Skip to main content
. 2007 Oct 26;3(10):e197. doi: 10.1371/journal.pcbi.0030197

Figure 2. Linearised Model of Horizontal Vestibulo-Ocular Reflex, Derived from the Neural Circuitry Illustrated in Figure 1 .

Figure 2

(A) Head velocity x(t) is processed by the filter V, then added to the output z(t) of the adaptive filter C (which corresponds to the floccular region of cerebellum). The summed signal is then passed to the brainstem controller B. The output of B is a motor command y(t), which acts on the plant P. A copy of y(t) is sent back to the adaptive filter C. The command y(t) acts on P to move the eyes, a movement which is added to the head velocity x(t): net image movement is detected as retinal slip e(t) and sent to C.

(B) Structure of the adaptive filter shown as C in (A). The copy of the eye-movement command y(t) arrives as mossy fiber input, and is decomposed into components y1(t) .... yn(t) by the granule cell layer. Each output component yi(t) is weighted by wi, corresponding to the efficacy of the corresponding synapse between a parallel fiber and the Purkinje cell. The weighted components are summed by the Purkinje cell and constitute the filter output. The value of each weight wi is adjusted according to the current value of the correlation between its component yi(t) and the global retinal slip signal e(t), which arrives as climbing fiber input.