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SUMMARY
Lipids play a multitude of roles in intracellular protein transport and membrane traffic. While a large
body of data implicates phosphoinositides in these processes, much less is known about other
glycerophospholipids, such as phosphatidic acid, diacylglycerol, and phosphatidylserine. Growing
evidence suggests that these lipids may also play an important role, either by mediating protein
recruitment to membranes or by directly affecting membrane dynamics. Although membrane lipids
are believed to be organized in microdomains, recent advances in cellular imaging methods paired
with sophisticated reporters and proteomic analysis have led to the formulation of alternative ideas
regarding the characteristics and putative functions of lipid microdomains and their associated
proteins. In fact the traditional view that membrane proteins may freely diffuse in a large ‘sea of
lipids’ may need to be revised. Lastly, modifications of proteins by lipids or related derivatives have
surprisingly complex roles on regulated intracellular transport of a wide range of molecules.

INTRODUCTION
Since the identification of the phosphatidylinositol transfer protein (PITP) Sec14p as an
essential factor for protein trafficking from the yeast trans-Golgi [1], the concept that lipids
are not passive constituents of membranes, but, rather, are active mediators of membrane
trafficking events in cells has rapidly gained popularity [2,3]. There is now overwhelming
genetic, biochemical and cell biological evidence for a role of various lipid families in organelle
biogenesis and transport. In addition, striking improvements in methodologies designed for
their analysis and the ever increasing list of their protein effectors, makes this area of research
a passage obligé for the understanding of how cells generate and maintain their complex
compartmental organization [4]. How precisely the function of lipids as regulators of protein
sorting may relate to the formation of microdomains remains a controversial issue, especially
in light of recent cellular imaging and proteomics data. Finally, lipids, fatty acids, and related
hydrophobic moieties appear to regulate intracellular protein dynamics by covalent, in many
cases reversible attachment to proteins. Here, we summarize three basic mechanisms by which
lipids and lipid modifications affect intracellular protein transport: the role of specific lipids,
particularly glycerolipids, as protein recruiters and mediators of distinct trafficking steps, the
formation of lipid microdomains, and the regulation of sorting by covalent modification of
proteins.
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GLYCEROLIPIDS AS MEDIATORS OF INTRACELLULAR MEMBRANE
TRAFFIC
General considerations on glycerolipids

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are clearly the most abundant
glycerophospholipids in cells and as such, have been largely regarded as structural components
of cellular membranes and thus “passive players” in organelle traffic. Therefore, studies of this
process have primarily focused on lipids present at lower levels, which are endowed with major
regulatory properties. These include mostly anionic phospholipids, such as
phosphatidylinositol (PI) and its phosphorylated derivatives (i.e. phosphoinositides),
phosphatidic acid (PA), and phosphatidylserine (PS), in addition to diacylglycerol (DAG),
which is uncharged [3,5,6]. Under normal conditions and in a variety of membrane
compartments, most if not all of these lipids appear to be concentrated in the cytoplasmic leaflet
where they can control the cytosol-membrane interface. The relative amount of each lipid varies
from one compartment to another and in several instances specific lipids (e.g.
phosphoinositides) were shown to be significantly enriched on particular organelles, thereby
acting as spatial landmarks for these compartments [5,6]. These lipids, often with the
cooperation of other signals, can in turn recruit effector proteins, such as coat components,
signaling scaffolds and cytoskeleton regulators, thereby allowing a plethora of processes to
occur at the membrane-cytosol interface. This feature is essential for all aspects of membrane
trafficking, including budding, fission, transport, tethering and ultimately, fusion.
Superimposed to their roles as signaling molecules, physical features, such as the simple
geometry of glycerolipids (e.g. “cone shape” vs “inverted-cone shape”), affect the ability of
membranes to bend and fuse, thereby underscoring their importance as key intrinsic
components of cellular membranes [3].

Roles of phosphatidic acid in membrane dynamics
PA approximately constitutes 1–5% of total cellular lipids [5,7]. In addition to its fundamental
role in the biosynthesis of most other phospholipids and triacylglycerols [7], PA has been
directly or indirectly implicated in vesicle trafficking, secretion and endocytosis in a variety
of cell types. A major pathway for the synthesis of a pool of PA relevant for membrane traffic
involves phospholipases D (PLD), which can hydrolyze a variety of substrates to produce PA
[8] (Figure 1). In mammals, the best-characterized members of this family, PLD1 and PLD2,
hydrolyze primarily PC and thus release free choline in addition to PA [8].

The first evidence for an involvement of PLD in secretion was provided more than a decade
ago in permeabilized platelets [9], paving the way for a large number of subsequent studies
implicating this pathway and, more specifically PLD1, in the exocytic process in various cell
types [8]. While initial functional studies have largely relied on the application of primary
alcohols, which divert PLD enzymes from production of PA to phosphatidylalcohol, the recent
advance of RNA interference (RNAi) has allowed for a better understanding of the respective
PLD isoforms involved and further established a role for these enzymes and their product in
membrane fusion.

In a first study, the fusion of GLUT4-containing vesicles with the plasma membrane induced
by insulin was shown to be blocked by knocking down PLD1, but rescued by treatment of
adipocytes with fusogenic lipids, such as lysoPC [10]. Furthermore, work on the yeast ortholog
of PLD, Spo14, has not only provided the first genetic evidence for a role of PLD in membrane
fusion, but also identified a SNARE protein, Spo20p (i.e. a SNAP-25 ortholog), as a key
effector of PA [11]. Spo14p is dispensable for yeast cells in the vegetative state, but it plays a
pivotal role during sporulation following meiosis, where it mediates the coalescence of
secretory vesicles into membrane sheets called prospore membrane. In this process, the
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requirement for PLD reflects, at least in part, the necessity to synthesize on precursor vesicles
a pool of PA involved in the recruitment of the t-SNARE protein Spo20, which mediates their
fusion [11]. Finally, a recent report has further linked PA to membrane fusion and SNARE
proteins in reconstituted liposome fusion assays. A key finding is that PA can either promote
or block SNAP23- and VAMP2-mediated liposome fusion, depending on whether it lies on
acceptor or donor vesicles, respectively [12]. Interestingly, the converse was observed for PI
(4,5)P2, suggesting that the asymmetric distribution of major anionic phospholipids, such as
PA and PI(4,5)P2, may be a key determinant of fusion at the plasma membrane [12].

A requirement for PLD and PLD-derived PA in the process of membrane fusion may be broader
than previously appreciated. A striking example is that of a mitochondrion-localized PLD
isoform (MitoPLD), which is encoded by a distinct ancestral PLD gene and hydrolyzes
cardiolipin, rather than PC [13]. This enzyme localizes to the outer membrane of mitochondria,
where it appears to act “in trans” (i.e. on a pool of substrate present on a different, but closely
localized, mitochondrion) to promote mitochondrion fusion in a mitofusin-dependent fashion
[13].

A role for PLD-derived PA was also shown for the endocytic retrieval of various plasma
membrane receptors, including the EGF receptor [8]. In these instances, PLD2 appears to be
playing a primary role consistent with its enrichment at the plasma membrane in various cells
types [8]. Furthermore, an RNAi study has suggested a broader role in the endocytic pathway,
i.e. in the recycling of transferrin receptor from recycling endosomes to the cell surface [14].
However, PLD2 has also been localized to compartments distinct from the endosomal system,
indicating that it plays multiple roles in vesicular traffic [15]. It is of note that catalysis-
independent functions have been also suggested for PLD in the internalization of EGF receptor.
More specifically, the Phox homology region of PLD has been shown to directly stimulate the
GTPase activity of dynamin (i.e. the main fission factor) [16].

An alternate pathway for the generation of PA involves DAG kinases [17] (Figure 1). These
enzymes have been primarily implicated in signaling mechanisms downstream of various cell
surface receptors, where they seem to mediate either the termination of DAG signaling, or the
synthesis of PA as a bioactive metabolite. Importantly, the pool of PA synthesized by DAG
kinases likely differs in many instances from that produced by PLD in terms of fatty acyl
composition and may be functionally unrelated [18]. Although there is no clear evidence for
the involvement of DAG kinases in membrane traffic, a participation in this process is
extremely likely, based on the implication of both DAG (see below) and PA. Furthermore,
three independent DAG kinase isoforms were shown to play a role in endocytic traffic based
on an RNAi screen of the ”kinome” [19].

PA may be involved in multiple aspects of membrane fusion. While some of its actions likely
rely on effector proteins (e.g. SNARE proteins), others may merely reflect its fusogenic
properties in lipid bilayers [8]. In the PLD pathway, the hydrolysis of PC into PA converts a
cylindrical, non-fusogenic lipid into a cone-shaped, fusogenic lipid that favors negative
membrane curvature [3,8]. Furthermore, metabolites originating from the cleavage of PA by
other lipases (e.g. the inverted cone-shaped lipid, lysoPA) (Figure 1) may contribute to
decreasing the energy required for membrane budding and fusion [8]. Finally, some PA may
also fulfill a variety of functions indirectly by promoting PI(4,5)P2 synthesis through a direct
activation of Type I PIP kinases [8].

Role of diacylglycerol in vesicle budding and fusion
The first evidence for a role of DAG in membrane trafficking was indirect and came from
genetic studies in yeast, where mutations in Sec14p were shown to block transport from the
trans-Golgi network (TGN) [1,2]. Sec14p is a PITP that binds to both PI and PC and acts as a
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negative regulator of PC biosynthesis [2], a pathway that consumes DAG through the CDP-
choline metabolic pathway (Figure 1). Thus, in the absence of Sec14p, PC accumulates on
Golgi membranes at the expense of DAG. Recently, an RNAi study in mammalian cells has
shown that downregulation of Nir2, a protein containing a PITP module, blocks the fission of
cell surface-destined transport carriers at the TGN. Because this phenotype correlates with
decreased levels of DAG and can be rescued by blocking PC biosynthesis through the CDP-
choline pathway, this study reveals a conserved role for PITP family members in the
homeostasis of a pool of DAG involved in membrane transport from the TGN [20,21].
Additionally, it further supports a role for DAG in membrane fission at this station, which, as
in the case of PA, may result from its cone shape and/or from the action of downstream
effectors, such as GTPase-activating proteins (GAPs) for ADP-ribosylation factor (ARF) and
protein kinase D (PKD) [21]. In light of the well-known ability of some PITP members to
regulate PI metabolism [2] and the recent identification of a PI(4)P-synthesizing enzyme as a
physiological substrate for PKD [22], an important question is how DAG and PI(4)P cooperate
to mediate transport-carrier formation at the TGN.

DAG has long been known as a regulator of the protein kinase C (PKC) pathway by virtue of
its ability to bind to the C1 domain of various PKC family members. Elegant genetic studies
have identified Munc13, a C1 domain-containing protein involved in vesicle priming (i.e. the
maturation step that precedes full fusion), as another key DAG effector at the plasma membrane
[23]. Knock-in mice carrying a point mutation in the C1 domain of Munc13-1, which abolishes
binding to DAG, renders this protein insensitive to phorbol ester-stimulated vesicle priming,
thereby causing defects in augmentation of neurotransmission [23]. Recent data indicate that
the Munc13 pathway may in fact cooperate with PKC-dependent mechanisms in DAG-induced
forms of presynaptic plasticity [24]. Consistent with an involvement of DAG in exocytosis,
studies in yeast have indicated that vacuolar fusion requires a pool of DAG derived from
phospholipase C-mediated cleavage of PI(4,5)P2 [25] (Figure 1).

Recent progress in the analysis of functions of phosphoinositides
Because the properties and biological roles of phosphoinositides have been extensively
reviewed elsewhere [4,6], this section will focus more on recent progress in their methods of
investigation. Phosphoinositides, which are the best-characterized glycerolipids, are
implicated in processes as diverse as signal transduction, membrane trafficking, cytoskeletal
rearrangements and the permeability of membranes [4,6]. Through reversible phosphorylation
reactions mediated by a variety of kinases on the 3, 4 and 5 positions of the inositol ring, seven
phosphoinositide species can be generated. Each of these lipids has a unique distribution in
cells, with the quasi-consensual view that PI(4,5)P2 and PI(3,4,5)P3 are preferentially
concentrated at the plasma membrane, PI(3)P and PI(3,5)P2 are predominantly localized to the
endosomal compartment, and PI(4)P is enriched on the TGN and secretory organelles [6].
These lipids are viewed as spatial landmarks for the respective compartments (i.e. “organelle
identity tags”) and their normal balance is required for a large number of processes occurring
at the membrane-cytosol interface [6]. Accordingly, a large number of proteins harbor
phosphoinositide-binding modules or sequences that mediate their recruitment to membrane
compartments enriched for these lipids. Such determinants likely act in conjunction with
protein factors to target subpools of phosphoinositides for specific cell physiological functions.

Recently, a series of converging studies have reported the adaptation of existing technologies
to allow for the manipulation of phosphoinositide levels in intact cells in a rapid and inducible
fashion. These approaches exploit the ability of rapamycin or derivatives thereof (termed
“rapalogs”) to induce heterodimerization of two intracellular proteins, mammalian Target of
Rapamycin (mTOR) and FK-506 Binding Protein 12 (FKBP12), via their concomitant binding
to their FRB and FKBP domains, respectively. While one of these domains harbors a sequence
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allowing for constitutive targeting to the plasma membrane, the other domain is fused to the
catalytic domain of a PI-metabolizing enzyme. In the presence of crosslinking drug, the lipid
enzyme is rapidly recruited to the plasma membrane, where it can modify the lipid content of
this compartment. This strategy has been used to acutely deplete the plasma membrane of PI
(4,5)P2 using inositol 5-phosphatase modules with major consequences on ion channel function
[26,27], transferrin and EGF internalization [27] as well as clathrin-coated pits dynamics
[28]. A variant of this technology was also used to acutely promote the recruitment of the
inositol 3-phosphatase myotubularin to Rab5-positive endosomal compartments. The resulting
acute depletion of PI(3)P (and potentially PI(3,5)P2) in this compartment was shown to cause
major defects in endosomal trafficking [29], supporting the view that 3-phosphoinositides are
essential components in early endosomal membrane dynamics. However, the fundamental
question of how subpools of phosphoinositides may regulate specific pathways is still
unanswered and remains one of the most important challenges for the future.

Phosphatidylserine: More than a passive player in membrane traffic?
PS is the most abundant anionic phospholipid of cell membranes, where it constitutes
approximately 5–10% of total cellular lipids. The main site of synthesis, as for many other
lipids, appears to be the ER. Although abundant, PS has been almost exclusively investigated
in the context of studies on lipid synthesis, lipid transport (e.g. import into mitochondria), blood
coagulation and apoptosis [30]. The latter were motivated by the discovery that during apotosis,
PS is translocated from the inner leaflet to the outer leaflet of the plasma membrane, where it
constitutes a major cell surface signal for a variety of receptors of phagocytes (e.g. “scavenger”
receptor) and sentences dying cells to the engulfment process [30]. Annexin V, which
specifically binds PS, has been widely used as a probe for this lipid to detect apoptotic cells
[5,30].

Few studies have directly addressed the role of PS in membrane traffic, although some evidence
suggest that its homeostasis may be critical for this process. For instance, genetic studies of
enzymes (e.g. the P-type ATPases Drs2p, Dnf1p, Dnf2p) believed to “flip”
aminophospholipids, such as PS and PE, across membranes have revealed that the asymmetric
distibution of these lipids in the bilayers (i.e. with an enrichment in the cytoplasmic leaflet) is
critical for budding from the TGN as well as for endocytosis in yeast [31,32]. Second,
fluorescent imaging studies evaluating the inner surface charge of the plasma membrane using
genetically-encoded cationic probes suggest that PS, likely in combination with PI(4,5)P2, PI
(3,4,5)P3 and PA, is a key contributor to the overall negative surface charge of this compartment
[33,34]. Thus, membrane domains enriched for these lipids may act as spatial landmarks for a
variety of peripheral proteins recognizing these lipids at the plasma membrane through simple
electrostatics (e.g. MARCKS) or through more sophisticated interactions involving also
hydrophobic residues (e.g. pleckstrin homology domains) [35]. Accordingly, some lipid-
binding modules include independent binding pockets for PS and phosphoinositides [5],
allowing for coincidental detection of independent signals by proteins that harbor these
modules and the generation of high affinity interactions with membranes [6]. However, the
high turnover of phosphoinositides, combined with the rapidity and extent to which their levels
can be adjusted in cells, suggests that modulation of protein affinity for PS/phosphoinositide-
rich membranes may occur primarily by adjusting the levels of phosphoinositides, rather than
PS. It is of note that membrane internalization processes may not only be paired with the
hydrolysis of phosphoinositides by phospholipases and phosphatases, but also with a de-
enrichment of PS from the cytoplasmic leaflet via metabolic conversion into another lipid (i.e.
decarboxylation), “flipping” to the luminal/outer leaflet or, in the case of phagocytosis, via a
dilution effect mediated by the supply of PS-poor endomembranes to nascent phagocytic
structures [33].
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CHOLESTEROL AND LIPID MICRODOMAINS
Given that some glycerophospholipids such as PI(4,5)P2 are rare membrane components they
have been suggested to become concentrated in microdomains enriched in cholesterol, i.e. to
control leading edge motility of cells during polarization [36]. Evidence for the existence of
membrane microdomains indeed has been collected from a variety of systems including
polarized epithelial cells and primary neurons. However, the chemical and physical nature of
membrane microdomains as well as the question of how they are formed have remained a
matter of controversial debates [37,38].

Based on the property of membrane lipids to be present in three different phases, the gel phase,
the liquid-ordered phase (Lo), and the liquid crystalline phase (Ld), it was proposed that lipid-
lipid interactions are required and sufficient for microdomain formation [39]. Membranes
enriched in cholesterol, glycosphingolipids, and phospholipids with fully-saturated acyl chains
partition into the liquid-ordered phase. The resulting lipid segregation has been suggested to
result in the formation of lipid rafts, which then could serve as platforms for protein sorting by
differential phase partitioning [37]. Such cholesterol-based lipid rafts (Figure 2A) have been
implicated in a wide range of processes including polarized protein sorting within the exo- and
endocytic pathways, cell motility [36], cellular entry of toxins [40] and viruses, and signal
transduction [41]. However, recent data from Förster resonance energy transfer (FRET)
measurements in living cells have cast serious doubt on the existence of stable raft-like entities.
Instead it seems that ‘raft’ components such as GPI-linked proteins exist as highly dynamic
nanoscale clusters composed of just a handful of protein molecules [42]. Furthermore, confocal
fluorescence recovery after photobleaching (FRAP) experiments have shown that putative raft-
associated proteins appear to diffuse freely over large distances on the cell surface, suggesting
that discrete ‘raft’ domains may not exist as stable entities [43].

Lipid shells
An important difference between native biological and model membranes is the packing
density of membrane proteins. Evidence for a crucial role for protein crowding as a major
determinant of slow diffusion over micron scales has recently been provided by elegant
photobleaching experiments. Artificial increases in protein density caused by patching of ConA
receptors were shown to decrease mobility of GFP-GPI which itself did not undergo co-
aggregation [44]. A recent landmark proteomic and lipidomic study in which the molecular
constituents of synaptic vesicles had been analyzed indeed suggests that protein transmembrane
helices may occupy more than a quarter of the entire membrane volume, a protein density much
higher than previously anticipated from the Singer-Nicholson model [45]. This organization
implicates that in an average biological membrane integral proteins may be surrounded by a
shell composed of just a few rings of lipid. Biological membranes also associate with peripheral
adaptor proteins, many of which display medium affinity binding to select membrane lipids
such as phosphoinositides [6], and with the cytoskeletal meshwork. Fluorescence correlation
spectroscopy (FCS) measurements identify the actin cytoskeleton as a major barrier for
confinement of non-’raft’ proteins such as the transferrin receptor [46]. These findings are thus
easier to reconcile with the shell model of lipid and protein microdomain formation [43](Figure
2B). According to this view specific classes of membrane proteins may laterally organize select
lipids including cholesterol (Fig. 2B, shell protein). Prime examples are represented by the
membrane-integral coat proteins caveolin, and reggie/flotillin [47]. By contrast, non-shell
proteins would not display any selectivity with regard to their immediate lipid environment
(Fig. 2B, non-shell protein). Elegant recent work based on the magnetic purification of
endosomes paired with RNA interference has shown that flotillin-1 defines a cholesterol-
dependent non-clathrin-mediated endocytic pathway used by GPI-linked proteins and cholera
toxin B [48]. The membrane-deforming ability of flotillin-1 may relate to the putative insertion

Haucke and Di Paolo Page 6

Curr Opin Cell Biol. Author manuscript; available in PMC 2008 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of hairpin loop structures into the plasmalemma, perhaps paired with flotillin oligomerization
and association with cholesterol and sphingolipids. Thus, in more general terms coalescence
of shell proteins into larger complexes could lead to the formation of nanoclusters or protein-
lipid-based microdomains.

Curved membrane microdomains
Protein and lipid segregation has been observed during the budding of coated transport vesicles
[49]. A key element of this process is the formation of highly curved membrane microdomains
by peripherally associated adaptor and scaffolding proteins, some of which are able to partition
predominantly into one leaflet of the bilayer [50]. Lipids with large headgroups prefer positive
monolayer curvature, whereas those with a cone-shape will adopt negative curvature [50]. This
phenomenon could contribute to curvature acquisition as suggested by molecular dynamics
simulations [51]. Thus, lipid segregation may occur based on their geometrical shapes.
Moreover, the surface area occupied by the cytoplasmic versus the exoplasmic leaflet differs
dramatically for small membrane buds and vesicles, a feature that might require stabilization
of the cytoplasmic leaflet by membrane cholesterol (Figure 2C). Small synaptic vesicles indeed
display an unusually high content of cholesterol [45]. This feature is paralleled by its direct
association with synaptic vesicle membrane proteins including synaptophysin and
synaptotagmin 1, which have been found to form cholesterol-dependent complexes within
synaptic membranes [52]. Recent progress regarding the advent of two-color high resolution
fluorescence nanoscopy [53], FRET techniques [42], and FCS-based protein mobility
measurements [46] paired with the use of new polyene-based [54] and other lipid analogs is
expected to help unraveling the role of lipids in microdomain formation, dynamics, and disease
[55].

LIPID AND RELATED MODIFICATIONS IN PROTEIN SORTING
In addition to the formation of microdomains, lipids or other fatty acyl derivatives can regulate
membrane organization and sorting by their covalent attachment to proteins. Modification of
otherwise soluble proteins with hydrophobic moieties, such as fatty acyl or isoprenyl groups,
regulates their targeting to membranes, their partitioning into lipid microdomains, and perhaps
protein-protein or protein-lipid interactions. Lipid modifications of membrane integral proteins
may also relieve hydrophobic mismatch between the hydrophobic transmembrane helices and
the lipid bilayer [56], resulting in selective concentration of the corresponding proteins in
certain membrane areas or microdomains.

Proteins can be modified with fatty acids, lipids, or even cholesterol in several different ways
[57] (Table 1). Small GTP-binding proteins of the ADP-ribosylation factor (Arf) subfamily of
Ras-related GTPases undergo enzyme-catalyzed N-myristoylation at an amino-terminal
glycine residue after its exposure by cleavage of the initiator methionine and this is important
for their targeting to membranes. Arf-related proteins (Arl) use a a glycine-linked acetate group,
a modification that is required for Arl targeting to membranes, i.e. of Arl3p to the Golgi
complex [58,59]. Many important signaling proteins undergo prenylation (farnesylation,
geranylgeranylation). For example, Ras as well as Rho proteins are prenylated at a cysteine
residue four amino acids upstream from the COOH-terminus via a CaaX box recognition and
modification site. Palmitoylation usually reflects the thio-acylation of internal cysteine residues
via reversible ester linkage (S-palmitoylation). N-palmitoylation via an amide bond has been
reported for the secreted morphogen Hedgehog [60], following its autoproteolytic processing
and modification with cholesterol (Table 1). An unusual lipid modification is required for
autophagosome formation. Yeast Atg8p or its mammalian counterparts LC3, GABARAP and
GATE-16, are ubiquitin-like proteins involved in autophagocytosis, which become attached
to the amino group of phosphatidylethanolamine via an E1–E2-analogous modification system
[61].
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Recent studies on Ras have unravelled an acylation cycle that regulates subcellular trafficking
of H-Ras and N-Ras by dual lipid modification. Constitutive farnesylation targets H- or N-Ras
to the endoplasmic reticulum (ER) where post-prenylation processing of -aaX and carboxy-
methylation occur. Reversible palmitoylation of Ras as demonstrated by elegant quantitative
fluorescence microscopy and photobleaching techniques [62] by a so far unidentified Golgi-
localized acyltransferase (PAT) facilitates trafficking of dual lipid-modified Ras to the plasma
membrane. At the cell surface Ras has been observed in spatially distinct cholesterol-dependent
microdomains and this may be related to the insertion of palmitate into the inner leaflet [63].
Depalmitoylation via a putative acylprotein thioesterase (APT) allows non-vesicular exchange
with endomembranes [64]. These findings predict a prominent role for the Ras acylation cycle
in cell signaling. Similar mechanisms appear to regulate the subcellular localization of
phospholipase D1 [65].

Over the past several years a number of proteins have been identified whose sorting is
dependent on S-palmitoylation including the presynaptic vesicle proteins synaptotagmin 1,
SNAP-25 (as well as its close relative SNAP-23), and cysteine-string protein [66], postsynaptic
AMPA-type glutamate receptors [67] and the associated postsynaptic density protein PSD-95.
The latter is consistent with a role for palmitate-based acylation cycles in synaptic plasticity
[68]. A prominent role for palmitoylation in membrane sorting is underscored by the recent
global analysis of protein palmitoylation in yeast. Using acyl-biotinyl exchange and mass
spectrometry-based proteomic methodology palmitoyl proteins were identified. The 47 protein
factors included a variety of factors with proven functions in membrane traffic and cell
signaling such as SNARE and Rho protein family members as well as amino acid permeases
[69]. The precise mechanisms by which palmitoylation regulates protein function and
intracellular targeting have remained elusive in many cases, but may involve masking of
specific association sites for proteinaceous binding partners. Indeed, elegant studies by Pelham
and colleagues have indicated a regulatory interplay between protein palmitoylation and
ubiquitination. Palmitoylation of the yeast Golgi/endosomal SNARE protein Tlg1 by the
DHHC-cysteine-rich domain palmitoyl transferase (PAT) Swf1 was shown to protect Tlg1
from ubiquitination, whereas inhibition of palmitate addition onto Tlg1 caused missorting to
the vacuole followed by its degradation [70]. Surprisingly, cysteine mutants of Tlg1 did not
mislocalize in ubiquitin ligase deficient yeast strains, suggesting that in this case palmitoylation
is merely used to regulate ubiquitination cycles rather than membrane targeting per se. Whether
palmitoylation is a general regulator of ubiquitin attachment remains to be investigated.

In summary, a mechanistic understanding of protein modification by lipids and other
hydrophobic moieties and the elucidation of the enzymatic control mechanisms involved
appears to be one of the most important challenges for the near future. This will require us to
devise better methods for detection and acute manipulation of select subgroups or pools of
lipids at distinct intracellular sites and to then assess their contribution to cellular function in
real time.
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Figure 1.
Pathways leading to the synthesis of the main glycerophospholipids. Kinase reactions are
shown in red; phosphatase reactions are in green; phospholipases are in blue and acyl
transferases are in black. Biosynthetic reactions are indicated by dotted arrows. PIK,
phosphatidylinositol kinase; LPAAT, lysophosphatidic acid acyl transferase.
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Figure 2. Potential forms of cholesterol-based lipid microdomains
(A) Lipid rafts represent cholesterol- and glycosphingolipid-rich membrane microdomains that
have been postulated to act as sorting platforms for the concentration of signaling proteins
including many lipid- or GPI-anchored proteins. In light of recent data such rafts are most
likely transient, nanoscale structures.
(B) Specific classes of membrane proteins depending on the chemical nature and physical
properties of their transmembrane segments have been postulated to laterally organize select
lipids including cholesterol (Shell protein). Coalescence of shell proteins into larger complexes
could lead to the formation of nanoclusters or protein-lipid-based microdomains similar to
those depicted in (A).
(C) The formation of highly curved membrane microdomains might be driven by peripherally
associated adaptor and scaffolding proteins, some of which are able to partition predominantly
into one leaflet of the bilayer. As the surface area occupied by the cytoplasmic versus the
exoplasmic leaflet differs dramatically for highly curved membrane buds and vesicles curved
microdomains might require stabilization by cholesterol.
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