
Section 6—Mechanical Bioeffects in the Presence of Gas-Carrier
Ultrasound Contrast Agents

Abstract
This review addresses the issue of mechanical ultrasound-induced bioeffects in the presence of gas
carrier contrast agents (GCAs). Here, the term “contrast agent” refers to those agents that provide
ultrasound contrast by being composed of microbubbles, encapsulated or not, containing one or more
gases. Provided in this section are summaries on how contrast agents work, some of their current
uses, and the potential for bio-effects associated with their presence in an ultrasonic field.

6.1 Introduction
Enhanced sonographic contrast is desirable in many imaging applications, e.g., detection of
tumors and myocardial ischemia. In recent years, a number of gas carrier contrast agents
(GCAs) have been developed or are in development. Some are now in clinical use in the United
States or Europe and have demonstrated their utility and limitations. An extensive primary
literature exists on the physical and clinical properties of GCAs, as well as several reviews
(e.g., Ophir and Parker, 1989;Schlief et al, 1993;Goldberg, 1993a;Balen et al, 1994;Burns,
1994a;Goldberg et al, 1994;Winkelmann et al, 1994). However, the minutiae of clinical
experience with GCAs are not dealt with here.

GCAs have been available for bioeffect research for only a short time. Consequently, the
literature pertaining to mechanical bioeffects in the presence of GCAs is sparse, and thus our
knowledge of such phenomena is limited. However, this topic is the subject of current research
in several laboratories. Most of the mechanical bioeffects arising from insonation of cells or
tissues with GCAs present can be attributed to the occurrence of inertial cavitation.

Subsection 6.2 provides an overview of GCAs in use or under development and discusses
briefly some clinical GCA applications. These discussions are not exhaustive but offer an
overview of GCAs: what they are, their general properties, and how they have been applied.
In subsection 6.3, some clinical applications of GCAs are reviewed. Subsection 6.4 summarizes
the literature pertaining to mechanical ultrasound bioeffects in the presence of GCAs.

6.2 Overview of GCAS in Use or Under Development
6.2.1 General Properties of Contrast Agents

Most GCAs comprise micrometer-diameter gas bodies, variously referred to as microbubbles
or microspheres, that may or may not be surrounded by a shell of material that stabilizes the
gas against diffusion. These are intended for intravascular or intraluminal injection.

A major problem in the development of GCAs has been obtaining a satisfactory size
distribution. For imaging applications following intravenous injection of the agent, the
microbubbles must be smaller than ~8 μm in diameter to pass through capillaries, thus allowing
passage through the pulmonary circulation. The GCA must be tolerated by patients, should be
stable with respect to rapid dissolution in the blood, and should be tolerant of hydrostatic
pressures produced by the heart. A variety of engineering solutions to these problems has been
attempted.
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Microbubbles composed of atmospheric gases that are not stabilized in some way dissolve
rapidly in aqueous media because of the pressure exerted on the gas by surface tension at the
microbubble surface and outward diffusion of the gas (Porter and Xie, 1995a). Stability against
dissolution can be provided by a shell of material around the gas or by using relatively insoluble
gases. Various stabilizing shell materials have been used, including lipids (Unger et al,
1992;Simon et al, 1992b,1993;D’Arrigo and Imae, 1992;Barbarese et al, 1995;Schneider et al,
1995), albumin (Bleeker et al, 1990b), dextrose-albumin (Porter et al, 1995a,1995b,1995c,
1995d), sugars (Schurmann and Schlief, 1994;Cennamo et al, 1994), gelatin (Prat et al, 1993),
and polymers (Schneider et al, 1992). Various gases also have been used, ranging from
relatively soluble gases, e.g., air (Bleeker et al, 1990b), nitrogen (Unger et al, 1992), and carbon
dioxide (Kudo et al, 1994;Veltri et al, 1994), to gases with relatively low solubility or slow
diffusion rates, such as helium (Porter and Xie, 1995a), sulfur hexafluoride (Porter and Xie,
1995a;Schneider et al, 1995), perfluoropropane (Porter et al, 1995d), and dodecafluoropentane
(Quay, 1994).

6.2.2 Acoustic Properties of Contrast Agents
The ultrasonic beam generated by a transducer or array is fairly complicated (Shung and
Zipparo, 1996;Zagzebski, 1996). However, for the sake of simplicity, here a plane wave is
assumed. As an ultrasonic plane wave penetrates a distribution of scatterers, in the present case
microbubbles, assuming that the nonlinear effects caused by these bubbles can be neglected,
the sound velocity in the medium, c, is given by

c = 1
ρG (6-1)

where ρ and G are the effective density and compressibility of the medium, respectively. In
general, if the volume concentration V of the bubbles is small, the mixture relationships, which
are represented by

ρ = ρbV + ρm(1 − V) (6-2)

G = GbV + Gm(1 − V) (6-3)

where subscripts b and m stand for bubble and surrounding medium, are valid (Ophir and
Parker, 1989;Mobley et al, 1998). Since sound velocity in a gas is lower than in fluids, the
sound velocity in a liquid containing a GCA is lower than that of the liquid alone. Figure 6-1
shows that the sound velocity in Albunex decreases as the Albunex concentration increases at
7.5 MHz (Bleeker, 1990a). Recent studies (Wu et al, 1995;Mobley et al, 1998) indicate that
the sound velocity in a distribution of microbubbles is a function of frequency and of bubble
concentration, and may be affected by the nonlinear resonance behavior of the bubbles at
frequencies near the resonance frequencies of the bubbles.

As the wave penetrates the medium, the pressure amplitude, Pz, and intensity, Iz, decrease
according to the following equations (Shung et al, 1992;Zagzebski, 1996):

Iz = I0e−2βz (6-4)

Pz = P0e−βz (6-5)

where z = distance traveled, I0 = intensity at z = 0, P0 = pressure at z = 0, and β= pressure
attenuation coefficient in np/cm (1 np = 8.686 dB) of the medium.
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For a distribution of low bubble concentration, the attenuation coefficient is given by

β =
nσe

2 (6-6)

where n = the number of bubbles per unit volume, and σe = the extinction cross section
(Ishimaru, 1978;de Jong et al, 1992). The extinction cross section, σe, with dimensions of
cm2, is frequency dependent and represents the total energy loss for an ultrasonic wave resulting
from the presence of one scatterer in a unit volume; e.g., per cm3. It is the sum of the absorption
cross section, σa, and the scattering cross section, σs (Ishimaru, 1978;de Jong et al, 1992)

σe = σa + σs (6-7)

Both σa and σs have the dimension of cm2 and represent the energy absorbed and scattered by
one scatterer in a unit volume, respectively. The question that often arises is the relative
contribution of each of these terms to the total attenuation. The attenuation, if estimated
accurately, can sometimes give information about the properties of the scatterer but, in general,
attenuation is not desirable in diagnostic applications, especially its absorption component. To
achieve optimal ultrasonic contrast, the absorption of the contrast agent should be made as low
as possible to avoid losing energy and shadowing biological structures, while the scattering is
maximized.

The scattering properties of biological tissues and blood have been investigated intensively
because these signals are used to form ultrasonic images (Shung and Thieme, 1993). Several
investigators have also studied the acoustic properties of liquids containing gas bubbles (Devin,
1959;Medwin, 1977;Anderson and Hampton, 1980). The total scattering cross section of a
single bubble can be expressed as follows (Medwin, 1977):

σs = 4πR2

( fr
2

f2
− 1)2 + δ2

(6-8)

where R = bubble radius, fr = bubble resonance frequency, f = frequency of the incident
ultrasonic wave, and δ = total damping constant, caused by the surrounding liquid medium and
consisting of terms due to re-radiation, thermal conductivity, and shear viscosity (Devin,
1959).

The resonance frequency of a bubble can be determined assuming the following: the
wavelength of the ultrasonic wave is much larger than the bubble diameter, the radial
displacement of the bubble is small relative to its radius; and the surrounding fluid is
incompressible. The first two conditions are fulfilled by the majority of GCAs and the third
by water and blood, which are virtually incompressible.

The simplest equation of resonance frequency for a bubble in water is

fr = 1
2πR

3γP0
ρm

(6-9)

which can be modified to

fr = 1
2π

Sa
m (6-10)
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where γ = ratio of specific heats of the gas (~1.4), P0 = ambient hydrostatic pressure (= 1.103
× 106 dyne/cm), ρm = density of the surrounding fluid (=1.03 g/cm3), Sa = adiabatic stiffness
(=12πγP0R), and m = effective mass of the system (=4πR3ρm). Here an adiabatic equation of
state is assumed. However, for bubbles of small radii, surface tension becomes a significant
additional restoring force and must be considered. The oscillation in this case is closer to an
isothermal process. When these points are considered the equation for resonance frequency
changes. P0 in Equation 6.10 is replaced by the average interior pressure including surface
tension, ξP0, and γ is replaced by the effective ratio of specific heats in the presence of thermal
conductivity, γb (Medwin, 1977;de Jong et al, 1992;de Jong, 1996)

fr = 1
2πR

3γbζP0
ρm

(6-11)

where

b = (1 + B2)−1 1 + 3(γ − 1)
X ( sinh X − sin X

cosh X − cos X ) −1 (6-12)

B = 3(γ − 1) X( sinh X + sin X) − 2(cosh X − cos X)
X2 ( cosh X − cos X) + 3(γ − 1)X(sinh X − sin X)

(6-13)

ζ = 1 + 2σ
P0R (1 − 1

3γb ) (6-14)

X = R ( 2ωρaCpg
Kg ) 1

2 (6-15)

In these equations, Kg= thermal conductivity of gas (=5.6 × 10−5 cal/cm-s-°C); ρa = density
of free gas at sea level (=1.29 × 10−3 g/cm3); σ = surface tension (=75 dyne/cm); Cpg = specific
heat at constant pressure for air (=0.24 cal/g), λ = ratio of specific heats and ω = angular
frequency.

The parameters b and ζ are functions of the bubble radius. Equation 6.11 is plotted in Figure
6-2, which shows the bubble resonance frequency as a function of the bubble size. Note here
that smaller bubbles yield higher resonance frequencies. Figure 6-3 shows the scattering cross
section of a bubble of 1.7 μm radius at an ambient pressure of 1 atm calculated using the
numerical values of parameters given above. Measured data are in reasonable agreement with
the calculated curve (de Jong et al, 1992;Chang et al, 1993).

The portion of the energy absorbed or converted into heat by a scatterer from an ultrasonic
wave is referred as the absorption cross section, and it is related to scattering cross section as
follows (Medwin, 1977;de Jong et al, 1992):

σa = σs( δδr
− 1) (6-16)

where the damping constant δ is the sum of three components (Devin, 1959):

δ = δr + δt + δv (6-17)

and where δr = kR = damping constant due to re-radiation, k = wave number, δt = B(fr/f)2 =
damping constant due to thermal conductivity, δv = 4η/(ρωR2) = damping constant due to shear
viscosity and η is the shear viscosity of the surrounding liquid (= 0.01 g/cm-s).
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6.2.2.1 Bubbles with an Elastic Shell—The discussion above applies only to a free
bubble. However, most GCAs used today have some form of a shell. Unfortunately, there has
been very little study on encapsulated microbubbles. An early work by Fox and Herzfield
(1954) discussed the issue that gas bubbles acting as cavitation nuclei are stabilized by an
organic monomolecular skin that would act as an elastic shell and as a mechanical barrier to
diffusion. The skin provides rigidity and, therefore, would increase the resonance frequency
of the microbubbles. Microbubble stabilization by an organic skin is essential for GCAs
composed of soluble gases in order to increase their persistence in the blood stream. A
theoretical model describing ultrasonic propagation in a distribution of shelled microbubbles
was made by de Jong et al (1992), who considered the shell surrounding Albunex microbubbles
as layers of elastic solids. Recently, Church (1995) treated the surface layers by including
numerical values for such parameters as the modulus of elasticity, density, viscosity and
thickness.

de Jong et al (1992) hypothesized that the shell introduced an additional restoring force to the
system, which would increase the resonance frequency and decrease the scattering cross
section. The contribution of the shell to the bubble stiffness is given by

Sshell = 8π Et
1 − v = 8πSp (6-18)

where E = shell elasticity, t = wall thickness, v = Poisson ratio, and Sp = Et/(1 −v) = the shell
parameter given in dynes/cm. Although the shell elasticity, wall thickness, and Poisson ratio
are unknown, the shell parameter can be estimated by matching the measured attenuation
coefficient to the theory. The model has shown better agreement for large microbubbles (lower
resonance frequencies) than for small ones. To improve the agreement between theory and
measurements, de Jong and Hoff (1993) added an additional damping term referred to as the
shell friction parameter, Sf, which accounted for the internal friction or viscosity within the
shell. The damping coefficient due to the shell friction introduces an additional term to the total
damping coefficient,

δtot = δr + δt + δv + δf (6-19)

where

δf =
Sf

mω (6-20)

The modified resonance frequency, taking the shell stiffness into account, is given by

frs = 1
2π

Sabζ + Sshell
m (6-21)

6.2.2.2 Cloud of Bubbles—The dynamics of individual microbubbles is of limited
importance when considering the response of GCAs to an acoustic wave. A method for
determining the effects of a cloud of microbubbles is needed. When the scatterer concentration
is low, the scattered power is proportional to the scatterer concentration (Ishimaru, 1978). For
a distribution of microbubbles of different sizes, the mean attenuation or scattering property
at a single frequency, <φ>, can be calculated by considering the contribution of each
microbubble divided by the total concentration:

φ(f) =
∫0∞φ(R, f)n(R)dR

N (6-22)
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where R = radius of the scatterer, f = ultrasound frequency, n(R)dR = number of bubbles of
radius between R and R + dR per unit volume of scattering medium, φ(R,f) = the attenuation
or scattering property of a scatterer with radius R, and N = total concentration of scatterers.

6.2.2.3 Attenuation Coefficient of Albunex—Figure 6-4 shows measured results of the
attenuation coefficient of Albunex as a function of the ultrasound frequency (Chang and Shung,
1993). Experimental results obtained using a broadband approach (Bleeker et al, 1990b;de Jong
et al, 1992;Chang et al, 1995,1996) agree well with the theory developed for encapsulated
microbubbles discussed above, especially in the vicinity of microbubble resonance. The size
distribution of Albunex shown in Figure 6-5 was used to calculate the theoretical curve. The
attenuation coefficient peaks at 2.1 and the values of Sp and Sf were assumed to be 5,500 dyne/
cm and 0.004 g/s, respectively. The attenuation coefficient of Albunex at different
concentrations has also been measured (Marsh et al, 1997).

6.2.3 Some Specific Contrast Agents
The first GCAs used for research and clinical purposes were handmade materials produced
immediately before administration. Many different materials were tried; e.g., agitated saline,
x-ray contrast media, or combinations of the two (Tei et al, 1983;Kaul et al, 1984). These
procedures trapped air in suspension, but the microbubbles were unstable, often varied
dramatically from batch to batch, had wide size distributions, and failed to cross the pulmonary
circulation after intravenous injection. More sophisticated methods of making GCAs evolved
that led to commercially prepared products (Keller et al, 1986;Feinstein et al, 1989). These
GCAs are easier to use than the “handmade” materials, demonstrate less lot-to-lot variability,
provide an excellent pharmacological safety profile and, after intravenous injection,
consistently produce contrast in the left ventricle and enhance the Doppler signals from the
arterial circulation. Many different GCAs are either on the market or are in development as of
this writing.

Echovist (SHU 454; Schering AG, Berlin, Germany) was the first commercially available
GCA. This material starts as a powder of desiccated galactose microparticles <12 μm in
diameter (3.5 μm median diameter; Fritzsch et al, 1988) that are suspended or dissolved in an
aqueous galactose solution. Air attached to or trapped within the particles produces
microbubbles with a median diameter of 3 μm, 97% of which are <7 μm in diameter. Echovist
microbubbles do not cross the pulmonary circulation after intravenous administration and thus
are limited to use in right heart or intralumenal studies; e.g., in evaluation of fallopian tube
patency (Smith MD et al, 1984;Venezia and Zangara, 1991). A closely related product is
Levovist [SHU 508 (A), Schering AG], which starts as desiccated microparticles of galactose
and 0.01% palmitic acid (Fritzsch et al, 1990;Schwarz et al, 1994). The surfactant activity of
the fatty acid stabilizes the microbubbles and facilitates their passage through the pulmonary
circulation (Smith MD et al, 1989). Intravenous injection of Levovist increases the backscatter
of the blood pool, opacifies the left ventricle of the heart, and enhances Doppler ultrasound
signals from abdominal organs (Schlief et al, 1990;Goldberg et al, 1993b). Levovist is approved
for use in Europe.

Albunex (Molecular Biosystems, Inc., San Diego, CA) is the first GCA approved by the Food
and Drug Administration (FDA) for use in the United States. Controlled sonication of 5%
human serum albumin produces stable, air-filled microbubbles (Barnhart et al, 1990). The
preparation possesses a microbubble concentration of 3–5 × 108/mL, with a mean microbubble
diameter of 3–5 μm, more than 95% of which are <10 μm in diameter. These possess a
denatured albumin shell ~15 nm thick (Christiansen et al, 1994). Intravenously injected
Albunex traverses pulmonary capillaries, increases left ventricular contrast, and enhances
arterial Doppler signals (Keller et al, 1987;Jakobsen et al, 1996). Left ventricular opacification
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by Albunex improves endocardial border definition in echocardiograms and thus facilitates
evaluation of wall motion and estimation of ejection fraction (Feinstein et al, 1990;Crouse et
al, 1993).

A GCA undergoing clinical trials in Europe is BY963 (Bracco-Byk Gulden, Konstanz,
Germany). Air bubbles are surrounded by a phospholipid (3-SN-phosphatidyl-D,L-glycero-
disteroyl-Na [DSPG-Na]; Solleder et al, 1996). The lyophilized material is rehydrated and then
passed back and forth several times through a small chamber to induce microbubble formation.
This agent possesses a gas volume of 40 μL/mL and 1.7 × 108 microbubbles/mL. The mean
microbubble diameter is 3.8 μm, with 95% of the microbubbles smaller than 8 μm. Intravenous
administration of BY963 in humans opacifies the left ventricle and enhances the Doppler signal
during transcranial color Doppler imaging (Belz et al, 1994;Kaps et al, 1995).

The commercial materials discussed thus far might be considered to be “first generation”
GCAs. All use air as the active agent. However, because of an inherent unsaturation of the air-
gases in blood, the air contained within these GCAs readily diffuses out of the microbubbles
when injected into the body (Van Liew and Burkard, 1995a).

GCAs are unstable under sonication by diagnostic ultrasound; the problem may be severe at
high intensity (Mor-Avi et al, 1994;Porter et al, 1996a;Uhlendorf and Scholle, 1996). This
significantly reduces the GCA effectiveness in ultrasonic imaging. A significant fraction of
GCA microbubbles may be destroyed by several minutes of exposure to diagnostic ultrasound
in vitro, resulting from structural alteration of the microbubble shell, leading to gas loss by
diffusion and the formation of microbubble clusters due to the attractive force among nearby
microbubbles in an ultrasound field (Wu and Tong, 1998a). With loss of air, the GCAs lose
the ability to produce ultrasonic contrast. The next advancement made in GCAs (i.e., the second
generation) was the use of gases having lower solubility and diffusivity. These GCAs retain
their gas for longer periods, thus increasing the duration of contrast and Doppler enhancement
from several seconds, as with first generation agents, to several minutes (Van Liew and
Burkard, 1995b).

Molecular Biosystems’ second generation GCA is Optison (FS069), consisting of a
proteinaceous shell surrounding a perfluoropropane bubble (Meza et al, 1996). This relatively
insoluble gas is inert and is eliminated from the body via normal gas exchange. Optison is
produced by controlled sonication of 1% human serum albumin in the presence of
perfluoropropane. The microbubble concentration is 6.3–9.0 × 108/mL and the mean
microbubble diameter is 2.0–4.5 μm (Dittrich et al, 1995a). Optison opacifies the cardiac
ventricular chambers at smaller doses than required for Albunex (0.2 mL versus 15–20 mL,
respectively). The duration of contrast produced by Optison dramatically exceeds that of
Albunex (>5 min versus 30–45 s, respectively). After intravenous administration, Optison
enhances Doppler signals from abdominal and peripheral organs (Dittrich et al, 1994;Brown
et al, 1996), enhances two-dimensional ultrasound reflectivity from the heart, demonstrates
myocardial perfusion (Dittrich et al, 1995a,1995b;Meza et al, 1996), and increases the
echogenicity of the parenchyma from other organs (Nada et al, 1995;Aronson et al, 1996). At
dose volumes much larger than those required to achieve parenchymal enhancement, Optison
causes no changes in hemodynamic or blood gas measurements in anesthetized dogs (Dittrich
et al, 1994,1995a;Meza et al, 1996). Phase One human trial results demonstrate an excellent
margin of pharmacological safety (Dittrich et al, 1995b). Optison is approved by the FDA for
use in the United States.

Another perfluoropropane-based GCA is Aerosomes (MRX115; ImaRx Pharmaceutical,
Tuscon, AZ). These microbubbles are stabilized by a phospholipid coating <10 nm thick
(Unger, 1995a). The microbubble concentration is ~8 × 108/mL, with a mean microbubble
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diameter of ~2.5 μm (Unger, 1995b). Intravenous administration of Aerosomes at dose volumes
of 0.01–0.05 mL/kg provides myocardial enhancement in subhuman primates (Grauer et al,
1996). Small doses also opacify the left ventricle and enhance Doppler signals from the
peripheral vasculature for prolonged periods (Unger, 1995b;Metzger-Rose et al, 1996). In
anesthetized monkeys, Aerosomes produce no significant hemodynamic or blood gas changes
at dose volumes of 0.05–0.10 mL/kg (Grauer et al, 1995). As of this writing, the agent is
undergoing clinical trials to evaluate safety and efficacy in humans.

Imagent US (AFO150; Alliance Pharmaceutical Corp., San Diego, CA) is another GCA that
utilizes a perfluorocarbon to increase stability in vivo. It is composed of surfactants, phosphate
buffers, NaCl, and a blend of perfluorohexane vapors and nitrogen (Mulvagh et al, 1996). The
materials start as a powder and gas mixture that is reconstituted with water (20 mg/mL). This
preparation results in microbubbles with a median diameter of 6.0 μm and a concentration of
~5.0 × 108 microbubbles/mL. Intravenous administration (0.5 to 2.0 mL) produces
homogeneous left ventricle opacification and enhancement of the myocardial tissue in
anesthetized dogs. In rabbits, Imagent (0.007 to 0.2 mL/kg ) dramatically enhances color
Doppler signals from the kidney for extended periods; e.g., from ~300 to >1,000 ss, depending
on the dose (Taylor et al, 1996). At dose volumes of 0.2 mL/kg, Imagent produces a modest
gray scale enhancement in the renal cortex. At doses up to 40 mL in a dog, Imagent caused no
changes in hemodynamic parameters (Mulvagh et al, 1996). Clinical evaluations of this agent
are under way as of this writing.

Sonovue (BR1; Bracco Research SA, Geneva, Switzerland) is composed of phospholipids (di-
stearoylphosphatidylcholine and dipalmitoylphosphatidylglycerol), ethylene glycol 4000 and
sulfur hexafluoride gas (Schneider et al, 1995). This lyophilized material is dispersed in saline,
resulting in a suspension of 2 × 108 microbubbles/mL and a mean microbubble diameter of
2.5 μm, with >90% smaller than 8 μm. The preparation has a gas volume of 2–10 μL/mL. After
intravenous administration, Sonovue opacifies the right and left ventricles of the heart. Doses
of Sonovue above 0.025 mL/kg cause no further increase in contrast intensity but prolong the
duration of contrast in the ventricles, from 27 ± 23 s to 104 ± 35 s at a dose of 0.2 mL/kg
(Rovai et al, 1995). Sonovue also enhances the Doppler signals from the vasculature of
abdominal organs (Schneider et al, 1996). As of this writing, Sonovue is undergoing clinical
evaluation.

A unique second generation GCA is the perfluoropentane emulsion EchoGen (SONUS
Pharmaceuticals, Bothell, WA). EchoGen is formulated as a liquid-liquid aqueous emulsion.
Dodecafluoropentane, the active ingredient in EchoGen, undergoes a phase change as it warms
from room temperature to body temperature (Quay, 1994). EchoGen emulsion contains 2%
dodecafluoropentane in stabilized droplets with a diameter of ~0.3 μm and a concentration of
1012 droplets/mL (Correas and Quay, 1996); as these warm, the liquid boils (at 28°C) to form
microbubbles with a calculated final mean diameter of 2–5 μm. When injected at small doses
and without preactivation (see below), EchoGen produces contrast in the ventricular chambers
of the heart and enhances Doppler signals from the abdominal organ vasculature (Grayburn et
al, 1995;Forsberg et al, 1995). At higher doses, EchoGen enhances the echogenicity of the
myocardium and parenchyma of peripheral organs (Sehgal et al, 1995). Activated prior to
injection by either sonication or hypobaric manipulation, EchoGen enhances the myocardium
and parenchyma of the liver and kidneys at dose volumes one fourth and one tenth those used
previously (Cotter et al, 1995;Forsberg et al, 1996). With preactivation and the use of smaller
dose volumes, EchoGen causes no hemodynamic or blood gas alterations. As of this writing,
EchoGen is under FDA review and is undergoing clinical trial evaluations.
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The second generation GCAs discussed above are the ones that are the furthest along in their
journey toward clinical utility. Other GCAs are also being developed by several companies.
Their development status, physical characteristics, and imaging profiles are less well known.

6.3 Clinical Applications of Contrast Agents
6.3.1 Harmonic and Transient Mode Imaging

6.3.1.1 Harmonic Mode Imaging—Ultrasound imaging is based on the pulse-echo method
of the fundamental frequency (f). An ultrasonic transducer transmits repeated ultrasonic pulses
(the center frequency is f) to a target, and the echoes received by the transducer have the same
center frequency. The brightness of the pixels on a monitor corresponding to the image of the
target is proportional to the echo amplitude. GCAs significantly enhance the backscattered
echo signals of the fundamental frequency, as the acoustic impedance of the gas-filled
encapsulated microbubbles is quite different from that of soft tissue.

It is well known that a bubbly liquid is highly nonlinear. The second order nonlinearity
parameter, B/A, characterizes the nonlinearity in the relationship between acoustic pressure
and density. The magnitude of the equivalent nonlinearity parameter B/A of a bubbly liquid
can be four orders greater than that of most soft tissue (Wu et al, 1995). Direct experimental
measurements (Schrope et al, 1992;Wu and Tong, 1998b) indicated that B/A for Albunex and
Levovist solutions can reach 3–4 digits; in contrast, the B/A for most soft tissues is only in the
single digits. The highly nonlinear property of GCAs has been used to create a new ultrasonic
imaging mode; viz., harmonic imaging. Harmonic imaging is realized by transmitting
ultrasonic pulses with a center frequency f, but receiving the echoes at nf, where n is an integer
greater or equal to 2 (Schrope et al, 1992;Chang et al, 1995,1996). Since B/A of soft tissue is
much smaller than that of GCAs, the contrast of the backscattered signals at the harmonic
frequencies is greatly enhanced relative to the contrast obtained at the fundamental frequency.
Using this technique, it is possible to detect and measure slow and small volume blood flow.
This is not possible by using the current fundamental frequency imaging technique, as the echo
from more prevalent tissue at the fundamental frequency dominates the echo from the blood
(Burns et al, 1994b). Additionally, since the wavelength and beam width of the nth harmonic
frequency are smaller than those of the fundamental by nearly a factor of 1/n (Ward et al,
1997), the axial and lateral spatial resolutions of the image are improved.

6.3.1.2 Transient Mode Imaging—Although newer generation GCAs improve the amount
of myocardial contrast produced from an intravenous injection of contrast agent, the doses
required to produce this contrast are very large and cause acoustic shadowing of myocardium
in the near field of insonation (Carstensen et al, 1992;Villanueva et al, 1992;Porter et al,
1995b). Harmonic imaging significantly improves the signal to noise ratio by taking advantage
of the nonlinear reflective characteristics of microbubbles (Villanueva et al, 1993;Schrope and
Newhouse, 1993; see also subsection 6.3.1.1. above).

A second method of improving myocardial contrast from an intravenous administration of
microbubbles is by reducing their exposure to ultrasound. The peak negative acoustic pressures
produced by diagnostic ultrasound transducers, which range from 0.5 to 3 MPa (de Jong et al,
1991;Patton et al, 1994), can destroy air-filled as well as fluorocarbon-filled microbubbles
(Wray et al, 1992;Mor-Avi et al, 1994;Vandenberg and Melton, 1994). GCA destruction by
ultrasound can involve inertial cavitation (Crum et al, 1992;Everbach et al, 1996b); indeed, the
rapidity of microbubble destruction (and decrease in video intensity) is related directly to the
magnitude of the peak negative pressure (Vandenberg and Melton, 1994). Less frequent
exposure (i.e., lower frame rates) has been shown to reduce microbubble destruction rates
(Porter et al, 1997).
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Transient mode imaging was first observed in animal studies when the imaging ultrasound was
frozen for 30–60 s after an intravenous injection of perfluorocarbon-exposed sonicated
dextrose albumin microbubbles. Even when using conventional (i.e., >30 Hz) frame rates, a
marked increase in myocardial contrast was observed in the first few frames after turning the
freeze button off. Often, this increase in contrast was so transient that the only means to observe
it was to search the analogue videotape and view each individual frame obtained after turning
the freeze button off. Because of the short duration of contrast obtained when using
conventional imaging frame rates, this type of imaging was initially termed “transient
response” (or “transient mode”) imaging. An equivalent increase in myocardial contrast can
be observed by transmitting ultrasound at only one point triggered to every one (or several)
cardiac cycles after the intravenous GCA administration.

Even with a high diagnostic peak negative pressure (e.g., 1.1 MPa), a reduced frame rate (e.g.,
1 Hz) destroys significantly fewer microbubbles than a conventional frame rate (Porter et al,
1996b,1997). Some of the myocardial contrast improvement obtained with transient mode
imaging is actually due to the enhancement of cavitation activity produced under these
conditions (Porter et al, 1998a). Upon initial exposure to diagnostic ultrasound pressures,
perfluorocarbon-exposed microbubbles have exhibited cavitation activity (Everbach et al,
1996b). The magnitude of this activity varies as a function of both the ultrasound pulse
repetition frequency and pulse duration. Interestingly, the greatest initial cavitation activity
occurs in response to the lowest pulse repetition frequencies, presumably because of less rapid
depletion of gas nuclei. Inertial cavitation activity upon initial exposure to diagnostic
ultrasound pressures has also been observed with sonicated albumin-coated microbubbles
(Crum et al, 1992). The duration of this transient growth and collapse of the latter microbubbles
was even shorter than that observed with perfluorocarbon exposed microbubbles. However,
transient mode imaging results in sufficient enhancement of myocardial contrast to allow the
use of relatively low acoustic pressures. Porter et al (1997) have shown that the threshold for
producing an increase in contrast with transient mode imaging is well below commonly used
diagnostic ultrasound acoustic pressures. Even at 0.4–0.5 MPa, contrast increases can be
observed with triggered imaging. However, this lower peak negative pressure is not nearly as
destructive of the microbubbles as is 0.7–0.8 MPa when using frame rates of 10–15 Hz (Porter
et al, 1997), and the operator can still see increased myocardial contrast at frame rates that
permit simultaneous assessment of wall thickening (Porter et al, 1998b).

The dramatic impact this has on the amount of contrast produced from intravenously injected
microbubbles is demonstrated in Figure 6-6. The image on the left is from a patient during a
continuous infusion of perfluorocarbon-exposed sonicated dextrose albumin microbubbles
during standard, conventional imaging at 30–40 frames/s. The right side of Figure 6-6 is an
image from the same patient during the same continuous infusion of microbubbles, but in this
case the frame rate had been reduced to one frame in every two cardiac cycles. The large
increase in contrast within the myocardium is obvious.

6.3.2 Cardiovascular Applications
The contrast echocardiography effect was described by Gramiak and Shah (1968), who
observed a “cloud” of echoes during injection of indocyanin green dye for performance of a
dye curve in a catheterization laboratory. Contrast echocardiography has since been used for
structure identification, identification of intracardiac and intrapulmonary shunts, valvular
regurgitation, Doppler enhancement, and myocardial perfusion imaging (Jayaweera et al,
1994;Grayburn et al, 1995;Porter et al, 1995a,1995c). Early developments in contrast
echocardiography are reviewed elsewhere (Meltzer and Roelandt, 1982a;Meerbaum and
Meltzer, 1989).
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One of the original uses of contrast echocardiography was for the detection of intracardiac and
intra-pulmonary shunts, which remains the most common use for contrast; e.g., quantitation
of shunts in atrial septal defect (Okura et al, 1995). For such investigations, agitated saline or
dextrose is usually adequate as the GCA, and an intravenous injection is made to search for
right-to-left shunting. Contrast echocardiography is particularly important in pediatric
cardiology.

Myocardial perfusion imaging by contrast echocardiography was demonstrated in animals in
1982 (Armstrong et al, 1982;Meltzer et al, 1982b) and in humans in 1985 (Santoso et al,
1985). At first, investigators noted the “geographic” extent of contrast distribution in the
myocardium and related this to the coronary distribution area. Many subsequent studies of
myocardial contrast focused on the “kinetics” of contrast wash-in and wash-out from the
myocardium or in the cardiac chambers. These video density curves (or sometimes integrated
backscatter curves) are similar to more traditional indicator dilution curves. However,
“geographic” studies of contrast distribution within the myocardium are more promising than
those from many myocardial “kinetic” contrast studies. Myocardial contrast echocardiography
can help delineate areas at risk within coronary territories; i.e., the area likely to infarct related
to the occlusion of a coronary artery in experimental animal models. It can be used to delineate
the extent of myocardium that has an effective collateral circulation (Sabia et al, 1992a,
1992b); i.e., the area of myocardium opacified by each of two separate injections—one into
the right and one into the left coronary artery—is presumably functionally perfused by flow
from both coronary arteries. Such myocardium is less likely to infarct and more likely to be
viable after an infarction than myocardium not perfused by dual circulation (Galiuto et al,
1994;Camarano et al, 1995). Another important effect of microvascular physiology on gross
left ventricular function relates to the “no reflow” phenomenon seen after reperfusion in the
setting of acute myocardial infarction (Ito et al, 1992).

Contrast echocardiography is also used to enhance endocardial border definition during stress
echocardiography and in technically difficult cases. It can enhance Doppler signals as well as
improve two-dimensional (2D) and M-mode imaging. Contrast material can opacify the left
ventricle (Sonne et al, 1995) and has been used to enhance weak color Doppler signals, such
as those in diastole and in the left ventricular apex. GCAs may prove to be useful for the
measurement of ejection fraction.

The ultimate market for contrast echocardiography is still unclear, but new applications and
contrast agents designed for these applications will likely continue to evolve; e.g., second and
third generation agents that may allow myocardial perfusion imaging after intravenous
injections. There is also an exciting possibility that GCAs may enhance therapeutic ultrasound
applications involving acoustic cavitation, such as accelerating thrombolysis and perhaps
ultrasound angioplasty (Meltzer et al, 1986,1991;Kornowski et al, 1994;Makin et al, 1995).

6.3.3 Obstetric and Gynecologic Applications
Although GCAs are gaining increased acceptance in abdominal or cardiac applications, their
use in obstetrics and gynecology is still limited (Abramowicz, 1997). The reason for this is
obvious in obstetrics: GCA manufacturers have not attempted to obtain FDA approval for use
of their products in pregnancy. Nonetheless, GCAs offer advantages in placental imaging. In
experimental settings, two GCAs, iodipamide ethyl ester and Albunex, improved placental
imaging and visualization of maternal and fetal placental blood flow (Panigel et al,
1996;Abramowicz et al, 1996). The GCAs permitted color demonstration of flow in fetal
capillaries otherwise not resolved by gray-scale, color, or Doppler ultrasound. This could be
used to better delineate placental function, e.g., in cases of restricted fetal growth. In vivo,
conventional ultrasound does not differentiate between areas of adequate or reduced perfusion.
In the future, GCAs may allow this type of analysis of placental physiopathology.
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As of this writing, the only published report on the use of GCA in obstetrics is a case report of
twins with unclear chorionicity. Levovist was injected into the circulation of one twin and
observed appearing in the second twin, thus confirming monochorionicity (Denbow et al,
1997).

In gynecology, the situation is very different. Adequate visualization of the uterus and ovaries
is possible by gray-scale ultrasound, particularly via the transvaginal approach. However,
demonstration of the fallopian tubes is possible only in the presence of peritoneal-abdominal
fluid, and then only with difficulty. Intrauterine cavity pathologies are also difficult to discern
because there is apposition of the uterine cavity walls, except in pregnancy or during menses
when blood is present. Furthermore, the uterus is a solid tissue and so are anomalies of the
uterine wall (myometrium) or uterine cavity lining (endometrium). Since tissue differentiation
by ultrasound is still less than ideal, the addition of a GCA may improve diagnostic capabilities.

Use of a contrast medium in the uterine cavity was first reported by Richman et al (1984). A
32% solution of Dextran 70 was used to distend the uterus under abdominal ultrasound for
tubal patency investigation. This medium was used in another study in which 10 anomalies
that had been missed by conventional gray-scale ultrasound were detected in 21 “normal” uteri
(Van Roessel et al, 1987). A logical approach would be to inject a clear, neutral, non-irritant
material. Normal saline is the natural choice, described originally in 1988 in a study of 30
patients with sterility problems, menstrual irregularities, or suspected tumors (Deichert et al,
1988). The procedure has since been extensively studied under different names: contrast
ultrasonography or echography (Crequat et al, 1993), hystero-contrast-sonography or Hy-Co-
Sy (Deichert et al, 1989;Campbell et al, 1994), hysterosalpingosonography (Bonilla-Musoles
et al, 1992), or sonohysterography, echo-hysterosalpingography (Venezia and Zangara,
1991), or hydro-gynecography (Maroulis et al, 1992). The diagnostic accuracy is excellent
(Bonilla-Musoles et al, 1992;Parsons and Lense, 1993;Gaucherand et al, 1995;Goldstein,
1996). Evaluation of the postmenopausal uterus with its usually atrophic endometrium is
facilitated by introduction of saline (Achiron et al, 1995). Although transvaginal ultrasound is
the usual scanning method, abdominal ultrasound (with the addition of saline) has also yielded
good results (Cicinelli et al, 1994,1995). Refinements of these methods include modification
of saline by the addition of air bubbles (Allahbadia, 1992) and the use of actual GCAs.

Saline or a contrast medium can be injected into the uterine cavity to study anomalies of the
uterus (Fujiwaki et al, 1995). Sonographic examination of the fallopian tubes is facilitated by
natural fluid collections in the fallopian tubes and peritoneal cavity (Tufecki et al, 1992;Yarali
et al, 1994;Degenhardt et al, 1995). The diagnostic accuracy is comparable to that of
hysterosalpingography (Mitri et al, 1991). More sophisticated sonographic technology can also
be used for further delineation of the anatomy or pathology; e.g., 2D or color Doppler for
detection of fluid flow through the fallopian tubes (Deichert et al, 1989;Peters and Coulam,
1991), as well as three-dimensional (3D) ultrasound.

A recent report described the following additional potential for GCAs in gynecology: After
injection of Levovist, blood flow was demonstrated in small vessels of ovarian tumors (Suren
et al, 1994). Flow velocity is extremely low in these vessels and, therefore, beyond the limit
of resolution of conventional color or Doppler imaging.

The application of ultrasound contrast media in obstetrics and gynecology is a recent
phenomenon, but an extensive literature already exists on gynecologic applications of contrast,
including detailed descriptions of methodology and an atlas of anatomical and pathological
findings (Cullinan et al, 1995;Parsons et al, 1996). It seems that the use of ultrasound contrast
media in gynecology (and perhaps in obstetrics) can only expand in the future.
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6.3.4 Other Applications
GCAs have been used to enhance sonographic contrast in a variety of other applications. A
few recent examples are listed here. In urogynecology, Echovist was instilled into the bladder,
leading to improved imaging of the bladder neck. Known pathology present in 39 patients was
demonstrated in 38 of these patients when examined using GCA-enhanced ultrasound, but in
only 19 of the same patients when similarly examined without GCA (Schaer et al, 1995). In
breast ultrasound, Doppler signals were enhanced after injection of GCA. Transit of the GCA
was prolonged in malignant lesions as compared with benign masses. Detected vessel number
and “tortuosity” indications were also increased. This resulted in 100% sensitivity and
specificity in 34 patients (Kedar et al, 1996). GCAs have been used to enhance the detection
of brain gliomas (Simon et al, 1992b), cancerous liver growths (Kudo et al, 1992a,1992b,
1994;Nomura et al, 1993), and ophthalmic (Cennamo et al, 1994) and renal tumors (Forsberg
et al, 1995). Contrast has been used to guide peri-cardiocentesis (Chiang and Lin, 1993), to
visualize renal perfusion (Porter et al, 1995b), for the detection of venous thrombosis (Coley
et al, 1994), for the enhancement of Doppler signals from large and small blood vessels
(Goldberg et al, 1993b), and blood flowmetry (Shung and Flenniken, 1995).

GCAs have been used in limited therapeutic applications for the intentional enrichment of
tumors with gas nuclei followed by the induction of cavitation and resultant tissue destruction
(Prat et al, 1993; Simon et al, 1993), and in accelerating thrombolysis, apparently via a
cavitation-related mechanism (see, e.g., Tachibana and Tachibana, 1995;Porter et al, 1996c).
These are discussed in subsection 6.4.

6.4 Bioeffects
6.4.1 Introduction

Acoustic cavitation is defined as “any interaction between an ultrasound field and any gaseous
inclusion in the medium” (Miller DL and Thomas, 1995b), and they note that by this definition,
“cavitation occurs … whenever bubble-based contrast agents are exposed to ultrasound.” The
pulsations of air-filled (Schrope et al, 1992;Chang et al, 1995) and perfluorocarbon-enhanced
(Chang et al, 1996;Krishna and Newhouse, 1997) GCAs in an ultrasonic field have nonlinear
characteristics, including the generation of scattered signals at harmonic frequencies relative
to the applied ultrasound field; the second harmonic is exploited in Doppler ultrasound imaging.
As will be developed, GCAs or the derivative microbubbles formed upon their ultrasonic
modification can also nucleate inertial cavitation, which can increase the signal strength for
imaging (Uhlendorf and Hoffmann, 1994), but can also produce biological damage. In many
of the studies discussed here, the acoustic pressures used were sufficiently large to ascribe the
observed bioeffects to inertial cavitation. In others, the involvement of inertial cavitation is
indicated by physical measures of cavitation activity (see, e.g., Miller DL and Bao, 1998a).
Bioeffects associated with inertial cavitation can result from the mechanical forces generated
by bubble collapse, shock waves generated by bubble rebound, or sonochemical activity.

6.4.2 Effect of Contrast Agents on Cavitation Nucleation and Cavitation Thresholds
Holland and Apfel (1990) explored the effect of Albunex on the threshold for inertial cavitation.
Highly filtered water was used as a host fluid and control; filtration removes many of the
endogenous gas nuclei. A passive cavitation detector, based on broad-band scattering of
acoustic energy from cavitation microbubbles, was used. With 10 μs pulses of ~0.8–2.3 MHz
ultrasound, the threshold for inertial cavitation in filtered water ranged from 1.94–2.43 MPa.
A small amount of Albunex reduced the threshold for inertial cavitation at 0.757 MHz to 0.52–
0.64 MPa; i.e., by a factor of ~1/3. The threshold for inertial cavitation in control preparations
containing filtered, 5% human albumin was similar to that of filtered water. Miller and Thomas
(1995a) also studied the ability of GCAs to nucleate inertial cavitation. Sonochemical
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production of H2O2 (a product of inertial cavitation) was the endpoint. Filtered saline with or
without either Levovist or Albunex were exposed for 5 min to pulsed 2.17 MHz ultrasound,
followed by assay for accumulated H2O2. At 0.82 MPa, no measurable H2O2 was produced in
the filtered saline. With either Levovist or Albunex present, detectable H2O2 production was
associated with a pressure amplitude of ~0.4 MPa. At higher ultrasound frequencies, the
threshold for inertial cavitation was greater than at lower frequencies for filtered saline and
filtered saline containing either Albunex or Levovist. At 2.95 MHz, the threshold for H2O2
production in the fluids containing GCA was about 0.6 MPa, and at 2.17 MHz, the threshold
was about 0.4 MPa, as noted above. In whole human blood exposed to 2.5 MHz ultrasound,
the pressure threshold for actively detected inertial cavitation activity is on the order of 4–5
MPa (Deng et al, 1996); with GCAs present, the pressure threshold for hemolysis in whole
blood is on the order of 0.5 MPa (see below).

These results make it clear that GCAs significantly lower the threshold acoustic pressures
required for the inception of inertial cavitation and may increase the extent of such activity
relative to non-nucleated or poorly nucleated fluids. These findings have potentially important
consequences to the occurrence of mechanical, ultrasound-induced bioeffects. As discussed
below, mechanical bioeffects of ultrasound exposure may be potentiated by GCAs. However,
a recent microscopic study of Albunex microbubbles adherent to a petri dish and exposed to
the 5 MHz output of a Hewlett Packard Sonos 500 medical imager indicates that at maximum
output power, the microbubbles slowly diminished in size, but did not appear to undergo inertial
collapse (Klibanov et al, 1998).

6.4.3 Potentially Undesirable Bioeffects
6.4.3.1 Simple Model Systems—As of this writing, most of the research on the
enhancement of mechanical ultrasound-induced bioeffects by GCAs has been conducted using
in vitro systems. Because the results obtained in these experiments often depend critically on
the methods used (e.g., the use of stationary versus rotating exposure vessels), the inclusion of
some significant experimental detail in this subsection is unavoidable.

The published report of which we are aware concerning a GCA-enhanced bioeffect is that of
Williams et al (1991). Dilute suspensions of human erythrocytes in plasma were used to explore
the hemolytic effect of ultrasound exposure in the presence of Echovist. Most samples were
exposed for 5 min to continuous wave, 0.75 MHz ultrasound in a rotating vessel, although
some were exposed in stationary vessels. Echovist was added to experimental samples at
concentrations ranging from 5–10 mg/mL. The volume fraction of red cells in suspension was
also varied. In very dilute cell suspensions (0.5% volume fraction or hematocrit) exposed with
vessel rotation to a spatial average, temporal average intensity (SATA) of 0.5 W/cm2, ~33%
of the cells lysed in the absence of Echovist. With 8 mg Echovist/mL present, hemolysis
increased to ~60%. In other dilute suspensions, there appeared to be a dose:response
relationship between Echovist concentration and percent hemolysis. Below ~5 mg/mL, the
fraction of cells lysed in the presence of Echovist was comparable to that in the controls, while
at Echovist concentrations of ≥8 mg/mL, hemolysis was ~twofold greater. Exposure vessel
rotation was found to be an important variable in determining the extent of hemolysis, which
was greater with than without rotation, both with and without GCA present. However, the
relative enhancement of hemolysis by the GCA was much greater in the stationary than in the
rotated vessels.

Williams et al (1991) observed that with or without GCA, the fraction of cells lysed by the
ultrasound decreased as the hematocrit of red cells in suspension increased. No lysis was
detectable in most samples having hematocrits >5%. In canine red cell suspensions prepared
with variable hematocrits and Albunex concentrations and exposed to 2.25 MHz ultrasound
(1.6 MPa, 1 s continuous wave), hemolysis increased monotonically with increasing hematocrit
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at constant concentration, and with increasing concentration at constant hematocrit (Miller DL
et al, 1997). No hemolysis was observed without added Albunex. The observation that the
extent of cell lysis appears to decline to immeasurably low levels with increasing cell
concentration has often been noted (Veress and Vincze, 1977;Saad, 1983;Williams,
1983;Ellwart et al, 1988;Brayman et al, 1992;Carstensen et al, 1993;Miller MW et al, 1995),
suggesting that high cell concentrations either inhibit or eliminate inertial cavitation activity,
and that ultrasonic hemolysis in vivo is unlikely. However, Miller et al (Miller MW et al,
1995) noted that while the percentage of erythrocytes lysed by sonication in the presence of
Albunex decreased with increasing cell concentration, the number of cells lysed per sample
remained more or less constant. Similar results were obtained in a study of cell lysis produced
by stable microbubble pulsations (Miller DL, 1988). A subsequent analysis (Brayman et al,
1996b) indicates that in vitro sonolysis of cells at high cell concentrations is limited by the
number of microbubbles available, or by the number of cells a microbubble may encounter
before being “inactivated” by cell aggregation around pulsating microbubbles, but that
hemolysis might be produced by sonication of dense cell suspensions supplemented with
GCAs. Although Williams et al (1991) reported that hemolysis in blood cell suspensions
declined to undetectable levels as hematocrit increased, regardless of the presence or absence
of a GCA, the results of other studies conducted with GCAs and human erythrocyte suspensions
of high hematocrit indicate that readily detectable hemolysis can be produced by sonication of
whole blood with GCA present.

Miller et al (Miller MW et al, 1995) studied ultrasonic hemolysis of human erythrocytes of
1%–20% hematocrit using Albunex at concentrations of 0–41 μL/mL. Cell suspensions were
exposed or sham-exposed to CW ultrasound (1 MHz with a spatial peak, temporal peak
intensity (ISPTP) of 1–5 W/cm2 (SPTP intensity) for 60–120 s. Exposure vessel rotation was
also explored as an experimental variable. Most experiments used samples prepared from a
stock suspension of red cells that had been anticoagulated with CPDA (citrate-phosphate-
dextrose-adenine) and stored under refrigeration, although some experiments were conducted
using freshly collected heparinized blood. In 1% hematocrit cell suspensions prepared from
stored blood and insonated with vessel rotation, sonication alone (5 W/cm2, 60 s) produced
28% hemolysis, versus 1% hemolysis in sham-exposed controls. The addition of Albunex to
insonated samples increased the level of hemolysis to ~50%. There was no apparent
dose:response relationship between Albunex concentration (1.3–41 μL/mL) and hemolytic
yield. There was a dose:response relationship between ultrasound intensity (0–5 W/cm2) and
hemolysis. A significant elevation of hemolysis, relative to sham-insonated controls, was
produced in samples insonated at intensities of ≥ 1 W/cm2, regardless of the presence or absence
of Albunex, but significantly greater levels of hemolysis were produced with GCA present.

The hematocrit of stored blood samples affected cell lysis, with or without Albunex present;
percent hemolysis decreased generally as hematocrit increased over the range of 1%–20%.
When samples were rotated during exposure, significantly greater levels of hemolysis were
produced with Albunex than without Albunex at all hematocrits <10%; at 20% hematocrit, the
difference was nominal. Similar results were obtained using stationary exposure vessels,
although the levels of hemolysis produced in the stationary vessels were less than in rotating
vessels. Quite different results were obtained when freshly drawn blood was used. Whereas
exposure of 20% hematocrit suspensions of stored blood cells to 5 W/cm2 ultrasound with
vessel rotation lysed ~10% (without Albunex) to ~20% (with Albunex) of the cells, when fresh
blood was used, comparable exposures produced very low levels of hemolysis (~0.5%) that
did not differ significantly among cells exposed with or without Albunex or sham-exposed to
ultrasound. It seems probable that the disparity of results obtained with stored or fresh blood
relates to the level of sample aeration. Sample oxygenation increases cavitation activity in
“normal” media (Kondo and Kano, 1987,1988b;Inoue et al, 1990;Riesz and Kondo,
1992;Brayman et al, 1992;Carstensen et al, 1993), but the samples used in these experiments
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were not intentionally oxygenated. The enhancement of ultrasonic hemolysis by Albunex was
later shown to depend strongly on the oxygenation state of the sample (Azadniv et al, 1995).
Interestingly, Williams et al (1991) had noted that the ability of Echovist to nucleate cavitation
activity was abolished when the agent was added to degassed plasma. Presumably, these effects
arise by dissolution of the microbubbles in undersaturated fluids.

Brayman et al (1995) further explored the issue of ultrasonic hemolysis in the presence of 35
μL/mL Albunex. Human erythrocyte suspensions were prepared in autologous plasma to
hematocrits of 1%–40% using refrigerated stock suspensions. Samples were exposed for 60 s
to pulsed 1.1 MHz ultrasound (1 ms pulse duration, 20 Hz pulse repetition frequency). The
peak acoustic pressures of the pulses were 4.7 MPa (peak positive) and 2.7 MPa (peak
negative), corresponding to an ISPPA of ~420 W/cm2. Without Albunex, statistically significant
levels of ultrasound-induced hemolysis, relative to sham-exposed controls, were observed only
at the lowest tested hematocrit (1%), while significant levels of hemolysis were observed at
all tested hematocrits when Albunex was present in exposed samples. With Albunex, percent
hemolysis declined as sample hematocrit increased, but the total number of cells lysed per
sample remained approximately constant over the 5%–40% range of hematocrits. At 40%
hematocrit (equivalent to whole blood), the background level of hemolysis in sham-exposed
samples was 2.4 ± 0.4%. The level of hemolysis in samples insonated with or without Albunex
were 6.7 ± 1.3 versus 2.8 ± 0.4%, respectively. For these samples, hemolysis in the presence
of Albunex was significantly greater than in either the sham-exposed control or the insonated,
Albunex-free preparations. Hemolysis in the shams and the Albunex-free, insonated samples
were statistically indistinguishable. Thus, there was a twofold increase in hemolysis associated
with insonation in the presence of Albunex.

A subsequent study (Brayman et al, 1996b) examined the acoustic pressure and pulse duration
dependence of hemolysis produced by ultrasound in the presence of Albunex. Freshly
collected, oxygenated human blood containing 3.6 V% Albunex was exposed to pulsed 1 MHz
ultrasound with sample rotation. Acoustic pressures ranged from 0 to 7.4 MPa (peak positive),
4.0 MPa (peak negative); ISPTP ranged from 0 to ~1080 W/cm2. The duty factor was 0.01, and
pulse durations varied between 5 μs–1,000 μs. Statistically significant levels of background-
corrected hemolysis were observed in all insonated samples, including those exposed to the
lowest acoustic pressure or intensity at the shortest pulse duration tested (0.5 MPa, 5 μs pulses).
At constant pulse duration, there was a dose:response relationship between ultrasound intensity
and hemolysis. At constant intensity, hemolysis increased generally with increasing pulse
duration, but at relatively high intensities, this trend was not monotonic. The hemolysis data
for relatively brief pulses (5–30 μs) were analyzed in relation to the MI values associated with
the various exposures. Although statistically significant levels of hemolysis were produced at
an MI of 0.5 for each of these pulse durations, the level of hemolysis was generally low (~0.5%–
1.0%). Hemolysis increased slowly with increasing MI up to a value of ~2, and then increased
sharply. The point at which this sharp inflection appeared to increase as pulse duration
decreased. Since most diagnostic pulses are on the order of 1 μs in duration, this observation
is encouraging from the perspective of the potential for diagnostic ultrasound exposures in the
presence of GCAs to produce little or no hemolysis in vivo.

The frequency dependence of hemolysis produced by pulsed ultrasound exposure in the
presence of 3.5 V% Albunex was investigated using erythrocyte suspensions prepared as
described above (Brayman et al, 1997b). Peak negative acoustic pressures ranged from 0.0 to
~3.0 MPa, the ultrasound frequencies were 1.0, 2.2, or 3.5 MHz, pulse durations were 20 (see
Figure 6-7) or 200 μs, the duty factor was 0.01, and total treatment time was 60 s. Hemolysis
increased with increasing acoustic pressure at each frequency and depended weakly on pulse
duration. At low peak negative acoustic pressures, the frequency dependence of ultrasonic
hemolysis was relatively weak, but it was very strong at high pressures (e.g., at 0.5 MPa, the

et al. Page 16

J Ultrasound Med. Author manuscript; available in PMC 2007 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



data appear to follow a P–/f0.5 relationship, whereas at 3 MPa, the data appear to follow a P–/
f3 or P–/f4 relationship, where P– is the peak negative acoustic pressure and f is the ultrasound
frequency). Because most diagnostic ultrasound equipment emits ultrasound in the 2–7 MHz
range and inertial cavitation-related hemolysis in vitro (and in vivo; see below) declines very
rapidly with ultrasound frequency at constant acoustic pressure, it therefore appears that large-
scale ultrasound-induced hemolysis in vivo is unlikely under diagnostic examination
conditions. However, Brayman et al (1997b) estimate that under worst case conditions during
an echocardiographic examination in the presence of Albunex, it might be possible to lyse ~1%
of the systemic erythrocyte population in the body. Dalecki et al (1997d) have demonstrated
with an animal model that ultrasound exposures with GCA present in the vasculature can
produce systemic levels of hemolysis on the order of 1% (see subsection 6.4.3.2). Killam et al
(1998) detected no hemolysis in vivo due to diagnostic insonation of rabbit hearts following
administration of Optison. However, the exposure conditions were such that hemolysis would
probably not be expected to occur (see subsection 6.4.3.2).

Miller and Thomas (Miller DL and Thomas, 1996a) studied the effect of Albunex on hemolysis
in whole canine blood of ~50% hematocrit. A lithotripter (peak positive pressure ~24 MPa,
peak negative pressure ~5 MPa) and a focused 1.3 MHz ultrasound source were used. The
focused ultrasound was applied in continuous or burst mode, with burst durations of 20, 100,
or 1,000 μs, and with pressure amplitudes ranging from 1 to ~18 MPa. Albunex was added to
some samples at final concentrations of 0.1, 1, or 10 V%. The presence of Albunex in samples
exposed to the lithotripter shocks decreased the number of shocks required to observe greater
hemolysis than in the shams. Without Albunex, 500 shocks were necessary; with 1% or 10%
Albunex, 200 and 100 shocks, respectively, were required. However, while there was a nominal
twofold increase in hemolysis associated with the presence of 10% Albunex in the shock-
exposed samples, this difference was not statistically significant, leading the authors to
conclude that the shock waves were capable of reliably nucleating inertial cavitation without
the need for exogenous nuclei. With continuous 1.3 MHz ultrasound, the presence or absence
of Albunex markedly affected hemolysis. The threshold acoustic pressure required for
significant hemolysis varied with exposure duration and the presence or absence of Albunex.
For example, without Albunex, the threshold pressure was > 17.8 MPa when the exposure
duration was 1 ms, 17.8 MPa at 100 ms, and 10 MPa with 10 s exposure. With 1% Albunex
present, the threshold acoustic pressure was ~10 MPa with 100 and 1,000 ms exposures, and
3.2 MPa with 10 s exposure. Thus, 1% Albunex reduced the apparent threshold for hemolysis
by a factor of two or more. With 100 ms exposures, the threshold pressure with 0.1% Albunex
was the same as for the Albunex-free control (viz., ~18 MPa); with 1% or 10% Albunex, the
threshold pressures were 10 MPa. Thus, the 0.1% Albunex was not effective in reducing the
threshold pressure for hemolysis relative to control blood, and 10% Albunex was no more
effective in reducing the threshold pressure than was the 1% concentration. Additional
experiments were conducted using 1.3 MHz ultrasound applied in burst mode, with a total “on”
time of 100 ms and a constant duty factor of 0.01. The threshold acoustic pressures were similar
to those noted above for the continuous wave exposures; as before, 0.1% Albunex had no effect
on the threshold pressure for hemolysis, while 1% and 10% Albunex were equivalently
effective in lowering the threshold to ~10 MPa. At very high acoustic pressures (e.g., ~18
MPa), hemolysis occurred in all insonated samples, regardless of the presence or absence of
Albunex, with the exception of those exposed to 20 μs bursts without Albunex, in which there
was none. Hemolysis increased with increasing burst length (20, 100, or 1,000 μs), and was
greater with Albunex than without at suprathreshold acoustic pressures.

Albumin-stabilized microbubbles are acoustically labile (subsection 6.3), and there is evidence
that ultrasonic modification of these GCAs creates “derivative” gas bodies capable of
nucleating inertial cavitation. With highly concentrated Albunex, different levels of hemolysis
are produced by pulsed or continuous wave, 2.25 MHz ultrasound exposures of constant total
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“on” time, with greater hemolysis produced by the continuous wave exposures (Miller DL et
al, 1997). At 1.6 MHz, continuous wave bursts of 0.001–100 s produced statistically significant
levels of hemolysis relative to shams. With pulsed exposures of 1 s total “on” time but variable
duty factors, hemolysis declined rapidly as duty factor decreased. These results suggest that
(1) ultrasound modifies the GCA, producing free microbubbles that then serve as cavitation
nuclei; (2) with continuous wave exposure, the biological effect is expressed quickly; and (3)
without continuous exposure to replenish the nuclei via sustained inertial cavitation activity
(i.e., with pulsed exposures), the free microbubbles dissolve rapidly, thus producing a smaller
biological effect than continuous wave exposures of the same total duration. Albunex
microbubbles can nucleate inertial cavitation in vitro after the bulk of the microbubbles has
been destroyed by ultrasound (Brayman and Miller, 1997a); because free microbubbles
generated by the acoustic destruction of Albunex are expected to dissolve rapidly, this result
suggests that a small number of the Albunex microbubbles escaped initial ultrasonic
destruction, and that these can nucleate significant cavitation activity. For a dramatic example
of the latter point, see Dalecki et al (1997e).

Everbach et al (1997) used a passive, 20 MHz acoustic detector to measure inertial cavitation
activity in dilute human erythrocyte suspensions, and demonstrated that sonolysis induced in
the presence of 3.5 V% Albunex is correlated with inertial cavitation activity occurring in the
sample. Samples were exposed or sham-exposed to 1 MHz ultrasound (peak positive and peak
negative pressures of 5.0 and 2.8 MPa, respectively) of various pulse durations for 60 s. Inertial
cavitation activity within the samples was monitored throughout the exposure period and
hemolysis assessed subsequently. At a 20 Hz pulse repetition frequency, both inertial cavitation
activity and hemolysis increased in parallel with increasing pulse duration when samples
contained Albunex; these correlations were statistically significant at the p<0.0001 level.
Therefore, this study provides direct physical evidence in support of the assumption usually
made in GCA bioeffect studies; viz., that the effect arises via an inertial cavitation mechanism.

Perfluorocarbon-based GCAs, by virtue of their greater persistence in an ultrasonic field,
appear to have a greater potential for enhancing mechanical bioeffects than do air-based GCAs.
Miller and Geis (Miller DL and Geis, 1998b) studied in vitro hemolysis in relation to the
presence of different GCAs or filtered buffered saline solution. Two perfluoropentane-based
GCAs (FSO69 and MRX-130) and two air-based GCAs (Albunex and Levovist) were used.
The different agents were used at comparable volume fractions in the experimental mixtures,
but differ somewhat in microbubble concentration in the stock material (Albunex: 0.3–0.9 ×
109/mL; FS069: 0.6–0.9 × 109/mL; MRX–130: ~1 × 109/mL; Levovist: unquantified. (See
Miller DL and Geis, 1998b, subsection 6.2.3, and Figure 6-5). In 50:50 mixtures of whole
canine blood and GCA exposed (stationary) for 1 s to continuous wave, 2.4 MHz ultrasound,
the pressure thresholds for hemolysis were similar (0.2–0.4 MPa) for Albunex, FS069 and
MRX-130; the threshold for Levovist treatment could not be determined. However, at
suprathreshold acoustic pressures, the hemolytic yield was consistently greater for the
perfluoropentane-based agents than for Albunex; e.g., at 1.6 MPa, hemolysis was 8, 24, and
48% for Albunex, MRX-130, and FS069 addition treatments, respectively. With pulsed
ultrasound exposure (10 μs pulse duration, 0.01 duty factor) of the same total “on” time used
in the continuous wave experiments, hemolysis was generally lower than produced by
continuous wave exposures at comparable acoustic pressures. The general trends observed in
the continuous wave experiments were again observed, and at acoustic pressures within the
range of diagnostic ultrasound, levels of hemolysis were considerable. At a pressure amplitude
of 3.2 MPa, insonation produced ~60 or ~10% hemolysis with FS069 or MRX-130 present,
respectively, as compared with ~2%–5% hemolysis with Albunex or Levovist present.
Hemolysis produced in the presence of the perfluorocarbon-based GCAs had a marked
dependence of GCA concentration. Pulse duration was not a strong determinant of hemolysis.
Most of the difference in the ability of the different GCAs to promote ultrasonic hemolysis
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appears to be related to the ability of the perfluorocarbon gases to persist in the cell suspension
during insonation. A comparison of hemolysis produced with Albunex or FSO69 present and
application of either 1, 10, 100, 1,000, or 10,000 pulses (10 μs, 1 ms pulse repetition period)
of 2.4 MHz ultrasound indicated that for low numbers of pulses (up to 100), the enhancement
of hemolysis produced by these two GCAs were equivalent. However, with 1,000 or 10,000
pulses, the levels of hemolysis produced in the presence of FSO69 were sixfold to eightfold
greater than produced with Albunex. This factor is far greater than the expected differences in
microbubble concentration in the samples (see above).

Erythrocytes are neither the sole corpuscular element of blood, nor are they the only blood cell
type susceptible to ultrasonic damage. At comparable concentrations, human erythrocytes and
lymphocytes are lysed in similar numbers by ultrasound exposures, the white cells being
somewhat more sensitive than the red cells (Miller MW and Brayman, 1997). Platelets are also
susceptible to inertial cavitation-induced membrane damage. Everbach et al (1996a) studied
ultrasound-induced platelet lysis and membrane permeability changes (pre-loaded 51Cr
leakage) in relation to inertial cavitation activity, and the effect of Albunex on these endpoints.
Cavitation activity was assessed using a passive detector. Platelets were exposed to pulsed 1
MHz ultrasound with either 0 or 3.5 V% Albunex present. With Albunex, lysis increased with
increasing pulse duration; without Albunex, lysis remained at control levels. Platelet lysis in
samples containing Albunex was highly correlated with measures of inertial cavitation
occurring in the sample. The assay for sublytic damage also showed that the number of cells
damaged increased with increasing pulse duration, but this endpoint was not well correlated
with inertial cavitation activity.

Monolayers of CHO cells grown on Mylar membranes undergo membrane damage, as
evidenced by ATP release, when insonated at 3.3 MHz in the presence of 5% Albunex (Miller
DL and Bao, 1998a). The effect is dependent on the applied acoustic pressure and exposure
mode, with a threshold of ~0.3 MPa for 1 s of continuous exposure and ~0.6 MPa for pulsed
exposures (10 μs pulses, 0.01 duty factor, 1 s “on” time). ATP release was highly correlated
with the strength of subharmonic signals emitted by the microbubbles, indicating that cavitation
was involved. The cell populated surface orientation was an important determinant of the
amount of membrane damage observed, with much greater ATP release obtained when the
populated surface was at the site of ultrasound entry into the exposure vessel than when at the
site of exit. However, the harmonic signals were unaffected by vessel orientation. Qualitatively
similar results have been obtained by Brayman (unpublished; work in progress). Data obtained
using confluent V79 fibroblasts on Mylar membranes and exposed to pulsed 1.0, 2.2, or 3.5
MHz ultrasound indicate that (1) 3% Albunex reduces the pressure threshold for an erosive
effect of insonation on the monolayer relative to that when Albunex is absent, (2) without
Albunex, cell populated surfaces at the site of ultrasound exit from the exposure vessel are
more susceptible to erosion than are those at the site of entry, but that this differential disappears
when Albunex is present, and (3) the effect is frequency and pressure dependent. Because these
studies involve diagnostically realistic ultrasound frequencies, acoustic pressures and pulse
durations, these results suggest that the use of GCAs during vascular ultrasound imaging may
damage the endothelial cells of blood vessels.

6.4.3.2 Laboratory Animals—Since tissues that contain gas bodies naturally are
susceptible to damage from exposure to diagnostic levels of ultrasound (see Section 5), and
because of the evidence from in vitro studies that GCAs enhance ultrasound-induced bioeffects,
it is reasonable to hypothesize that GCAs will increase the likelihood of ultrasound-induced
bioeffects in vivo. Dalecki et al (1997d) studied ultrasound-induced hemolysis in vivo when
Albunex was present in the blood. Murine hearts were exposed for 5 min to 1.2 or 2.4 MHz
pulsed ultrasound (10 μs pulse duration, 100 Hz PRF) at pressure amplitudes ranging from 0–
10 MPa. At evenly spaced intervals during the exposure period, four ~25 μL boluses of Albunex
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were injected into a tail vein. Two studies, using different strains of mice, were performed at
1.2 MHz to determine the threshold for hemolysis. At 2.4 MHz, animals were exposed to only
the highest pressure amplitude (10 MPa). Control animals were exposed at 1.2 MHz with a
peak amplitude of 10 MPa and were injected with four boluses of saline. Following exposure,
the animals were killed, the blood collected and the blood assayed for hemolysis. Figure 6-7
presents the percent hemolysis as a function of exposure amplitude for all experiments in this
investigation. Analyses of the data at 1.2 MHz for the C3H and CD1 strains of mice indicated
that the threshold values did not differ significantly. The threshold for detectable hemolysis
in vivo at 1.2 MHz was 3.5 MPa peak positive pressure, 2 MPa peak negative pressure and
~200 W/cm2 SPPA intensity at the surface of the animal. After correcting for the chest wall
attenuation, the threshold at the surface of the heart at 1.2 MHz was 3.0 MPa peak positive
pressure, 1.9 MPa peak negative pressure, corresponding to an MI of 1.8 and an SPPA intensity
~180 W/cm2. Hemolysis in mice injected with Albunex and exposed at 2.4 MHz with the
highest exposure amplitude (10 MPa) was only 0.46%, and was comparable to that in sham
exposed mice receiving Albunex (~0.4% hemolysis) and in control mice receiving saline
injections and exposed at 10 MPa (~0.4% hemolysis). This strong frequency dependence of
hemolysis was also observed in whole blood in vitro (Brayman et al, 1997b) and is similar to
the frequency dependence of the threshold for ultrasound-induced hemorrhage in the intestine
(Dalecki et al, 1995b). These results indicate that when GCAs are present in the blood,
ultrasonically induced hemolysis can occur in vivo at diagnostically relevant pulse durations
and pulse repetition frequencies. The relatively high threshold for detectable hemolysis at 1.2
MHz combined with the strong dependence of the threshold on frequency suggest there is little
likelihood of extensive (i.e., more than ~1% of the systemic red cell pool) ultrasound-induced
hemolysis under most current diagnostic imaging procedures. Killam et al (1998) detected no
hemolysis in rabbits injected with Optison and exposed in vivo to 5 MHz pulsed ultrasound.
A Hewlett Packard Sonos 500 with a 5 MHz phased array transducer was used at maximum
output power (MI ~0.5) (A. Killam, personal communication). The pressure amplitude was
therefore ~1 MPa). Blood samples were collected from the carotid and femoral arteries at
baseline, and at 0, 3, and 6 min after infusion of 0.6 mL/kg Optison. Analysis of blood samples
showed no increase in serum free hemoglobin or serum lactate dehydrogenase, both markers
for hemolysis. However, at the acoustic frequency and pressure used in this study (i.e., 5 MHz,
~1 MPa), the available in vitro and in vivo data indicate that little or no hemolysis would be
likely to arise (see, e.g., Fig. 6-8). These data indicate that under conditions of “conventional”
B-mode imaging, the administration of Optison did not produce detectable lysis of red blood
cells.

Rupture of microvessels in exteriorized rat spino-trapezius muscle following injection of
modified Optison microbubbles and exposure of the muscle to single sweeps of 2.3 MHz
diagnostic ultrasound has been reported (Skyba et al, 1998). The numbers of ruptured
capillaries and killed nucleated cells scaled with increasing MI value over the range of 0.4–1.0
as indicated by the output display. However, because the muscle was exteriorized and bathed
in Ringer’s solution (which has a much lower attenuation coefficient than assumed for tissue),
the tissues were exposed to greater acoustic pressures than indicated by the on-screen MI
values. Capillaries smaller than ~7 μm in diameter were affected. The mean number of ruptured
vessels per g fresh tissue weight increased monotonically with increasing MI value, from ~320
at an MI of ~0.4 to ~2,400 at MI ~1.0. Microscopic observation during the exposure allowed
direct visualization of ultrasonic microbubble destruction in vivo.

Ultrasound-induced lung hemorrhage under diagnostically relevant exposure conditions is well
documented (Section 4) and depends on the presence of gas in the tissue (Hartman et al,
1990). If cavitation in the lung vasculature were the mechanism for lung hemorrhage, then the
addition of GCAs to the blood should increase the extent of ultrasound-induced lung
hemorrhage. This was tested by Raeman et al (1997). Murine lungs were exposed to pulsed
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ultrasound (1.2 MHz, 10 μs pulse duration, 100 Hz PRF, 2 MPa peak positive pressure, 5 min).
During exposure, four 25 μL boluses of Albunex were injected into a tail vein. The mean area
of ultrasound-induced lung hemorrhage in Albunex-injected mice was not statistically different
from that in saline-injected or uninjected mice. For several echocardiographic procedures,
using current diagnostic imaging systems, the acoustic pressure amplitude at the surface of the
lung may approach the threshold for lung hemorrhage (Carstensen et al, 1992). This study
indicates that the presence of Albunex in the lung vasculature does not increase the extent of
ultrasound-induced lung hemorrhage.

Miller and Geis (1998b) investigated the effects of the presence of GCAs in the vasculature
on ultrasound-induced intestinal hemorrhage in mice. For exposure to continuous wave
ultrasound at 1 MHz (0.75 MPa peak positive pressure), the extent of hyperemia, petechiae,
and hemorrhages increased in comparison with control animals injected with a blank agent.
For pulsed ultrasound exposures at 1 MHz (10 μs pulse duration, 0.01 duty cycle), Albunex
injection greatly increased the number of ultrasound-induced petechiae; e.g., for exposures at
2.8 MPa, there was a thirtyfold increase in petechia in the mice with Albunex compared with
Albunex-free control animals. The number of petechiae produced increased linearly with
increasing Albunex dosage.

Tissue damage resulting from lithotripsy is often attributed to inertial cavitation. Prat et al
(1991b) investigated whether the presence of GCAs increases the tissue damage produced by
exposure to lithotripter fields at amplitudes typically used clinically to treat kidney stones.
Three treatment groups of rabbits were used: Group 1 received 500 lithotripter shocks focused
on the right hepatic lobe, Group 2 received an infusion of microbubbles (Plasmion; Roger
Bellon, Neuillysur-Seine, France), and Group 3 received 500 shocks and microbubbles during
the exposure period. Animals in Group 1 exhibited a few, small subcapsular and
intraparenchymal hematomas, while animals in Group 2 showed only moderate liver
congestion. Animals exposed to lithotripter fields in the presence of microbubbles (Group 3)
showed numerous subcapsular and intraparenchymal hematomas of significantly larger size
than those observed in Group 1 animals. Hence, infusion of microbubbles during lithotripsy
greatly increased hepatic tissue damage. Tissue damage is enhanced by the intravascular
presence of GCAs during lithotripsy treatment even for relatively low pressure amplitude
exposures (Dalecki et al, 1997e). In uninjected mice exposed abdominally to 200 piezoelectric
lithotripter pulses (2 MPa peak pressure amplitude), there was only minimal damage to the
intestine and lung tissue. In similarly exposed animals who received four 25 μL injections of
Albunex during exposure there were extensive hemorrhages in the muscle, fat, mesentery,
intestine, kidneys, stomach, bladder, and seminal vesicles.

Although Albunex is effective as a diagnostic contrast agent for only a few minutes, Albunex
continues to supply cavitation nuclei in vivo for long periods of time after injection (Dalecki
et al, 1997e). Mice were given a single injection of Albunex prior to exposure to 200 lithotripter
pulses at times ranging from 5 min to 24 hr following the injection. For many tissues, such as
intestine, mesentery and bladder, Albunex continued to enhance hemorrhage from exposure
to lithotripter fields at amplitudes of 2 MPa for up to 4 hr after injection. For exposures at
clinical amplitudes, Albunex continued to enhance hemorrhage in the bladder, muscle and
seminal vesicles when exposures were performed up to 6 hr after injection. These studies
suggest that great caution should be practiced in the use of GCAs before or during lithotripsy
procedures.

6.4.4 Potentially Useful Bioeffects
6.4.4.1 Tumor Disruption and Enhancement of Chemotherapy—A number of papers
have been published in which ultrasound was reported to enhance the effectiveness of certain
anticancer drugs, apparently via nonthermal mechanisms (see, e.g., Yumita et al, 1989,
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1990;Saad and Hahn, 1989;Loverock et al, 1990;Umemura et al, 1990;Harrison et al,
1991;Kessel et al, 1994). However, most of the published reports dealing with this topic have
used “normal” media; i.e., media not supplemented with exogenous gas bodies, and will,
therefore, not be considered here.

As therapeutic tools for tumor treatment, GCAs have been employed thus far for three general
uses: (1) as a means of disrupting tissues via direct mechanical effects resulting from inertial
cavitation; (2) as an adjunct to ultrasound:drug interactions in which inertial cavitation
enhances anticancer drug effectiveness, apparently via a sonochemical effect, and (3) as a site-
specific drug carrier that releases a drug in the neighborhood of the target tissue when the
microbubbles are destroyed by insonation of the tissue. The use of GCAs or similar preparations
to deliberately nucleate inertial cavitation for these purposes is a relatively recent development.

6.4.4.1.1 Mechanical Tumor Disruption by Microbubble-Enhanced Inertial
Cavitation Lipid-coated microbubbles accumulate in tumor tissue to a much greater extent
than in surrounding tissues (Simon et al, 1992b,1993), thus presenting the possibility of
therapeutic intervention by the induction of inertial cavitation in microbubble-enriched tumor
tissues (Simon et al, 1993). Simon et al (1993) tested this idea using Walker-256 tumors
implanted subcutaneously in rats. There was one control group (no ultrasound, no
microbubbles), and two ultrasound-exposed groups, one of which received lipid-coated
microbubbles via tail vein injection prior to insonation. Tumors were located using 7.5 MHz
ultrasound scans. In the ultrasound-exposed groups, this was followed by exposure to
continuous wave, 4.5 MHz ultrasound (ISATA = 250 mW/cm2) for 8 min. Insonation did not
demonstrably affect tissue temperature. Animals were sacrificed at 0–72 hr post-insonation
and scored blindly for hemorrhage and tumor necrosis. A consistent elevation of tumor necrosis
was associated with microbubble and ultrasound treatment relative to either the controls or the
ultrasound-only treatment group. The authors, while not entirely ruling out possible tissue
heating effects, interpret their results in terms of inertial cavitation activity. That insonation of
microbubble-enriched tumor tissue may enhance tumor necrosis is exciting, but caution is
warranted because of the potential for metastasis (see subsection 6.4.4.1.4).

6.4.4.1.2 Increased Tumoricidal Drug Activity with Microbubble-Enhanced Inertial
Cavitation Prat et al (1993) explored the combined effects of shock wave–induced,
microbubble-enhanced cavitation and an anticancer drug in vivo. Tumors were implanted in
the abdomens of rats, and an electrohydraulic lithotripter (250–500 shocks, peak positive
pressure ~60 MPa) used to induce inertial cavitation while the abdomens were being infused
with air-filled, gelatin-encapsulated microbubbles with or without co-treatment with the drug
fluorouracil. At a relatively high dose, the drug alone cured 100% of the animals, but produced
signs of liver compromise. Low dosages of the drug cured none of the animals when used
alone. Treatment with shock waves and microbubbles without the drug cured about half of the
animals. However, treatment of the rats with shock waves and microbubbles, in combination
with a low dose of fluorouracil, was as effective as the high dose of the drug alone.

Jeffers et al (1995) also explored ultrasound-induced inertial collapse of stabilized
microbubbles, combined with drug therapy, as a potential tool for tumor destruction. The goal
was to enhance the membrane-damaging effect of the polar solvent and tumoricidal drug
N,N-dimethylforamide by ultrasound in a localized tissue volume, such that systemic drug
doses might be reduced while still producing tumoricidal activity. The related drugs
monomethylforamide and dimethylsulfoxide were also tested. In vitro suspensions of HL-60
human promyelocytic leukemia cells were used; membrane damage was assessed by released
lactate dehydrogenase activity. The GCAs used in this study were “homemade” albumin
stabilized microbubbles having a median diameter of 3.2 μm. Controls (i.e., no bubbles) were
prepared by adding an equivalent volume of 5% albumin solution. Cells were exposed or sham-
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exposed to 1 MHz ultrasound (continuous wave, 15 s) at 0, 0.6, 1.0, 1.9 or 2.5 W/cm2 SPTA
intensity, which did not result in bulk heating of the suspensions. Subharmonic emissions from
the sample were monitored simultaneously as a measure of cavitation activity within the
samples. Without microbubbles, neither ultrasound + albumin nor ultrasound + albumin +
N,N-dimethylforamide increased levels of membrane damage at any of the tested intensities.
In contrast, membrane damage produced by the ultrasound + microbubble treatment increased
with increasing ultrasound intensity, reaching ~35% at the highest exposure level. Membrane
damage produced by the ultrasound + N,N-dimethylforamide + microbubble treatment also
increased with ultrasound intensity, but was significantly greater than that produced by the
ultrasound + microbubbles treatment at all nonzero ultrasound intensities. Qualitatively similar
results were obtained with the other drugs tested. Cell membrane damage in the ultrasound +
N,N-dimethylforamide + microbubble and the ultrasound + microbubble treatments was
correlated strongly with the subharmonic emission amplitude measured during sample
insonation, indicating that cavitation was involved in the effect. At comparable “levels” of
cavitation activity, membrane damage was greater in samples containing N,N-
dimethylforamide than in those lacking it. Separate assessments for sonochemical effects failed
to detect any significant effect on membrane damage, suggesting that any effective
sonochemicals produced by the insonation were short-lived. Other assessments indicated that
the presence of N,N-dimethylforamide did not increase cavitation activity relative to N,N-
dimethylforamide-free controls, nor did N,N-dimethylforamide sensitize the cells to damage
by shear forces applied to the cells by non-acoustic means. When taken together, the
observations that (1) there was no bulk heating of the insonated suspensions, (2) enhancement
of N,N-dimethylforamide cytotoxicity was proportional to subharmonic emission, and (3) the
N,N-dimethylforamide did not affect the occurrence of subharmonic emission or the
susceptibility of the cells to rupture by mechanical shear forces, suggest that cavitation is
responsible for the effect.

The study of Yumita et al (1997) did not involve the use of exogenous microbubbles, but it is
relevant to this discussion because the insonation method used (viz., superposition of a 1 MHz
ultrasound field and its 500 kHz subharmonic) was designed specifically to promote the
occurrence of cavitation. Colon 26 carcinoma tumors were transplanted into the kidneys of
mice. A gallium-porphyrin compound (ATX-70) was administered intravenously. Neither
ATX-70 treatment alone nor sonication alone produced tumor necrosis; however, combined
ultrasound + ATX-70 treatment produced extensive tumor necrosis. The ultrasound SPTP
intensities (~30 W/cm2 at both 500 kHz and 1 MHz) produced significant tissue heating (3–
8°C), but because ultrasound treatment alone was ineffective, the effect of combined ultrasound
+ ATX-70 treatment was not ascribed to thermal mechanisms. The authors speculate that active
oxygen species are generated by sonodynamically activated (i.e., inertial cavitation-activated)
porphyrin, and that these oxygen species then destroy the tissue. Miyoshi et al (1997) further
explored this issue, using suspension cultured HL-525 human leukemia cells with ATX-70
treatment. Cavitation activity was generated in the cell suspensions with a 50 kHz commercial
sonicator. Sonication alone lysed ~20% of the cells, while ATX-70 alone had no effect.
Ultrasound + ATX-70 treatment produced a large increase in cytotoxicity. Accumulation of
the ATX-70 in the cells was demonstrated, but only extracellular ATX-70 was effective as a
sonosensitizer; cells with incorporated ATX-70 sonicated in ATX-70 free medium were no
more sensitive to killing than control cells. Sonication of ATX-70 solutions followed by
incubation of cells in the fluid was ineffective, suggesting the involvement of short-lived sono-
chemical products. However, the presence of free radicals could not be demonstrated by
electron paramagnetic resonance (EPR) spin trapping, nor was the cytotoxic effect of
simultaneous ultrasound + ATX-70 treatment overcome by inclusion of spin traps (which can
remove radical intermediates) in the suspension fluid. Thus, the mechanism by which the
enhanced ATX-70 activity arises remains unclear.
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Prat et al (1994) explored the combined effect of 5-fluorouracil and inertial cavitation on cancer
cell killing and other endpoints. They had previously demonstrated (Prat et al, 1993) that cancer
cells in vitro and in vivo can be perturbed by exposure to lithotripter shock waves with
microbubbles present. Among their findings was that exposure to shock waves + microbubbles
resulted in a greater immediate cell kill and an increase in delayed mortality relative to cells
exposed to shock waves alone. Prat et al (1994) facilitated inertial cavitation occurrence by the
use of a lithotripter (peak positive pressure ~60 MPa) and by supplementing the cell
preparations with gelatin-stabilized, air-filled microbubbles (10–100 μm diameter). HT-29
human colon cancer cells were exposed to shock waves + microbubbles followed by a 12 hr
incubation period of the surviving cells. Various concentrations of 5-fluorouracil were then
added and the cells allowed to incubate in the presence of the drug for up to 72 hr. The drug
was then removed and clonogenic growth assessed. Other shock + microbubble treated cells
were subcultured after shock treatment for 24 or 48 hr, followed by assessment of the rate of
[3H]deoxuridine incorporation into DNA. In the absence of 5-fluorouracil, cells that survived
the initial exposure to shock + microbubble treatment had decreased clonogenic growth, as did
cells exposed to 5-fluorouracil only. The effect of shock + microbubble pretreatment decreased
the dose of 5-fluorouracil needed to kill 50% of the cells and reduced the rate of deoxuridine
incorporation relative to untreated control cells. 5-Fluorouracil treatment alone suppressed
deoxuridine incorporation after 24 or 48 hr of subculture, but shock + microbubble pretreatment
reduced by fourfold to tenfold the concentration of 5-fluorouracil needed to inhibit deoxuridine
incorporation by 50% relative to cells treated with 5-fluorouracil only. Thus, the shock +
microbubble treatment sensitized the cells to the toxic effects of the drug despite the passage
of many hours between shock treatment and drug application. The mechanism by which this
arises is not yet certain.

6.4.4.1.3 Microbubbles as a Local Drug Delivery System Porter et al (1996a) report the
results of an interesting “proof-of-concept” study in which microbubbles were used as a vehicle
to carry drugs to a target tissue, with release of the drug in situ produced by insonation of the
microbubbles and target tissue, presumably via microbubble destruction. A synthetic antisense
oligodeoxyribonucleotide, phosphorothiolate oligonucleotide, was found to bind to the
albumin coating of perfluorocarbon-exposed sonicated dextrose albumin (PESDA)
microbubbles. To test the ability of PESDA microbubbles to deliver and release the drug in a
target tissue, microbubbles bearing bound phosphorothiolate oligonucleotide were injected
intravenously into three dogs. The left kidney of each was insonated using a diagnostic
ultrasound transducer (peak negative pressure = 1.1 MPa, 30 Hz frame rate, 2.0–2.5 MHz
frequency) after the injection; the PESDA microbubbles were visualized simultaneously as
sonographic contrast. The right kidney received no ultrasound. The dogs were killed 4 hr later,
and the kidneys sampled and assayed for phosphorothiolate oligonucleotide. In two of the three
dogs, there was a substantial increase in accumulated phosphorothiolate oligonucleotide in the
insonated kidney (ninefold and threefold greater than in the matched control kidneys), while
in the third dog, there was no difference. The mean relative increase was ~fourfold; however,
possibly because of the small number of subjects, this difference was not statistically
significant. Nonetheless, the result indicates that the general technique is worthy of further
exploration.

6.4.4.1.4 Inertial Cavitation-Related Metastasis The foregoing discussion indicates that the
intentional induction of cavitation in vivo may have therapeutic value in the treatment of
tumors. In this regard, an issue of considerable concern is whether the treatment may increase
the potential for metastasis. Only a few studies have addressed this issue, and while most of
these have been negative (see, e.g., Geldhof et al, 1989;Oosterhof et al, 1990;Hoshi et al,
1991), a recent positive report by Oosterhof et al (1996) is noteworthy. Although this study
was conducted with high pressure lithotripter shocks, it is somewhat unsettling because these
effects presumably arise via inertial cavitation and, as discussed, inertial cavitation activity
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sufficient to disrupt the microcirculation may arise in tissues during ultrasonic imaging with
GCA present (see subsection 6.4.3.2).

6.4.4.2 Ultrasound-Enhanced Thrombolysis with GCAs—Ultrasound can enhance
the dissolution of thrombi (Hong et al, 1990;Ariani et al, 1991;Francis et al, 1992;Lauer et al,
1992;Tachibana, 1992;Blinc et al, 1993;Harpaz et al, 1993;Luo et al, 1993;Sehgal et al,
1993;Olsson et al, 1994). The bulk of the evidence indicates that this occurs via nonthermal
mechanisms, presumably by increasing the permeance of fibrolytic agents into the thrombi.
Tachibana and Tachibana (1995) postulated that inertial cavitation contributes to the process,
and that increasing inertial cavitation activity by nucleating thrombus-containing fluids with
GCAs would further increase ultrasound-enhanced thrombolysis. Artificial thrombi formed
from whole blood were placed in ultrasound exposure vessels into which test fluids could be
circulated (urokinase or albumin solutions, Albunex or various combinations). These were
exposed or sham-exposed for 3 min (170 kHz, 2 s bursts, duty factor = 0.33, SPTP intensity =
0.5 W/cm2) followed by an incubation period. Fibrinolysis was assessed by the loss of thrombus
dry weight relative to untreated control thrombi. After 120 min of posttreatment incubation,
neither albumin, microbubbles, ultrasound + albumin, nor ultrasound + microbubbles
significantly enhanced thrombolysis in the absence of urokinase (~1%–3% fibrinolysis).
Without ultrasound treatment, urokinase increased fibrinolysis to ~50% in the presence of
either albumin or microbubbles. With ultrasound treatment, fibrinolysis with urokinase +
albumin was significantly enhanced (from 51% to 58%; p ≪0.005) and enhanced further with
urokinase + microbubbles (from 48% to 72%; p ≪0.005). Tachibana and Tachibana (1995)
attributed the increased level of thrombolysis associated with simultaneous treatment with
urokinase, ultrasound, and Albunex to the occurrence of inertial cavitation in the fluid
surrounding the thrombus, and speculated that the mechanism involves cavitation-induced
microstreaming that increases urokinase penetration into the thrombus.

Porter et al (1996c) compared the efficacy of PESDA and room air exposed sonicated dextrose
albumin (RASDA) microbubbles in ultrasound-enhanced thrombolysis. Artificial thrombi
formed from whole blood were insonated or sham-insonated (20 kHz, 0.85 MPa peak negative
pressure, 2 min) in a variety of test solutions. Sonication in saline solution increased
thrombolysis relative to simple incubation in saline solution (from 7% to 23%). Saline +
ultrasound treatment was about as effective as urokinase treatment alone (23% versus 17%,
respectively). Ultrasound + urokinase treatment produced 48% thrombolysis. PESDA alone
had no effect on thrombolysis, and PESDA + urokinase was no more effective than urokinase
alone. However, treatment of the thrombi with ultrasound + PESDA, in the absence of
urokinase, produced a large increase in thrombolysis [c.f. ultrasound + Albunex treatment by
Tachibana and Tachibana (1995), described above, and results obtained with RASDA,
described below]. The ultrasound + urokinase + PESDA treatment was the most effective,
producing 60% thrombolysis. RASDA microbubbles were less effective than PESDA
microbubbles. Ultrasound + RASDA treatment, without urokinase, was no more effective than
ultrasound treatment of thrombi in saline solution; however, when urokinase was present, the
level of thrombolysis produced with RASDA microbubbles present was about the same as that
produced by treatment with ultrasound + PESDA without urokinase. Porter et al (1996c)
attribute the microbubble enhancement of ultrasound-accelerated thrombolysis to cavitation.
They suggest that the difference in the responses to PESDA and RASDA may relate to the
number of cavitation nuclei present, because of a fivefold greater microbubble concentration
in the PESDA preparations, and because the PESDA microbubbles are more stable and persist
longer.

Nishioka et al (1997) conducted a study of the thrombolytic effectiveness of ultrasound with
or without perfluorocarbon-based GCAs in the absence of thrombolytic drugs.
Dodecafluoropentane emulsion or saline solution was tested for thrombolytic effectiveness
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with or without ultrasound. Human thrombi in vitro and rabbit ileofemoral arterial thrombi in
vivo were the model systems. The former were exposed/sham-exposed for 3 min to 25 kHz
ultrasound at an intensity of 2.9 W/cm2. The latter were insonated transcutaneously (20 kHz,
in situ intensity ~1.5 W/cm2). In vitro clot dissolution was significantly enhanced by ultrasound
treatment alone (no ultrasound + saline: 10%; ultrasound + saline: 72%). The GCA without
ultrasound had no effect on thrombolysis, while GCA + ultrasound produced 98%
thrombolysis. The maximum diameter of clot debris particles formed by insonation with or
without dodecafluoropentane was ~4 μm in both cases. The in vivo study produced somewhat
different results. Ultrasound treatment alone produced reperfusion in none of six rabbits.
Reperfusion was observed in 1 of 11 rabbits (9%) treated with dodecafluoropentane treatment
alone, but in 14 of 17 rabbits (82%) treated with ultrasound + dodecafluoropentane. Thermal
effects may have played a role, because histological examination of insonated tissues revealed
evidence of coagulative necrosis and focal hemorrhage.

A potential problem with the therapeutic use of GCAs to improve ultrasound-enhanced
thrombolysis in vivo is that often the thrombus occludes the blood vessel to the extent that
blood flow is minimal and, therefore, the GCA may have limited access to the thrombus. Lanza
et al (1996) described a method that may help to overcome this problem. Their interest was in
site-specific image enhancement rather than production of a therapeutic bioeffect such as
thrombolysis, but their approach may hold promise for cavitation-related thrombolysis and
tumor necrosis. Their approach was to use ligand-specific binding and accumulation of a
nongaseous, lipid-encapsulated perfluorocarbon emulsion (perfluorodichlorooctane). The
lipid shell was biotinylated by incorporating biotinylated phosphatidlyethanolamine. The basic
idea is as follows: the blood clot (or other target) is treated with a biotinylated monoclonal
antibody specific to the target of interest (e.g., a fibrin domain in the case of thrombi). The
biotinylated monoclonal antibody binds to the surface of the target. A biotin-binding molecule,
avidin, is then administered and conjugates and cross-links the bound biotinylated monoclonal
antibody on the target surface. Finally, the biotinylated, lipid-coated perfluorocarbon emulsion
is administered. These microparticles bind, via unoccupied biotin binding sites on the
immobilized avidin molecules, to the surface of the target. Lanza et al (1996) demonstrated
site-specific accumulation of their preparation in vivo using a canine femoral artery thrombus
model; image enhancement was marked. If it is possible to similarly biotinylate the lipid shell
of a stable gaseous contrast agent, it may be possible to accumulate large numbers of
microbubbles directly on the surface of the target structure. Because of their immediate
proximity to the target, ultrasound induced inertial cavitation might then be quite effective in
disrupting the target. However, because of the potential for this treatment to facilitate
metastasis, this possible approach to tumor therapy must necessarily be approached with
caution.

6.4.4.3 Enhancement of Sonoporation by GCAs—Enhancement of sonoporation (i.e.,
transient permeabilization) of mammalian cells by GCAs has been reported. Bao et al (1997)
reported that plasmid transfection of CHO cells in vitro exposed to 2.25 MHz ultrasound
occurred at a very low level without the inclusion of 10% Albunex and without exposure vessel
rotation during insonation; with rotation and 10% Albunex present, the threshold pressure for
transfection was ~ 0.3 MPa. Kim et al (1996) report the results of extensive in vitro experiments
on ultrasonically induced transfection of mammalian cells in the absence of GCAs. However,
the report also describes preliminary efforts to ultrasonically induce transfection in vivo by
injection of Albunex and plasmid suspensions into rat knee joints prior to insonation or sham
insonation. There was evidence of three successful transfections in four exposed knees, and
none in the sham-exposed knees.
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Figure 6-1.
Sound velocity in an Albunex suspension as a function of concentration. The solid circles and
the line represent the data points and the least squares regressions line, respectively.
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Figure 6-2.
Computed resonance frequency versus the radius of a bubble.
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Figure 6-3.
Computed scattering cross section of a bubble of 1.7 μm radius.
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Figure 6-4.
Experimental and theoretical results of attenuation coefficient of an Albunex suspension as a
function of frequency. Mean diameter of Albunex = 3.15 μm.
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Figure 6-5.
Size distributions of Albunex and FS069.
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Figure 6-6.
An example of the increase in myocardial contrast observed during continuous infusion of
PESDA microbubbles when using a low frame rate (right panel) as opposed to conventional
frame rates (left panel); the latter are usually > 30 Hz.
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Figure 6-7.
Hemolysis of whole human blood containing 3.6 V % Albunex and exposed with sample
rotation to 20 μs pulses of 1.0, 2.2, or 3.4 MHz ultrasound. The duty factor was 0.01 and the
total exposure duration 60 s. (Data from and reprinted by permission of Elsevier Science, from
Brayman AA, et al: Hemolysis of 40% hematocrit, Albunex-supplemented human erythrocyte
suspensions by intense pulsed ultrasound: Frequency, duty factor, pulse length and sample
rotation dependence. Ultrasound Med Biol 23:1237, 1997b.)
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Figure 6-8.
Hemolysis in vivo in mice exposed to pulsed ultrasound. Percent hemolysis is plotted as a
function of peak positive pressure at the surface of the animal. Solid squares and circles are
data for C3H and CD1 strains of mice, respectively, exposed to 1.2 MHz ultrasound and
injected with Albunex. Open squares and circles are data for C3H and CD1 mice, respectively,
exposed to 1.2 MHz ultrasound and injected with saline. Open triangle is datum for CD1 mice
exposed to 2.4 MHz ultrasound and injected with Albunex. (Figure adapted from and reprinted
by permission of Elsevier Science, from Dalecki D, et al: Remnants of Albunex nucleate
acoustic cavitation. Ultrasound Med Biol 23:1405, 1997e). Data are presented as the mean
percentage of hemolysis; error bars represent the standard error of the mean.
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