

An efficient method based on dynamic programming can be used to calculate the overall
distribution of possible molecular weights given the isotopic distribution for each element. To
apply dynamic programming, we first frame this calculation in the context of a Markov process
{Xt}t∈T operating on a discrete state space S. The state transition probabilities are given by:
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pij = P(Xn+1 = j ∣ Xn = i), n ≥ 0, i, j ∈ S (5)

This gives the probability of arriving at state Sj at step n+1, given that it was in state Si at step
n. The state transition probabilities are required to have the following properties:

pij ≥ 0

∑
j=1

J
pij = 1, ∀ i, j = 1, … , J .

(6)

The initial state probabilities are given by:

πi(0) = P(X0 = i), i ∈ S (7)

The efficient way to calculate the probability of being in state Sj at step n+1 is to use a forward
trellis algorithm [16]. An illustration of this computation can be seen in figure 1.

The state probabilities for step n+1 are calculated by

αS j
(n + 1) = ∑

i=1

N(n)
αSi

(n)pij (8)

where 1 ≤ j ≤ N(n+1),1 ≤ n ≤ T − 1. N(n) implies that the number of states is a function of step
n.

The trellis algorithm gains its efficiency by collapsing the possible paths that can lead to a
particular state. Only the state probabilities at step n along with the transition probabilities are
used to calculate the state probabilities for the next step. This is known as a first order markov
model or chain [17].

In the context of calculating the isotope distribution, the states are the set of unique molecular
masses that can exist at each step. At each step, all isotopes of one atom of a particular element
are added, i.e. (E1

i + E2
i + ⋯ + EI1

i )1. This means that the state transition probabilities are non-

stationary since they depend on the isotope distribution of the particular element being added.
The Markov chain can be thought of as the sequence of adding elements with all associated
isotopes at each step. The length of the chain is the number of elements in the molecule.

The number of states at each step is also non-stationary since particular combinations of
isotopes lead to unique masses. The states at step n+1 is the set of unique masses computed by
adding the mass of any state at step n with any isotope of the element being added. The
probabilities of these states are given in equation 8. These states are then either pruned or
combined to reduce computational complexity and this process is call state reduction.

State Reduction
Most Probable Exact Masses

Keeping the distribution of all exact masses becomes impractical for all but the smallest
molecules. If one is interested in the exact masses of the most probable isotope mass
combinations, as is typically the case, then the states with lowest probabilities are eliminated.
This is done by computing all states for step n+1, sorting these states based on probabilities,
and then keeping only the top Nmax most probable states where Nmax is user specified. Once
all the elements have been added at the last step, isoDalton returns the exact masses of the
Nmax most probable isotopic mass combinations. The “true” probabilities of these exact masses
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are only approximations since eliminating states prunes potential path combinations that affect
probability values. Increasing Nmax will reduced this error.

Exact Probability Distribution
If one is interested in seeing the overall probability distribution of near integer separated values,
then close mass values can be combined as follows. Let Mold1 and Mold2 be the masses of states
Si and Sj that are the closest together in terms of mass values and let Pold1 and Pold2 be their
respective probabilities. Then a new state is created that has mass and probability of:

Mnew = (Mold1Pold1 + Mold2Pold2) / (Pold1 + Pold2) (9)

Pnew = Pold1 + Pold2 (10)

For a particular step n, the states are combined in this fashion until there are Nmax states.
Combining states in this manner results in a probability distribution of Nmax masses that are
the center of masses of the isotopic fine structure exact masses. These are exact probabilities
for these “center of mass” weights since they sum to 1 as expected of a probability distribution.
However, the masses are not exact.

Results and Discussion
As an example, we find the complete molecular weight distribution of the amino acid Glycine,
C2H5N1O2 (including the amino and carboxyl end groups). We view the Markov process as
the sequence of adding the elements H, H, H, H, H, C, C, N, O, and O, where the order of
elements is taken by starting with the element with the fewest number of isotopes. Starting
with elements with fewest isotopes minimizes the growth in the number of states. The isotopes
used in this example are the NIST values [14].

The initial state probability π(0) is simply the isotopic composition of hydrogen {0.999885,
0.000115} at states (masses) {1.0078250321, 2.0141017780}. To compute the new state
probabilities, we add another hydrogen and compute the resulting states and probabilities of
being in these states. The new states at step n+1 are all permutations of adding the molecular
weights of the states at step n with all the isotopes of element Ei. The atomic weights for all
states at each step can be seen in figure 2. This was created by adding the Glycine elements H,
H, H, H, H, C, C, N, O, O.

A more abstract view of the trellis can be accomplished by finding at each step the state with
the minimum atomic weight, and then subtracting this value from all states for this step. Figure
3 shows this abstracted view where the distances between states can be more clearly seen. The
bottom row in the figure shows which element was added at each step. Above the trellis, the
number of states is given that exist for each step. We start off with two states since Hydrogen
has two isotopes and we end up with 216 states, or distinct atomic weights after adding all 10
elements. Many of the states are clustered together near unitary atomic weight increments. In
practice, only the states at step n are kept since the state history is not needed and would only
consume memory.

The complete molecular weight distribution of Glycine can be seen in figure 4. The distribution
is plotted with two different scales. Positive values are the probabilities of isotopic masses
where the scale is on the left upper side. Since most of the probabilities are very small, a log
scale is plotted by taking the log10 of the probabilities. This results in negative numbers that
are seen in the lower half of the plot with the scale on the right lower side. There are 216 unique
mass values in this plot that are clustered near 13 integer values. There is a single dominant
peak at mass 75.03 with probability 0.97. There are four mass values clustered at 76.03 and
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are shown in the inset plot. There is a very small single peak at mass 87.08 with probability
3.56×10−32 and can be seen clearly on the log10 scale with value −31.4484. The closest states
occur at 81.05 with a separation of 7.21 × 10−5, which means a FWHM resolution of 1.12 ×
106 is needed to resolve these peaks.

For large molecules, keeping all unique states will cause the number of states to grow too large
for memory and speed considerations. To keep the states small and still have a useful
distribution, one can combine the states by adding clustered weights together. This is done by
adding all the probabilities together in a cluster. In the Glycine example, this would reduce the
number of final states from 216 to 13. As a result, one can trade off distribution precision for
a reduction in computational complexity.

To show the program’s utility with large molecules, bovine insulin C254H377N65O75S6 was
chosen for comparison purposes with previous publications. Figure 5 shows the fine isotopic
structure around the 5736.6 Da peak of protonated bovine insuline with a FWHM resolution
of 2 × 1011, which is a resolution of several orders of magnitude finer than previously shown.
This distribution was calculated by keeping the top 100,000 most probable states, 416 of which
are near the 5736.6 peak. The resolution is similar for the other isotopic clusters that range in
mass from 5730.6 to 5759.7.

Run times
There is a tradeoff between execution speed and the FWHM resolution. Table 6 shows the
tradeoff between the number of states and the run time for exact mass calculations. The time
per state actually gets better with additional states due to a relatively fixed overhead of
processing the state vectors in the program.

Conclusion
The paper presents a new method based on dynamic programming that can calculate the
distribution of exact masses in an isotopic distribution. The resulting Matlab program isoDalton
can be used to calculate the isotopic fine structure of large molecules with extremely high
resolution. This is done by keeping only the most probable states representing exact masses.
The program can also calculate isotopic distributions with a true probability profile at the
expense of knowing exact masses by merging very close mass states.
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Figure 1.
Trellis for efficiently computing state probabilities.
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Figure 2.
Trellis showing all mass states for Glycine C2H5N1O2.
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Figure 3.
Abstract view of trellis formation for Glycine C2H5N1O2.
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Figure 4.
Complete isotopic distribution of Glycine C2H5N1O2. There are 216 unique masses of which
the probabilities are shown on two scales. These two scales are the typical probability scale
(upper left) and the log10 probability scale (lower right) that shows the improbable peaks (large
negative log values). The inset plot shows 4 peaks that comprise the 76.03 dalton isotopic
cluster.
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Figure 5.
Isotopic fine structure of the 5736.6 peak of protonated Bovine Insulin C254H377N65O75S6
shown with a FWHM resolution of 2 × 1011. The distribution is plotted against two scales. The
scale on the top left plots the probability of mass terms. However, most of the mass terms have
very low probabilities and do not show up in the probability plot since they are essentially zero.
To show these terms, a log10 scale is shown on the bottom right. Each mass term is shown in
each scale, at the same mass location. There are 416 distinct mass terms in this cluster from an
overall distribution of the 100,000 most probable mass states.
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Table 1
Run times of exact mass calculations.

States FWHM resolution [11] Run time1
10 1.96 × 106 0.7 sec
100 1.42 × 107 3.9 sec
1,000 4.68 × 108 25 sec
10,000 1.96 × 1010 3.5 min
100,000 2.01 × 1011 29.6 min
1
Intel Core 2 6600 2.4 GHz, 4 GB RAM, Matlab 7.3.0.267 (R2006b)
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