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Abstract
Lung CAD systems require the ability to classify a variety of pulmonary structures as part of the
diagnostic process. The purpose of this work was to develop a methodology for fully automated
voxel-by-voxel classification of airways, fissures, nodules, and vessels from chest CT images using
a single feature set and classification method. Twenty-nine thin section CT scans were obtained from
the Lung Image Database Consortium (LIDC). Multiple radiologists labeled voxels corresponding
to the following structures: airways (trachea to 6th generation), major and minor lobar fissures,
nodules, and vessels (hilum to peripheral), and normal lung parenchyma. The labeled data was used
in conjunction with a supervised machine learning approach (AdaBoost) to train a set of ensemble
classifiers. Each ensemble classifier was trained to detect voxels part of a specific structure (either
airway, fissure, nodule, vessel, or parenchyma). The feature set consisted of voxel attenuation and a
small number of features based on the eigenvalues of the Hessian matrix (used to differentiate
structures by shape). When each ensemble classifier was composed of 20 weak classifiers, the AUC
values for the airway, fissure, nodule, vessel, and parenchyma classifiers were 0.984 ± 0.011, 0.949
± 0.009, 0.945 ± 0.018, 0.953 ± 0.016, and 0.931± 0.015 respectively. The strong results suggest that
this could be an effective input to higher-level anatomical based segmentation models with the
potential to improve CAD performance.
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1. INTRODUCTION
The clinical motivation for this research is to improve the feasibility and accuracy of computer
aided diagnosis (CAD) for pulmonary disease. Lung CAD has the potential to play a critical
role in accomplishing a range of quantitative tasks; including, early cancer and disease
detection, analysis of disease progression, analysis of pulmonary function and perfusion, and
automate identification and tracking of implanted devices (FDA, 2006). A fully automated
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approach for the robust detection and segmentation of bronchovascular anatomy is an essential,
yet challenging, step in building a lung CAD system.

Many effective methods have been developed for specific tasks, such as airway segmentation
and quantitative evaluation (Palágyi et al., 2005;Park et al., 1998), fissure identification (Saita
et al., 2004;Zhang et al., 2006;Zhou et al., 2004), nodule detection (Armato et al., 2001;Brown
et al., 2003;Fiebich et al., 1999), and vessel segmentation (Agam et al., 2005;Krissian et al.,
2000;Pizer et al. 2003;Pock et al. 2005). These methods commonly apply a structure specific
pre-processing step prior to a final segmentation algorithm. A medialness function has been
used prior to higher level algorithms for vessel and airway segmentation (Krissian et al.
2000;Pizer et al. 2003;Pock et al. 2005). Enhancement filters, ridgeness measures, and edge
detectors have been applied for fissures during lobar segmentation (Saita et al., 2004;Zhang et
al., 2006;Zhou et al., 2004). A vessel enhancement stage has been shown to reduce false
positives during nodule detection (Agam et al. 2005). These enhancement stages all utilize
attenuation and shape information, yet so far their implementation has always been structure
specific.

The aim of this work is to develop a fully automated approach for a voxel-by-voxel
classification of multiple structures (airways, fissures, nodules, and vessels) using a single
feature set and classification method. Such an approach should be more versatile and practical
than developing and implementing multiple methods for each structure. The voxel-by-voxel
classification is intended to be a precursor step prior to higher-level anatomical based
segmentation models, and an alternative to structure specific enhancement filters (Agam et al.,
2005;Frangi et al., 1998; Sato et al., 1997; van Rikxoort and van Ginnekan, 2006;Wiemker et
al., 2005).

The underlying hypothesis of this investigation is that lung bronchovascular anatomy can be
differentiated on CT by a small but powerful feature set consisting of attenuation and shape
descriptors (based on the eigenvalues of the Hessian matrix). An emphasis was placed on a
strong a priori knowledge of the feature space and the discriminative ability of the feature set.
Pattern recognition techniques were used to avoid heuristically chosen features, thresholds,
and parameters. The AdaBoost machine learning algorithm was chosen for its strong theoretical
basis and ability to concurrently select and combine relevant features from the feature set during
the training of each independent classifier (one per structure). The transparency of the algorithm
allows an understanding of the feature selection process and verification that the selected
features match the a priori belief on the discriminative ability of the feature set.

A review of the features, AdaBoost, and evaluation dataset is presented in Section 2. A
quantitative review of the feature space, feature selection, classifier performance, comparison
to standard enhancement filters, and illustration of the application of the method to region-
based segmentation is presented in Section 3. The potential and limitations of the approach are
discussed in Section 4.

2. METHODS
The paper describes an approach for voxel-by-voxel classification of airways, fissures, nodules,
vessels, and normal parenchyma that utilizes a single feature set and classification algorithm.
A review of the feature computation is presented followed by a review of the AdaBoost machine
learning algorithm, which was used to train one ensemble classifier per structure. A description
of the dataset and methods for quantitative evaluation of the classification is also provided.
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2.1. Feature set
The feature set was selected to enable detection of structures of various shapes and sizes. The
eigenvalues of the Hessian matrix are used for gradient based shape analysis. A multiscale
approach is used to improve the detection of various size structures.

2.1.1. Eigenvalue computation—The Hessian matrix is a matrix of second order partial
derivatives (Eq. 1) and measures the 2nd order variations in intensity about a point. The
computation has been described in greater detail by other authors (Frangi et al., 1998;Krissian
et al., 2000;Sato et al., 1998). The eigenvalues of the Hessian matrix are represented as κ1,
κ2, κ3, and are ranked according to their absolute value |κ1| > |κ2| > |κ3|.

Hf (x, y, z) =

f xx f yx f zx
f xy f yy f zy
f xz f yz f zz

(1)

Multiscale analysis is performed by computing the Hessian matrix (and eigenvalues) at
multiple scales. The scale, σ, refers to the amount of smoothing applied to the image (i.e. the
standard deviation of the Gaussian smoothing kernel). Since the voxel dimensions of CT
images are typically not isotropic, the voxel size along each axis is used when computing the
second order partial derivatives of the Hessian matrix (i.e. resulting in units of HU/mm2), and
also when determining the size of the Gaussian smoothing kernel.

The scales used in this study {σ = 0.7, 1.0, 1.6, 2.4, 3.5, and 6.0 mm} were chosen to correspond
to the size of the structures of interest. The range of scales allows the shape of both larger and
smaller objects to be detected and quantified (Florack et al., 1992;Frangi et al., 1998;Krissian
et al., 2000;Lindeberg, 1994;Pock, et al., 2005). At lower scales, the shape of larger structures
may not be accurately captured due to noise and small inhomogeneities in the structure. At
higher scales, the shape of smaller objects may be distorted as neighboring structures are
smoothed together. Multiplying the eigenvalues by the scale theoretically normalize the
response across scales and provides a means for determining the size of an object based on the
scale at which the highest response occurred.

2.1.2. Derived features—The simple feature set consists of voxel attenuation and a small
number of features based on the eigenvalues of the Hessian matrix (to differentiate structures
by shape). This is similar to features used by previous authors for structure enhancement
(Frangi et al., 1998;Wiemker et al., 2005). The gradient based features take advantage of the
fact that CT attenuation is a measure of the mean attenuation of tissues occupying each voxel
and should have a similar range for a given structure across calibrated CT scanners (Brushberg
et al. 2002).

Since the full complexity of shapes cannot be captured by a single feature, multiple features
are computed using the eigenvalues (κ1, κ2, and κ3) of the Hessian matrix. The sign and
magnitude of each eigenvalue is proportional to the change in attenuation gradient along its
corresponding eigenvector. The magnitude of the eigenvalues, κ1

2 + κ2
2 + κ3

2, is a measure
of object contrast compared the local background (i.e. larger eigenvalues will correspond to
higher gradients and higher magnitude). Various ratios between the eigenvalues (|κ2/κ1|, |κ3/

κ1|, 
∣ κ1 ∣ − ∣ κ2 ∣
∣ κ1 ∣ + ∣ κ2 ∣

, and 
∣ κ3 ∣
∣ κ1κ2 ∣

) are intended to differentiate structures based on the

predicted eigenvalue relationships for different shapes (Figure 1). κ1 is expected to be relatively
larger for all structures than parenchyma. κ2 is expected to be relatively larger for airways,
vessels, and nodules than fissures or parenchyma. κ3 is expected to be small for all structures
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except nodules. The eigenvalues and shape features are computed at each scale along with the
max and min (based on magnitude) of the feature over all scales.

Figure 1 illustrates the theoretical basis for the feature set based on the predicted eigenvectors
and eigenvalues for each bronchovascular structure.

Airways and vessels are modeled as dark and light tubes respectively. The two largest
eigenvalues (κ1 and κ2) should correspond to the attenuation change along the eigenvectors in
the direction from inside to outside of the airway or vessel (ν1 and ν2). The sign of κ1 and κ2
is expected to be positive for airways (since airways are darker than airway walls and
surrounding tissues) and negative for vessels (since vessels are lighter than parenchyma). The
smallest eigenvalue (κ3) should correspond to the eigenvector (ν3) in the direction of the
trajectory of the airway or vessel.

Fissures are modeled as faint, plate like structures due to their thin surface and partial volume
averaging. κ1 should correspond to the gradient change normal to the fissure plane (along ν1).
The other two eigenvalues (κ2 and κ3) should correspond to the eigenvectors (ν2 and ν3) in-
plane with the fissure and should be closer to zero. Nodules, or faint to bright blob like
structures, are expected to have three large negative eigenvalues corresponding to the
attenuation change from inside to outside of the nodule in any direction. Non-diseased lung
parenchyma lacks structure and would be expected to have three eigenvalues close to zero;
however, the eigenvalues of parenchyma near the edge or between structures are likely to show
a varied response.

An investigation of the feature space for the reference dataset in this study is presented in Figure
4.

2.2. AdaBoost machine learning
The AdaBoost machine learning algorithm was used to train one ensemble classifier per
structure (Freund and Schapire, 1997). AdaBoost is a relatively new algorithm that was selected
based on its strong theoretical basis, simplicity to implement, transparency of feature selection,
and performance for discriminative tasks (Schapire, 2001;Viola and Jones, 2001). The
algorithm concurrently selects and combines relevant features from the feature set during the
training of each independent classifier, thus avoiding a separate feature selection process
common with other classification methods. The basic premise of the algorithm is that any
number of weak classifiers with an error rate less than 50% can be combined to form an
ensemble classifier whose error rate approaches that of an optimal classifier.

2.2.1. Weak classifier (feature) selection—As outlined in Figure 2, the AdaBoost
algorithm determines the optimal combination of T weak classifiers {h1(x)…hT(x)}, chosen
from any number of possible weak classifiers, when training the ensemble classifier for each
structure. For generalization of results to an unseen dataset, simple weak classifiers that
differentiate structures based on a threshold condition of a single feature were employed. A
semi-exhaustive search technique was used to train the weak classifiers, where the decision
threshold of the weak classifier was tested using values from a random selection of positive
samples. The output of each weak classifier is either 1 or 0 for positive and negative
classifications respectively, ht(x) = {1,0}.

Weak classifiers are iteratively selected based on their training error for a given set of n training
samples (x1…xn) with labels (y1…yn). Each label is 1 or 0, depending on whether or not the
sample is a positive example of the structure the ensemble classifier is being trained to detect.
Weights assigned to each training sample {wi…wn} are used to determine the training error.
The weights are initialized so that the cost of misclassification is the same for each structure.
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During each iteration, the weak classifier with the lowest training error (sum of the weights of
misclassified samples) is selected and the weights of correctly classified samples are decreased.
The sample weights allow the algorithm to adaptively select weak classifiers sensitive for
samples misclassified during previous iterations (i.e. samples with higher weights, since they
cost more to misclassify).

Further analysis of the weak classifier selection and the influence of the number of weak
classifiers on ensemble classifier performance is presented Section 3.2 and Section 3.3
respectively.

2.2.2. Voxel classification—As mentioned, one ensemble classifier is trained for each
structure. The output of each ensemble classifier is the sum of the alpha values of the weak
classifiers whose classification condition has been met. The alpha values are assigned based
on the training error of each selected weak classifier and allow the algorithm to optimally
combine the set of weak classifiers so that weak classifiers with lower training error have
greater impact on the classification decision.

The set of ensemble classifiers can be used independently or for a unique classification of each
voxel. When used independently, a binary classification of the structure is formed when the
ensemble output (alpha sum) for a given voxel is above a pre-determined classification
threshold (ROC point) for that structure. Using the classifiers independently does not ensure
a unique labeling of each voxel; since multiple structure classifiers may positively classify the
voxel. To assign one unique label, the likelihood of a voxel being part of each structure can be
computed using the output of each ensemble classifier. The voxel is then labeled as the structure
with the highest likelihood.

2.3. Reference dataset
Twenty-nine publicly available thin section chest CT series were obtained from the Lung Image
Database Consortium (LIDC, 2006). There were 28 subjects total, with one subject being
scanned on two separate scanners. The images were acquired on 10 scanner models from 4
manufacturers (General Electric, Philips, Siemens, and Toshiba). The peak tube current
potentials were 120 kVp (n=20), 130 kVp (n=1), 135 kVp (n=4), and 140 kVp (n=4). The tube
current ranged from 40 mA to 486 mA (mean 178 mA). The in-plane voxel size of the 512x512
images ranged from 0.54 to 0.75 mm (mean 0.66 mm). The slice thicknesses were 1.25 mm
(n=1), 1.5 mm (n=2), 2.0 mm (n=11), 2.5 mm (n=10), and 3.0 mm (n=5). The reconstruction
intervals ranged from 0.75 mm to 3.0 mm (mean 1.94 mm). Intravenous contrast was
administered in 10 scans. Reconstruction kernels vary between manufacturers, but in general
these cases were reconstructed with standard or slightly enhancing reconstruction kernels. All
subjects were scanned at full inspiration.

A reference dataset was compiled from two sources: one for nodules and one for all other
structures. The labeled voxels for nodules were derived from radiologist markings in the public
LIDC database. Markings indicated as nodules (either < 3 mm or ≥ 3 mm) by at least two of
the four radiologists were defined as nodules (Ochs et. al, 2007). For this study, a limited
number of points were taken from the center of each nodule in order to avoid possible bias
from having more points from larger nodules than from smaller nodules.

The labeled voxels for airways, fissures, non-diseased parenchyma, and vessels was obtained
from four additional radiologists (not part of the LIDC reading team), who each read a randomly
assigned subset of the 29 cases (7 to 8 cases each). For each case, radiologists were instructed
to label a minimum of 75 non-neighboring voxels (at least 1.0 mm apart and preferably
distributed equally throughout the lung region) for each of the following eight categories: 1)
trachea and main stem bronchus, defined as 0th and 1st generation airways, 2) lobar level,
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2nd, to 6th generation airways, 3) visible portions of the major fissure, 4) visible portions of
the minor fissure, 5) lung parenchyma within 2 mm of structures such as the chest wall and
vessels, 6) lung parenchyma in the open at least 2 mm from structures, 7) hilum and lobar level
arteries and veins, and 8) segmental to peripheral arteries and veins. In total, the radiologists
marked over 19 000 points in the 29 cases. Figure 3 shows examples of radiologist labeled
voxels.

2.4. Statistical analysis
Each structure specific ensemble classifier was evaluated using the output (alpha sum) of the
classifier as the decision variable. ROC curves were fitted and the area under the curve was
computed using Rockit (Version 0.9B beta, University of Chicago; Chicago, IL). The analysis
was performed assuming equal priors for each structure. Error analysis of the performance and
inter-reader agreement was performed using a four fold cross-validation technique, where cases
labeled by three radiologists were used for training and cases from the fourth radiologist were
used for testing. The performance of the multiclass classifier was evaluated with a confusion
matrix.

3. RESULTS
Quantitative results are presented for an investigation of the feature space, weak classifier
selection, influence of the number of weak classifiers on performance, multiclass classification,
and comparison to structure enhancement filters. In addition, the application of the technique
to region-based segmentation is presented.

3.1. Feature Space
Figure 4 illustrates the distribution for the structures in this study of the attenuation and
eigenvalues features (computed at a scale of 1.0 mm). The distributions correspond to
expectations given the appearance of bronchovascular structures on CT images (discussed in
Section 2.1.2).

3.2. Feature selection
The transparency of the AdaBoost algorithm allows verification that the selected weak
classifiers are reasonable based on the feature distributions (Figure 4) and predicted values
(Section 2.1.2). Examples of the first five weak classifiers selected for the airway, fissure,
nodule, and vessel ensemble classifiers are listed in Table 1.

3.3. Independent classifier performance
Theoretically, the error rate of the AdaBoost trained ensemble classifier should exponentially
decrease towards that of an optimal classifier as the number of weak classifiers is increased
(Freund and Schapire, 1997;Schapire, 2001). Table 2 summarizes the independent classifier
performance with varying numbers of weak classifiers per ensemble classifier. The error
analysis was obtained using a four fold cross validation technique, were cases marked by three
radiologists were used for training, and cases marked by the fourth radiologists were used for
testing.

3.4. Multi-class classification
Table 3 illustrates the results when each voxel was assigned one unique label according to the
structure specific ensemble classifier with the highest likelihood. The matrix should be read
column by column, where each cell represents the percent of the structure (column heading)
assigned the given label (row heading). For instance, 92% of voxels labeled as large airways
and 86% of voxels labeled as small airways were correctly identified. Stratifying the labeling
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process in the experimental design (Section 2.3) allows further insight into where
misclassifications are likely to occur.

3.5. Comparison to enhancement filters
A quantitative comparison to a fissure and a vessel enhancement filter was also performed.
The enhancement filters are designed for a specific structure based on intensity and/or the
eigenvalues of the Hessian matrix (Frangi et al., 1998;Wiemker et al., 2005). The two filters
in this comparison use manually defined fitting parameters as opposed to machine learning.
This comparison was motivated by a similar study that used a pattern recognition technique to
achieve better performance for fissure enhancement than an alternative filter that relied on
manually defined structure specific fitting parameters (van Rikxoort and van Ginnekan,
2006).

Following guidelines proposed by Frangi et al. (1998) for the vessel enhancement filter (Eq.
2), α, β, and c were set to 0.5, 0.5, and 200 respectively and κ1 and κ2 were required to be
negative. The AUC value for the filter was 0.871 ± 0.028 when the max value over all scales
in this study was used as the decision variable for the ROC analysis.

V (κ) = (1 − e

−κ2
2

2α2κ1
2 )(e −κ3

2

2β2∣κ1κ2∣ )(e−(κ1
2+κ2

2+κ3
2)/2c 2) (2)

The fissure enhancement filter (Eq. 3) proposed by Wiemker et al. (2005) was tested with the
following parameters μ = −845 and ρ = 50. I(x,y,z) refers to the intensity at that point. The max
value over all scales in this study was computed as the decision variable for ROC analysis. The
AUC for the filter was 0.924 ± 0.017.

P(I , κ) = (e −(I (x,y,z)−μ)2

2ρ2 ) ∣ κ1 ∣ − ∣ κ2 ∣
∣ κ1 ∣ + ∣ κ2 ∣

, only if κ1 ≤ 0, otherwise P(I , κ) = 0 (3)

3.6. Preliminary application to region based segmentation
To demonstrate the potential of the voxel-based classification as an input to region-based
segmentation algorithm the trained classifiers were applied to all lung voxels in a single CT
dataset after the segmentation of the lung and central airway region (Brown et al., 1997). The
classifiers were used independently to form a binary classification of each structure, and the
decision threshold was determined empirically. Using classifiers independently was done since
selecting the individual decision threshold for each classifier is more straightforward than
trying to incorporate prior probabilities and cost functions for multiple structures.

The CT dataset was acquired at 25 mAs, 2 mm slice thickness, 1.8 mm slice interval, no
contrast, and reconstructed with a medium smooth reconstruction kernel. The voxel-by-voxel
classification time was roughly 25 minutes using an AMD 1.8 GHz processor with 2 GB RAM
when implemented in Java. Various techniques could improve computation speed, such as
reducing the number of scales.

Figure 6 illustrate an initial segmentation of the lung bronchovascular anatomy based on simple
region growing and morphological operations, which were applied heuristically using the
results of the binary classification (future work will be to develop advanced techniques that
use the voxel classification in conjunction with expert knowledge of anatomy and imaging
physics to form a final segmentation).
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4. DISCUSSION
The results presented in this paper show the potential of using of a single approach for the
classification of lung bronchovascular anatomy. The classification is intended to serve as an
input to more advanced algorithms for the final segmentation. An understanding of the features,
feature space, feature selection, dataset, and classifier performance at a fundamental level not
only contributes to the field of medical image analysis but may also offer insights to the
computer vision community for an application of multiclass classification. The following
discussion reviews the methodology and results in more detail in order to provide a thorough
understanding of the potential and limitations of this approach.

The simple feature set of attenuation and shape based features was shown to have good
performance for differentiating multiple structures. The feature space for the bronchovascular
structures presented in Figure 4 corresponds with the a priori expectations for each structure.
Even with a good grasp of the feature space, the optimal selection and combination of features
is a difficult decision, which is why this process was left to the AdaBoost algorithm. Table 1
suggests that the selected weak classifiers are reasonable based on the feature space. While
some classification decisions may appear contradictory, it is likely that with these decisions
the algorithm has identified a boundary that provides a relatively low classification error.

Steps were taken to validate the performance and avoid sources of bias; including, having
multiple radiologists label a large number of voxels, labeling structures of different sizes,
labeling areas of confusion (such as the edge of parenchyma), investigating how the number
of weak classifiers impacted performance, and testing on a diverse dataset.

Classifiers were tested independently for comparison with the theoretical AdaBoost
performance and enhancement filters. The performance reported in Table 2, indicates the
versatility of the feature set and training algorithm even when a limited number of weak
classifiers are trained. Qualitatively, the classifier performance appeared to increase with
additional weak classifiers as it approached some fundamental limit. Comparison to
enhancement filters showed similar or better results. The fissure enhancement method of van
Rikxoort and van Ginnekan (2006) also used a pattern recognition technique and a similar
feature set. As such, their method is likely to show similar results if applied to multiple
structures. Their approach required manual contouring of all fissures in subjects while the
method presented in this paper only required the labeling of 150 voxels per structure from each
subject. They reported a 0.9044 AUC value for fissure enhancement on a dataset that consisted
of 16 scans acquired with 100 to 175 mAs, 0.7 mm thickness, and 16 × 0.75 collimation.

The classifier AUC values were derived from equal numbers of sample voxels from each
anatomic structure. When analyzing the whole lung, the number of voxels of each structure
will be different, and as such, Table 3 and Figure 5, are better indicators of performance for
the whole lung. The results for the multiclass classification presented in Table 3 are more
informative of where misclassifications are likely to occur and correlate with the results
illustrated in Figure 5. Airways are confused with edge parenchyma, likely due to the airway
like appearance of parenchyma near the edge of structures. Fissures are confused with open
parenchyma which is reasonable since fissures are faint and distant from nearby structure.
Nodules and vessels are commonly confused, which is likely due to branch points, which may
appear less tubular and more blob like.

The use of cases acquired with a range of imaging protocols for training and testing suggests
the robustness of the method. Using attenuation and shape features, computing features over
multiple scales, and training on multiple protocols was intentionally done to increase the
robustness of the classifier for changing imaging protocols. The average slice thickness of our
dataset was 2.3 mm. The method is likely to perform better on thinner images, were there would
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be less partial volume averaging of structures. While better performance would likely be
achieved if the classifier was trained for a single protocol, this is impractical for clinical
applications that will receive data from multiple scanners.

Limitations to this study include testing on cases with little or no lung disease, which may
confuse the classifiers when encountered. The range of nodule characteristics may also
influence the classifier performance. This method is unlikely to detect partial or incomplete
fissures. However, determining points along incomplete fissures is an advanced task that
requires knowledge of the vascular and airway tree structures. Detecting visible portions of the
fissure along with airways and vessels allows further analysis to determine if the fissure is
incomplete, and if so, where the fissure boundary should be located. Once segmentation of the
airways, fissures, and vessels is complete, a more thorough algorithm could be used for
detecting nodules and diffuse lung disease. Future work could also be done to investigate the
usefulness of the current feature set for diffuse lung disease classification.

The voxel-by-voxel classification will need to be post-processed to form a final segmentation.
However, our intent is to implement advanced techniques that can also remain generic, relying
not on structure specific algorithms, but rather a structure specific model learned from
contoured data. In this paper, a generic approach (applicable to multiple structures) was
presented for use as input to another generic method, such as a deformable model or level set
technique, which have the potential to segment various shaped structures (Cootes et al.
1995;Malladi et al. 1995; McInerney and Terzoplolous, 1996; Zhu and Yuille, 1996). In this
type of framework, two generic methods (classification and a final segmentation) will be able
to perform the function of several specialized methods. As such, this work should be seen as
a stepping stone to the final segmentation.

5. CONCLUSION
In this paper, an approach for voxel-by-voxel classification of airway, fissure, nodule, and
vessel structures was presented that utilized a small but powerful feature set and showed
promising results on a diverse dataset. The AdaBoost algorithm automated the selection of
relevant discriminative features for classification and reduced the reliance on a priori
knowledge in the feature selection process.

While additional weak classifiers, advanced classification methods, additional examples of
misclassified points, and training classifiers for specific imaging protocols may improve
performance, it is important to remember, that the overall aim at this stage is not a perfect
classification but a simple and robust classification strategy for multiple structures that can be
used as input to higher level methods. Future work will be to develop advanced techniques that
incorporate anatomical knowledge and imaging physics to refine the voxel-by-voxel
classification and provide a thorough analysis for pulmonary disease.
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Figure 1.
Illustration of bronchovascular structures and predicted eigenvectors/eigenvalue pairs.
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Figure 2.
Outline of AdaBoost algorithm adapted from Freund and Schapire, 1997 and Viola and Jones,
2001. The algorithm iteratively selects and combines a small number of features to train each
structure specific ensemble classifier.
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Figure 3.
Illustration of radiologist labeled image data. Radiologists marked voxels airways (indicated
by triangles), fissures (circles), parenchyma (squares), and vessels (upside-down triangles).
Examples of marked nodules from the LIDC database are indicated with arrows.
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Figure 4.
Distribution of attenuation and eigenvalues features (computed at a scale of 1.0 mm) for the
bronchovascular structures. The median, upper/lower hinge of the 75th percentile, and whiskers
with upper/lower adjacent values are shown. Outlier values are not shown.
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Figure 5.
Projection of the airway and nodule classification onto the coronal plane (top and bottom left
images), respectively. Projection of the classified fissures and vessels in the left and right lungs
onto the sagittal plane (top middle-right) and (bottom middle-right), respectively. The output
offers promising results for input to advanced segmentation methods.
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Figure 6.
3D renderings of the lung bronchovascular anatomy after refining the voxel-by-voxel
classification to form an initial segmentation of airway and airway walls, fissures, and vessels.
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