
Automatic bone age assessment for young children from newborn
to 7-year-old using carpal bones

Aifeng Zhang*, Arkadiusz Gertych, and Brent J. Liu
Image Processing & Informatics Lab, Department of Radiology, University of Southern California,
Marina Del Rey, CA 90292, USA

Abstract
A computer-aided-diagnosis (CAD) method has been previously developed based on features
extracted from phalangeal regions of interest (ROI) in a digital hand atlas, which can assess bone
age of children from ages 7 to 18 accurately. Therefore, in order to assess the bone age of children
in younger ages, the inclusion of carpal bones is necessary. However, due to various factors including
the uncertain number of bones appearing, non-uniformity of soft tissue, low contrast between the
bony structure and soft tissue, automatic segmentation and identification of carpal bone boundaries
is an extremely challenging task. Past research works on carpal bone segmentation were performed
utilizing dynamic thresholding. However, due to the limitation of the segmentation algorithm, carpal
bones have not been taken into consideration in the bone age assessment procedure. In this paper,
we developed and implemented a knowledge-based method for fully automatic carpal bone
segmentation and morphological feature analysis. Fuzzy classification was then used to assess the
bone age based on the selected features. This method has been successfully applied on all cases in
which carpal bones have not overlapped. CAD results of total about 205 cases from the digital hand
atlas were evaluated against subject chronological age as well as readings of two radiologists. It was
found that the carpal ROI provides reliable information in determining the bone age for young
children from newborn to 7-year-old.
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1. Introduction
The determination of skeletal maturity (‘bone age’) plays an important role in diagnostic and
therapeutic investigations of endocrinological problems and growth disorders of children [1,
2]. In clinical practice, the most commonly used bone age assessment method is atlas matching
by a left hand and wrist radiograph against the Greulich & Pyle (G&P) atlas [3] which contains
a reference set of normal standard images. However, besides the fact that the data in G&P atlas
was collected in 1950s, this method strongly depends on experience of the observer, leading
to considerable inter- and intra-observer discrepancy. Therefore, an updated data collection
and an objective method are desirable.

A computer-aided-diagnosis (CAD) method [4–8] has been previously developed in our
laboratory based on features extracted from regions of interest (ROI) in phalanges from a digital
hand atlas. One thousand one hundred and three left hand and wrist radiographs of normal
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children, from newborn to 18-year-old, were acquired at the Childrens Hospital Los Angeles
(CHLA) and digitized at IPI (Image Processing and Informatics Lab, USC). The data was
evenly distributed into four races (Asian, Caucasian, African-American and Hispanic) for both
gender (male and female). Each case was read by two radiologists independently. Fig. 1 shows
an example image with phalangeal and carpal ROIs superimposed.

For children above 6 of female or 8-year-old of male, phalangeal feature analysis was very
reliable. Therefore, CAD method yields very accurate bone age assessment. However, for ages
below 5–7, the phalangeal analysis fails to extract the features correctly in some cases,
especially in very young children. This is due to the following problems: first, soft tissue
deteriorates the border and makes the segmentation between epiphysis and metaphysis an
extremely difficult task. Second, the developments of epiphysis of the six phalangeal ROIs are
not parallel. Third, it is not reliable to locate the phalangeal ROIs correctly if the hand is rotated
when the upright hand position is not achieved during acquisition. Lastly, the phalangeal ROIs
analysis is sensitive to bending of fingers during acquisition.

Therefore, in order to achieve similar degree of accuracy in bone age assessment for children
of all ages, we hypothesized that the CAD method may benefit from the augmentation of
features extracted from the carpal ROI of young children. Medical studies [1,2,9] verified the
value of carpal bone in determining the bone age of young children. Past research work on
carpal bone segmentation has been done by Pietka et al. [10] utilizing dynamic thresholding.
However, due to the limitation of the algorithm, carpal ROI have not been taken into
consideration in the bone age assessment procedure.

This paper described a knowledge-based carpal ROI analysis for fully automatic carpal bone
segmentation and feature analysis for bone age assessment by fuzzy classification. Table 1
shows the reliability of phalangeal and carpal ROIs analysis for different age groups in CAD
system. The carpal bone segmentation and feature extraction were proven to be very reliable
for young children before the carpal bones start to overlap. Combining with the existing
phalangeal ROI, it improved the accuracy of computerized bone age assessment for young
children significantly. Hence, accurate bone age assessment was ensured for the entire age
range.

2. Materials and methods
2.1. Growth pattern of carpal bones

At the early stage of development, carpals appear as dense pin points on a radiograph. During
development, they increase in size until reaching their optimal sizes and characteristic shapes.
Fig. 2 shows an ROI image with seven carpal bones appearing.

Fig. 3 demonstrates the growth pattern of carpal bones of Asian males from newborn to 7-year-
old. Carpal bones ossified in chronological order, Capitate, Hamate, Triquetral, Lunate,
followed usually by Scaphoid, then either the Trapezium or the Trapezoid [3,11]. Female
developments noticeably more advanced than male by as many as 3 years.

Medical study [9] indicated that, due to the nature of carpal bone maturity, their analysis does
not provide accurate and significant information for patients older than 7–12 years of age. This
is due to the fact that carpal bones start overlap at age around 7-year-old in male and 5 in
female. In this stage of development the phalangeal analysis yields more reliable information.
Therefore, in this research, carpal bone analysis focuses on age group from 0 to 7 for male and
0 to 5 for female.
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2.2. CAD methodology overview of carpal ROI analysis
The workflow of carpal ROI analysis procedure which includes seven steps is shown in Fig.
4. The carpal bone region of interest was first extracted from the entire hand image (Fig. 1)
(1). Due to the non-uniform background and noise, the carpal bone ROI was subjected to an
anisotropic diffusion filter (2) which smoothed out the noise and preserves the edges at the
same time. Then, the object contours were extracted by the Canny edge detector (3). A series
of knowledge-based operations based on morphological properties of segmented objects were
implemented in order to single out the carpal bones by eliminating the non-carpal bones (4).
The carpal bones contours went through feature extraction phase which yields the inputs into
the fuzzy classifiers to assess the bone age (5–7). This section discusses the procedure in the
following order: carpal bone segmentation, carpal bone identification, feature analysis and
bone age assessment using fuzzy logic.

2.3. Carpal bone segmentation
2.3.1. Carpal ROI extraction from entire hand image—The first step (in Fig. 4) was
to locate and extract carpal ROI for further analysis. Fig. 5 shows the procedure. A binary hand
silhouette was obtained by adaptive thresholding of the hand image with background removed.
The carpal ROI was then located in the hand silhouette after artifacts deletion. The upper edge
of the carpal ROI was found by scanning a horizontal line and searching for the junction
between the second and third metacarpal bone. Perpendicular to the upper edge of the image,
starting from its middle, two lines were scanned one pixel at a time toward the left and right
borders of the image. The first line on both sides that did not intersect the wrist, fixed the left
and right border, respectively. The lower edge of the CROI was the line that intersected the
forearm with the minimal width. It was determined by scanning the forearm, one line at a time,
from the proximal end of the hand and moving toward the distal end. The carpal ROI was
defined within these four edges.

2.3.2. Image smoothing by anisotropic diffusion—Carpal bones in the image are
generally poor in contrast. Furthermore, the bone edges are often degraded by noise and
artifacts. In order to better differentiate carpal bones from the background, an anisotropic
diffusion filter proposed by Perona and Malik [12] was applied to the carpal ROI image (second
step in Fig. 4).

This filter was able to greatly reduce noise in homogeneous areas of carpal ROI images while
preserving the edges and contrast associated with bony structures. The principle is to smooth
out noise locally by diffusion while at the same time preventing diffusion across object
boundaries. The diffusion coefficient is chosen to vary spatially based on a measure of edge
strength to encourage intra-region smoothing in preference to inter-region smoothing. The
diffusion process achieves piecewise smoothing while preserving the relevant image edges.

Fig. 6(a) and (b) shows the original carpal ROI image and the result after anisotropic diffusion
filtration, respectively. The comparison of profiles along one horizontal line (same position in
both images) which runs across the Capitate and Hamate is given in Fig. 6(c) and (d). It
demonstrates that noise is greatly suppressed by the diffusion process while the sharp edges
are well preserved.

Size and shape of carpal bone are the characteristics related with skeletal development. Bony
texture inside the carpal bone is not the factor that radiologist investigate in assessing the bone
age. The next step is to segment the carpal bones from the carpal ROI image.

2.3.3. Edge detection by Canny—Edge detection by Canny method (third step in Fig. 4)
was performed on the smoothed ROI image. The Canny edge detector finds linear, continuous
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edges and is known as the optimal edge detector [11,13,14]. The Canny method differs from
other edge-detection methods in that it uses two different thresholds, and includes the weak
edges in the output only if they are connected to strong edges. Fig. 7 shows an example of a
filtered image by using the anisotropic diffusion (shown in Fig. 7(b)) and the edges detected
by Canny method. This method is less likely than the others to be confused by noise and the
carpal bones were detected as closed-contours.

2.3.4. Objects refinement—The carpal ROI includes carpal bones and parts of the radius,
ulna, and metacarpals. Before the features that describe the carpal bones were extracted, the
carpal bones themselves needed to be identified from the result of Canny edge detection. An
original image and the final result after object refinement (fourth step in Fig. 4) are shown in
Fig. 8(a) and (b), respectively.

Knowledge-based morphological operations were used to clean-up the objects. The removal
of non-carpal bones was performed in several steps. In the first step all objects that touch the
CROI borders were extracted and eliminated. These include the metacarpal bones, wrist bones
including ulna and radius touching the CROI borders. In the second step straight and short
lines and spots were removed. Eccentricity, a morphological property, of each object was used
to identify the carpal bones. It measures how far the object deviates from a circle. Fig. 9 shows
an ellipse that has the same area as the segmented carpal bone. Eccentricity is defined as the

ratio of the distance between the foci (F1 and F2) to the major axis; i.e. .

Based on our experiments, the eccentricity of carpal bone falls between .1 and .9 and can be
used as a prior knowledge. Therefore, objects which have eccentricities under .1 or above .9
were eliminated. In the third step objects were filled and closed-contour objects were selected
based on solidity, a morpholoical property of each object. A convex hull for each filled object
is first found as the smallest convex polygon that can contain the object. The proportion of
pixels in its convex hull that are also in the studied object is then defined as solidity. The objects,
which solidities are above .5, were taken as the closed-contour objects. The others were
discarded. Fig. 10 shows the final carpal bone contours overlapped on a carpal bone region
image.

2.4. Model-based carpal bone identification
From the carpal bone contours, the post-processing procedure utilizing a prior knowledge was
developed to identify the bones (fifth step in Fig. 4). The Capitate is the first bone to appear in
chronological order and the biggest one among all the carpal bones. It is also the most reliable
bone to segment out. A polar coordinate system with the origin at the center of gravity of the
Capitate, which was identified as the largest object, was built. The major axis was set as the
original normal axis of the polar system. The carpal ROI was then divided into five empirical
regions shown in Fig. 11. The positions of regions define the prior knowledge about where a
carpal bone should be located in the carpal ROI.

The center of gravity of each object was then computed based on polar coordinates. Each object
was assigned to the region it belongs to, based on the polar angle and radius of each object.
The identification model is hand rotation invariant because the major axis of Capitate follows
the rotation of the hand. Fig. 12 shows the one example case with identified carpal bones.

The first two bones which appear in chronological order, Capitate and Hamate, were selected
for further analysis. The other identified bones which appear later will be analyzed for future
refinement in case that Capitate and Hamate are failed to extract because of fusion with each
other.
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2.5. Feature analysis
From the identified carpal bones, features related to the bony growth were extracted for bone
age assessment (sixth step in Fig. 4).

2.5.1. Morphological feature extraction—To describe the size and shape of the carpal
bones identified, four morphological features were extracted from Capitate and Hamate.
Feature 1 measures equivalent diameter, which specifies the size of the object. An ellipse that
has the same normalized second central moments as the region was found for each bone.
Feature 2 is eccentricity which we defined in Section 2.3.4. The value of eccentricity is between
0 and 1. Feature 3 is solidity (also refer to Section 2.3.4). Feature 4, triangularity measures the
ratio of equivalent diameter and the product of major axis length and minor axis length.

2.5.2. Feature selection—To evaluate the performance of each feature in assessing the
bone age, correlation with the chronological age was analyzed. Among all the features, sizes
of Capitate and Hamate have the most significant correlations with age, which are over .90.
To simplify the feature space, all features which have the correlation above .60 were selected
and form the feature space for bone age assessment. Table 2 shows the correlation coefficients
for selected features from an example category of one race and one gender.

2.6. Bone age assessment using fuzzy logic
The last step in carpal ROI analysis (seventh step in Fig. 4) is to assess the bone age using
fuzzy classification based on the features extracted and selected from the Capitate and Hamate.
Two characteristics of carpal bone features make bone age assessment difficult. First, the
growth of carpal bones does not have a linear relationship with chronological age. The
imprecise nature leads to the inter- and intra-observer discrepancy. Second, some features may
be missed by the segmentation and feature extraction procedure. Most of past attempts of using
linear approach failed because it is insufficient to model the growth pattern. Fuzzy logic [15–
18] incorporates a simple and rule-based approach and is suitable for this application because
it is robust and does not require precise and noise-free inputs. As long as some features from
any bone are provided, it is sufficient to activate the fuzzy system to generate the output.

The three features, size, eccentricity and triangularity extracted from Capitate and Hamate each
were taken as an input into the fuzzy classifier. The system was broken into smaller sub-
classifiers based on Capitate and Hamate, respectively. Fig. 13 shows the workflow of the
fuzzy classification for bone age assessment.

An automatic training algorithm with the features from our normal data collection was
developed for fuzzy classifiers. The output was set as the subject chronological age since the
normality of children was ensured for each case during data collection. The data of young
children from newborn to age group of 7 (male) or 5 (female) was divided into age groups with
an interval of 1 year. Therefore, total of 8 (0, 1, 2, …, 7 for male) or 6 (0, 1, 2, …, 5 for female)
initial Gaussian membership functions were generated for each input feature (size, eccentricity,
and triangularity) and output (chronological age). The mean and standard deviation of each
feature from each age group were calculated and taken as the Gaussian parameters for the
corresponding membership functions. Merging of adjacent membership functions was then
performed based on the t-test of the mean difference for specific feature between adjacent age
groups. The same merging procedure was performed for output depending on the inputs. Fewer
number of membership functions simplifies the processing logic and even improving the fuzzy
logic system performance. Fig. 14 use Caucasian male as an example to show the groups of
membership functions for the three features (Fig. 14(a)–(c)) of Capitate and output (Fig. 14
(d)) as chronological age.
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A firing strength for each output membership function is computed. Then a max–min rule
operation was applied to combine the inputs logically to produce output response values for
all expected inputs. It took two steps. A min fuzzy operation was first applied to integrate the
multiple inputs of features for each output class. Then the active conclusion was combined by
finding the max from all the classes.

Take the Capitate of Caucasian male as an example, after feature extraction it yields input
features (size: 89.5, eccentricity: .636, triangularity: .0294) shown in Fig. 15(a)–(c), an output
membership function (CAD bone age based on the Capitate) was derived shown at the bottom
graph of Fig. 15(d).

A final output (CAD bone age) needs to be aggregated from the sub-systems based on the
Capitate and the Hamate, respectively. It was determined by finding the logic mean of the two
outputs. The defuzzification process used center of gravity method to obtain a final CAD bone
age.

2.7. System evaluation
Three types of tests were conducted to evaluate the performance of using the fuzzy logic for
bone age assessment. Test 1 separated the data into eight categories of four races and two
genders. Classifiers were trained and tested on each case from each category. Test 2 had two
categories for female and male with four races combined together. Test 3 combined the entire
data collection into one universal category.

For the above three tests, CAD bone age assessed by fuzzy classification was evaluated against
chronological age which was taken as the gold standard as the normality of each case was
ensured. The same evaluation was performed on readings. The CAD bone age results were
plotted with the average reading of two radiologists against chronological age. The mean
difference of each of the two readings versus chronological age or CAD bone age versus
chronological age was computed by paired t-test.

3. Results
Hand images for females of age groups from 0 to 5 and males from 0 to 7 from the entire data
collection of 205 images went through the carpal ROI analysis, including carpal bone
segmentation, feature extraction and fuzzy classification for bone age assessment. The
segmentation and CAD bone age results are presented in this section.

3.1. Segmentation success rate
Due to the reasons described in Section 1, phalangeal ROI segmentation is not reliable for
young children. The comparison of the bone age assessment results for both female and male
using phalangeal versus phalangeal and carpal features together are shown in Fig. 16. The
striped bars show the percentage of successfully processed cases with phalangeal ROI only.
However, after carpal ROI analysis was included, the percentage of successfully processed
cases (gray bars in Fig. 16) was improved significantly especially for age groups from newborn
to 3 years. Fig. 15(a) shows the results for female and (b) for male.

The results show that the percentage of success rate is close to 100% at age above 2-year-old.
For case below 2 years, the success rate is about 80%. This is due to the general poor contrast
of hand images for young children because of the low bone density and thick soft tissue. It
leads to the difficulty in segmenting the carpal bones from background. This could be improved
by using adaptive diffusion parameters based on the contrast of individual carpal ROI image
and will be considered for future work.

Zhang et al. Page 6

Comput Med Imaging Graph. Author manuscript; available in PMC 2007 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2. Plots
The CAD results based on carpal ROI were compared with the average reading of two
radiologists. Fig. 17 shows the results set for eight categories from test 1. Fig. 18 is the results
set for two categories from test 2. Fig. 19 is for the universal category from test 3. The CAD
results generally follow the average reading of two radiologists comparing with the
chronological age.

3.3. CAD evaluation
Paired-samples t-test for the above three tests was performed against chronological age for two
readings and CAD result. The following tables show the mean difference between reading 1,
reading 2 and CAD result versus chronological age. The number with asterisk represents the
difference is significant at p-value < .05.

From the evaluation Tables 3 and 4, we can see that the CAD result based on carpal ROI
analysis is comparable to the readings within the mean difference of half year.

4. Discussion and conclusion
A method of carpal ROI determination, carpal bones segmentation, feature extraction and fuzzy
classification for bone age assessment was developed and tested on the 205 young children
from the data collection in the digital hand atlas (see Section 1). The percentage of successfully
processed cases was improved significantly over the one with phalangeal ROI analysis only.
This demonstrates that the feature extraction of carpal ROI is reliable for young children (third
column, first row of Table 1).

The CAD results by fuzzy classification were evaluated by comparison with readings and
chronological age. The CAD results shown in Section 3.2 based on carpal ROI features follow
the readings comparing with chronological age, with the verification from statistical analysis
in Section 3.3. The results verified the value of carpal ROI in assessment of skeletal
development for young children.

Furthermore, carpal ROI has advantages over phalangeal ROI in bone age assessment for young
children in that the appearance of carpal ROI in the radiograph is not influenced by finger bend
and hand rotation during acquisition. This happens frequently since straight fingers and upright
position of the hand is hard to achieve in young children.

However, a general observation could be drawn from the curves of Figs. 16–18, that the CAD
results have large discrepancy to the chronological age after age of 5.50 for male and 4 for
female. This phenomenon appears in radiologists readings also. The possible reason is that
after this point, the growth of Capitate and Hamate slow down and carpal ROI does not reflect
very accurate information. The other bones which appear later than Capitate and Hamate,
identified by the knowledge-based model (Fig. 10) could be taken into consideration to improve
the accuracy for these age groups by augmentation of feature space for bone age assessment.

The diverse growth patterns in different race and gender were observed from curves of average
reading of radiologists shown in Fig. 16. This justifies that it is necessary to distinguish the
race in bone age assessment. Two evaluations of two readings in Tables 3 and 4 show the inter-
observer discrepancy between two radiologists on the same data collection.

The CAD bone age based on carpal ROI could be integrated with phalangeal ROI to provide
more accurate bone age assessment. With up-to-date data collection and objective and fully
automatic bone age assessment, the CAD system integrated with PACS [19] could provide the
radiologists second opinion and help improve the accuracy in clinical practice.
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Fig. 1.
A left hand and wrist radiograph marked with six phalangeal ROIs and carpal ROI (box at the
bottom).
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Fig. 2.
Description of carpal bones in a hand radiograph.
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Fig. 3.
Growth pattern of carpal bones of Asian male from newborn to 7-year-old. The number
represents the corresponding age group for each image.
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Fig. 4.
Carpal ROI analysis workflow with seven steps.
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Fig. 5.
The procedure of carpal ROI extraction from the entire hand image.
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Fig. 6.
Illustration of anisotropic diffusion filtration: (a) original carpal bone ROI image; (b) the result
image after anisotropic diffusion filtration; (c) profile of the original image along the horizontal
line; (d) profile of the filtered image along the horizontal line.

Zhang et al. Page 15

Comput Med Imaging Graph. Author manuscript; available in PMC 2007 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Canny edge-detection example: (a) original image (Fig. 6(b)) and (b) result image after Canny
edge detection.
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Fig. 8.
The goal of objects refinement procedure: (a) original image (Fig. 7(b)) and (b) image after
objects refinement.
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Fig. 9.
Illustration of an ellipse with foci (F1 and F2) and major axis (between A and B). Eccentricity
is defined as the ratio of distance of F1 and F2 and major axis.
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Fig. 10.
Final segmentation results superimposed on the original carpal ROI shown in Fig. 6(a).
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Fig. 11.
Carpal bone identification model. The polar coordinate system with the centroid of the Capitate
as the origin is divided into five regions. Based on a priori anatomical knowledge, each of
which houses a carpal bone(s): Capitate, Hamate, Triquetral, Lunate, Scaphoid, Trapezium and
Trapezoid.
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Fig. 12.
A carpal bone identification example: (a) original carpal ROI image and (b) identified carpal
bones—Cap: Capitate, Ham: Hamate, Tri: Triquetral, Lun: Lunate and Sca: Scaphoid.
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Fig. 13.
Fuzzy classification workflow for bone age assessment.
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Fig. 14.
Four membership functions of Capitate sub-classifier for Caucasian male category. In this
fuzzy logic training, a normal distribution curve is used to represent a membership function
using the mean and standard deviation obtained from each feature. (a), (b), and (c) are the three
input features: size, eccentricity, and triangularity, the x-axis is the value of the corresponding
feature. The output membership function (d) is the chronological age represented by the x-axis.
Each of the four y-axes represents degree of the membership function which has a range from
0 to 1. Number on top of each membership function represents the chronological age group.
Multiple numbers appear together if membership functions for adjacent groups were merged,
for instance, age group 0 and 1 in (a). These membership functions were derived from the data
collected from each age group.
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Fig. 15.
An example of using fuzzy classification for CAD bone age assessment of a given Caucasian
male based on membership functions depicted in Fig. 14. Membership functions for each of
the three input features (size, eccentricity, and triangularity; columns a, b, and c), and one
output which is the chronological age (column d), are reoriented vertically forming six rules
(1, 2, …, 6) based on Fig. 14. Three extracted features from the hand image are: size: 89.5,
eccentricity: .636, and triangularity: .0294, represented by three vertical lines at each of the
three columns, respectively. The output is the aggregation of the solid areas under each rule,
which yields a crisp CAD bone age as 2.88-year-old shown in the bottom graph in column (d).
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Fig. 16.
Percentage of successfully processed cases of all four races. Striped bars represent the
percentage for phalangeal ROI analysis only and gray bars stand for the percentage after the
inclusion of carpal ROI. (a) is for female of 6 age groups from 0 to 5 and (b) is for male of 8
age groups from 0 to 7.
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Fig. 17.
Results from the test with race and gender separated. In each plot, the solid line represents the
CAD results and dashed line represents the average reading of two radiologists. See Section 4
for discrepancies.

Zhang et al. Page 26

Comput Med Imaging Graph. Author manuscript; available in PMC 2007 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 18.
Results from the test for two genders with four races combined. In each plot, the solid line
represents the CAD results and dashed line represents the average reading of two radiologists.
See Section 4 for discrepancies.
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Fig. 19.
Results from the test for one universal category with both races and genders combined. In this
plot, the solid line represents the CAD results and dashed line represents the average reading
of two radiologists. See Section 4 for discrepancies.
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Table 1
Reliability of ROI analysis for different age groups in CAD method

Age group (years) ROI

Phalangeal ROI analysis Carpal ROI analysis

0–5 (female), 0–7 (male) Size and shape analysis of epi-metaphysis: feature extraction is not reliable Size and shape analysis of carpal bones: feature extraction is reliable
6–12 (female), 8–12 (male) Size and shape analysis of epi-metaphysis: feature extraction is reliable Degree of overlapping of carpal bones: feature extraction is not reliable
13–18 (female and male) Degree of fusion of epi-metaphysis: feature extraction is highly reliable
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Table 2
Correlation coefficients for selected features

Capitate Hamate

Size Eccentricity Triangularity Size Eccentricity Triangularity

Correlation coefficient .94** .74** −.65** .92** .70** −.62**

**
p-Value < .01, highly correlated.
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Table 3
CAD evaluation for test 1 with races and genders separated

Asian African-American Caucasian Hispanic

Female Male Female Male Female Male Female Male

Reading 1 .19 −.05 −.08 −.13 .12 .02 .07 −.04
Reading 2 .19 .23 .01 −.03 .14 .25* −.11 .08
CAD BA .46* .16 .27 .12 .28* .20 .36* .20
Number of cases 21 28 21 30 22 34 22 27

*
p-Value < .05, significant mean difference (in year).
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Table 4
CAD evaluation for test 2 with two genders, each gender is combined with four races, and test 3 has only one universal
category

Test 2 Test 3

Female Male

Reading 1 .08 −.05 .00
Reading 1 .06 .13* .10*
CAD BA .25* .20* .01
Number of cases 86 118 204

*
p-Value < .05, significant mean difference (in year).
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